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Multi-scale failure of porous materials is an important phenomenon in nature and in material physics 
– from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key 
unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, 
based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on 
a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not 
been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis 
that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. 
We use new experimental datasets for the deformation of porous materials to infer the critical crack 
length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to 
failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the 
inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate 
forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, 
the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. 
Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure 
time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural 
failure events, with suitable scaling for the relevant inter-flaw distances.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

All materials contain flaws with a large range of length scales, 
from kilometre-sized fractures in the crust (Hatton et al., 1994), 
to meter-sized cavities (Castro et al., 2002) and fractures in rocks 
and synthetic materials (Allègre et al., 1982), down to micro- and 
nano-pores and density fluctuations in thin-film glasses (Guyer 
and Dauskardt, 2004) and crystals. These flawed materials even-
tually rupture in catastrophic failure events when applied stresses 
become sufficiently large to produce system-spanning fractures 
(Sammis and Ashby, 1986). Recent efforts have converged and 
found that two observations dominate the physics of failure of 
these systems. First, the flaws in the system concentrate stress 
relative to the unflawed domains of the material and therefore 
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the flaw fraction in the material exerts a first-order control on 
the far-field stress required for macroscopic failure (Kemeny and 
Cook, 1986; Sammis and Ashby, 1986; Vasseur et al., 2013). Sec-
ond, the size of flaws and the inter-flaw length determine the 
extent to which the cracks that emanate from flaws will in-
terfere (Bažant, 2004; Sornette and Andersen, 1998). These two 
paradigms underpin all elastic models of rupture events in hetero-
geneous solids and predict that, as the material approaches macro-
scopic failure, the rate of energy released as acoustic emissions 
(AEs) by microscopic failure events accelerates (Kilburn, 2012;
Lockner et al., 1991; Scholz, 1968; Turcotte and Newman, 2003;
Vasseur et al., 2015; Voight, 1989). When first proposed, the find-
ing that these bulk-material accelerations in the rate of energy 
release or event number approaches a singularity that coincided 
with the failure time provided a tantalizing possibility that ma-
terial failure could be forecast accurately using indirect observa-
tions such as micro-earthquakes or AEs prior to wholesale rupture 
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Fig. 1. Stress around pores in 2D and 3D. The distances are normalized by the cavity radius a and the stress by the far-field applied stress σ1. (a) The total stress distribution 
around a circular pore in an infinite plate (2D) mapped out in the positive quadrant of the x–z plane as calculated by combining Eqs. (S1)–(S3). (b) The total stress distribution 
around a spherical pore in an infinite body (3D) mapped out in the positive quadrant of x–z plane as calculated by combining Eqs. (S4)–(S7). (c) The total stress resolved 
along the z-axis (θ = π/2) and along the x-axis (2D) or the x–y plane (3D) (θ = 0).
(Voight, 1989). Indeed a large effort has been expended in as-
sessing the utility of this tool for forecasting hazardous failure 
phenomena in nature (Bell et al., 2011; Bell and Kilburn, 2013;
Hao et al., 2016; Kilburn et al., 2017; Robertson and Kilburn, 2016;
Voight, 1988). However, the still-limited success of these methods 
(Bell et al., 2013) has highlighted complexities in the approach to 
failure of heterogeneous materials that must be addressed if fore-
casting tools are going to be of the widest utility.

2. Micromechanical models for the uniaxial deformation of 
porous materials

Here we present a linear elastic model to demonstrate quantita-
tively how stress is distributed around a circular (2D) or spherical 
(3D) cavity in an infinite solid and exposed to a far-field stress. 
Then we follow previous work to scale that concept to a porous 
body with finite dimensions in order to predict the failure stress 
of a porous material as a function of the porosity φ and the pore 
radius a. We focus on the uniaxial case in which far-field stresses 
are applied in one direction only, and later we discuss how our 
findings could be extended to more complex stress configurations 
in principle. Finally, we explore other characteristic length scales 
in natural materials that may be more relevant than the pore size; 
namely, the inter-pore and inter-particle distances.

2.1. The concentration of uniaxial applied stress around circular and 
spherical pores

First we use a linear elastic model for the stress distribution 
around a circular (2D) or spherical (3D) cavity. For the 2D case 
we opt for the solution credited to Kirsch (1898) and to Goodier
(1933) for the 3D case, repeated in variable completeness in sub-
sequent work (Jaeger et al., 2009; Soutas-Little, 1999) with which 
the stress components can be computed for each spatial position 
around a cavity of radius a. We use the Cartesian coordinate sys-
tem with the far-field stress applied in the z-direction and the 
centre of the pore positioned at (x, y, z) = 0. A line of length 
r away from the pore centre in any direction subtends an an-
gle with the z-axis of θ and an angle with the x- or y-axes of 
ψ . In what follows, we normalize each axis (x, y, z) and the ra-
dial direction r by a and the individual stress components τi j by 
the far-field applied stress σ1, yielding a coordinate system and 
stress tensor components for which a bar above the parameter de-
notes its normalized value. We introduce the 2D and 3D stress 
components in the supplementary file as Eqs. (S1)–(S3) and Eqs. 
(S4)–(S7).
In Fig. 1, we present the normalized stress as a colour map 
around a 2D circular cavity (Fig. 1a) and a 3D spherical cavity using 
ν = 0.25 (Fig. 1b), which is a first-order approximation for crustal 
rocks (assuming the two Lamé parameters are equal). The lobes 
of concentrated stress are compressive in the region of the solid 
surrounding the z-axis and are tensile in the region of the solid 
about the x-axis (2D) or the x–y plane (3D). It is in these lobes of 
concentrated stress that fractures would be most likely to initiate. 
For this reason, in Fig. 1c we additionally show the stress resolved 
along the z-axis (θ = π/2) and along the x-axis (2D) or the x–y
plane (3D) (θ = 0).

2.2. Approximate methods for predicting the stress required for rupture

The deformation of elastic porous media results in cracks that 
propagate from interfaces at which stress is locally concentrated 
relative to the far-field applied load (Sammis and Ashby, 1986). 
Sammis and Ashby (1986) present a static so-called pore-crack
model to compute the degree to which stress is concentrated 
around cavities (a cavity stress intensity factor K Ii ) and the de-
gree to which cracks that grow from those cavities interact (a crack 
interaction stress intensity factor K Iii ). Their solutions are cast as 
simple functions of the sample porosity φ, rendering them easy 
to use and to compare with measured data (Zhu et al., 2011). 
Where the pore-crack model is used, only the solution for 2D 
is usually compared with experimental data (Baud et al., 2014;
Zhu et al., 2011). Here we apply the pore-crack model (Sammis 
and Ashby, 1986) in uniaxial conditions where the sum of K Ii and 
K Iii is the total stress intensity K I .

When a far-field stress σ1 is applied (σ2 = σ3 = 0) onto a mate-
rial rupture begins only when the local stress σ exceeds σc . At this 
point a fracture can initiate to a distance c away from the pore or 
cavity at which distance σ = σc , and beyond which σ < σc . This 
distance c is the equilibrium crack length for the stress state at a 
given time and, defined in non-dimensional form as c = c/a. Then 
c as a function of a normalized stress σ = σ

√
πa/K Ic (where K Ic is 

the fracture toughness or critical stress intensity required for crack 
propagation in the solid) for the 3D and uniaxial case, is as follows 
(Sammis and Ashby, 1986)

σ =
(

0.62
√

c

(1 + c)4.1
+

√
2φ(1 + c)

π

)−1

(1)

where the first term on the right-hand side of Eq. (1) describes 
the growth of a crack from a single pore, while the second term 
is a crack-interaction term related to the porosity φ (see Sammis 
and Ashby, 1986 for full description). This model neglects time-
dependency and therefore it is implicitly assumed that the cracks 
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grow more quickly than the far-field stress changes. This is similar 
to saying that the strain rate is sufficiently low that the damage is 
in equilibrium with the stress at all times.

Eq. (1) provides us with a tool to assess when linear elastic me-
chanics predicts failure for a porous material loaded uniaxially by 
assessing Eq. (1) when dσ/dc = 0. This condition clearly demarks 
the onset point beyond which increased crack growth will mani-
fest as a stress drop. In practice, the sample can remain coherent 
for a relatively small region of crack lengths above this point, but, 
following Zhu et al. (2011), we approximate the failure point as 
described. At this point, we can define the equilibrium normalized 
crack length that is failure in this model as cc = cc/a where cc is 
a function of φ only. Differentiating Eq. (1) with respect to c and 
setting dσ/dc = 0 then yields an expression for the porosity

φ = 2π2(1 + cc)

(
2.542

√
cc

(1 + cc)5.1
− 0.31

(1 + cc)4.1
√

cc

)2

(2)

so that the equilibrium crack length at failure cc can be found nu-
merically for a given φ.

2.3. The inter-flaw length and pore sizes in porous materials

In natural rocks as well as synthetic porous materials, the pore 
space is rarely an array of spherical cavities (e.g. Vasseur et al., 
2013). Indeed, for sandstone, limestone, welded volcanic materi-
als including ignimbrites, among many other lithologies, it is more 
relevant to think of the solid matrix as an array of near-spherical 
objects (grains) and the pore space as the convolute inter-sphere 
void (Vasseur et al., 2016). In this scenario, we can apply metrics 
for the characteristic length scales of the system based on theoret-
ical models for the description of microstructure in random het-
erogeneous materials (Torquato, 2013). This is an advance on using 
simple concepts of “pore sizes”, which are typically scaled to bulk 
porosity simply by assuming regular simple arrays of monodis-
perse pores in a unit volume (Zhu et al., 2011).

If we think of our model geological material as a packing of 
spherical grains with radius R and that these grains are able to 
freely overlap or inter-penetrate, then we can account for porosi-
ties lower than the maximum packing porosity of grains. In this 
case, we use a nearest-neighbour function to find the average 
inter-pore lengths in a heterogeneous grain pack. The nearest-
neighbour function in a random system of interacting spheres can 
be evaluated from the probability F (r)dr that an arbitrary sphere 
centre in the system lies at a distance between r and r + dr
from another sphere centre. The nth moment of F (r) is given by 
(Torquato et al., 1990)

〈
rn〉 =

∞∫
0

rn F (r)dr (3)

where a bar above a symbol denotes a parameter normalized by 
the sphere radius R (i.e. r = r/R and F (r) = F (r)R). The first 
moment (i.e. n = 1) gives the mean nearest-neighbour distance 
between spheres l̄ ≡ 〈r〉. In our case the spheres can either rep-
resent the pores (i.e. R = a), yielding inter-pore distances termed 
l1, or the particles (i.e. R = R), yielding inter-particle distances 
termed l2. In the case where the spheres are monodisperse and 
fully penetrable, the nearest-neighbour function for finding l1 or l2
is (Torquato et al., 1990)

F (r) = 3ηr2 exp
(−ηr3) (4)

where η represents the sphere reduced density (i.e. the product 
of sphere number density and sphere volume). Combining Eq. (4)
with Eq. (3) and taking n = 1, results in an analytical expression
Fig. 2. The calculated mean nearest-neighbour distance between overlapping 
spheres in a statistically random heterogeneous medium as a function of porosity 
using Eqs. (5) and (7). l1 corresponds to the case where the spheres are the pores 
(porosity is thus the sphere volume fraction) and is then an inter-pore distance. 
l2 corresponds to the inverse case where the spheres are the particles (porosity 
is thus the volume fraction exterior to the spheres) and is then an inter-particle 
length. 〈a〉 corresponds to the mean pore radius between solid spheres.

li = Γ (4/3)

η1/3
(5)

where Γ is the gamma function, and η = − ln(1 − φ) when i = 1
(the case when l1 = l1/a) and η = − ln φ when i = 2 (the case 
when l2 = l2/R). We can think of l1 as a characteristic inter-pore 
distance which we will use to estimate the average distance a 
crack must bridge to connect two pores, and l2 as a characteristic 
inter-particle distance which we can think of as a more rigorous 
proxy for pore size in heterogeneous random media. In Fig. 2 we 
show how both l1 and l2 vary with φ for overlapping monodisperse 
spheres (spherical pores in the case of l1 and spherical particles in 
the case of l2).

For comparison, we can also use the model of Lu and Torquato
(1992) to predict the characteristic pore radius between random 
heterogeneous overlapping particles. To do this, we use Eq. (4) to 
get a pore-size density function P (a) (here η = − ln φ)

P (a) = F (1 + a)

φ
= 3η(1 + a)2

φ
exp

(−η(1 + a)3) (6)

where a = a/R and P (a) = P (a)R . The nth moment of P (a) is given 
by

〈
an〉 =

∞∫
0

an P (a)da (7)

and the first moment (i.e. n = 1) gives the mean pore radius 〈a〉.

3. Experimental materials and methods

3.1. Materials, experimental deformation and data acquisition

We use experimental data from samples of a range of different 
porous geological media including sandstone, limestone, volcanic 
welded debris, and synthetic analogues for quartz-rich sandstone 
of sintered glass beads (cf. Blair et al., 1993). While these data are 
associated with experiments from published studies (Heap et al., 
2013, 2015; Wadsworth et al., 2016), the acoustic data are anal-
ysed here for the first time in terms of the critical crack length 
inferred from a micromechanical model. Fig. 3 shows photomi-
crographs of characteristic sample microstructure collected either 
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Fig. 3. Characteristic photomicrographs of the samples used in this study: a suite of (a)–(c) synthetic porous glasses and (d)–(f) natural samples. Black represents the gas 
phase, white and shades of grey the solid phase. (a)–(c). Sintered glass beads from Vasseur et al. (2015) with varying porosity. (d) Darley Dale (UK) sandstone from Wadsworth 
et al. (2016). (e) Mt Meager (Canada) welded volcanic debris from Heap et al. (2015). (f) Mt Climiti (Italy) carbonate from Heap et al. (2013). Note that all materials are 
porous, variably densified, initially granular materials with simple microstructures (a)–(c) or increasingly complex microstructures (d)–(f) In particular, the limestone (f) is 
multiphase and finer grained that the other samples (a)–(e).
using scanning electron microscopy or optical microscopy. We se-
lected this range of samples to encompass the simplest case of 
a two-phase system of solid and pores (synthetic analogues for 
quartz-rich sandstones; Fig. 3a–c), and the more complex cases of 
multiphase natural materials relevant to crustal rocks (quartz-rich 
sandstones, volcanic clastic rocks, and clastic limestones; Fig. 3d–f).

The porosity of all materials was determined using helium py-
cnometry and the mean particle sizes 〈R〉 were estimated using 
optical microscopy. For the sandstone samples 〈R〉 ≈ 2.5 × 10−4 m 
(Wadsworth et al., 2016), for the limestone samples 〈R〉 ≈ 2.5 ×
10−4 m (Heap et al., 2013), for the welded volcanic debris 〈R〉 ≈
2 × 10−4 m (Heap et al., 2015), and for the synthetic sintered 
glass beads, 〈R〉 ≈ 7.6 × 10−5 m (Vasseur et al., 2016, 2015). All 
samples were dried and deformed under uniaxial loading at a con-
stant strain rate of 10−5 s−1. Acoustic emission data was collected 
continuously during deformation at acquisition rates of 20 MHz, 
synchronized with the mechanical data acquisition.

In uniaxial tests, the time at which the samples rupture com-
pletely, tc , is simply the point at which the measured stress drops 
significantly and is therefore trivial to pick. At a strain rate of 
10−5 s−1 the peak stress σc typically occurs at t = tc or just 
prior to tc , consistent with the failure criterion dσ/dc = 0 assumed 
above in deriving Eq. (2).

3.2. Retrospective ‘forecasting’ of the failure time

Retrospective forecasting, or ‘hindcasting’ is a necessary though 
not sufficient step in assessing the predictability of non-linear 
complex systems. It can provide a ‘best-case scenario’ for forecast-
ing in prospect near the failure time, but can also provide insight 
into phenomena not yet included in current models. Here we test 
a commonly-applied model for failure forecasting using precursory 
changes in the rate of acoustic emissions – high-frequency elas-
tic wave packets generated by the rapid release of strain energy 
during local micro-crack rupture – during deformation. Specifically, 
we monitor the number of events per unit time Ω̇ , the parameter 
most commonly used to forecast failure of a system due to its sen-
sitivity to deformation (Lavallée et al., 2013, 2008; Vasseur et al., 
2015; Voight, 1988). The variety of lithologies tested allows us to 
study failure forecasting in a controlled manner, and to isolate the 
fundamental controls on the evolution of Ω̇ and the accuracy of 
the forecast failure time.

One of the most common ways to relate the rate of an observ-
able signal Ω̇ that is precursory to the forecast failure time tp is 
the Time-Reversed Omori Law (TROL; Vasseur et al., 2015)

Ω̇(t) = k(tp − t)−p (8)

where k is a scaling factor andp parameterizes the rate of ac-
celeration of Ω̇ . Here the approach of Ω̇ to failure is an inverse 
power-law, with a well-defined singularity at tp , as expected for 
a system approaching a critical point defined by a system-sized 
event. Note that in the following we refer to tc as the observed fail-
ure time. Following the procedure described in detail in Bell et al.
(2013) we applied the TROL to catalogues of AE events in order to 
retrospectively forecast failure. This law has three free parameters 
(k, p and tp ) to adjust, which are not known a priori. The Maxi-
mum Likelihood (ML) method is applied to the TROL and has been 
shown to provide statistically stable and repeatable estimates of its 
parameters (Bell et al., 2013). Additionally, this method uses the 
timing of individual AE events rather than event rates determined 
in equally spaced bins (as is commonly the case when applying 
standard failure forecast methods). The ML solution is found by 
minimizing the negative log-likelihood function using a downhill 
simplex algorithm. In an interval (t0, t1) and for n number of ob-
servations, the log-likelihood function for the TROL is given by

ln(L) =
n∑

i=1

ln
(
k(tp − ti)

−p)

+ k

1 − p

(
(tp − t1)

1−p − (tp − t0)
1−p)

(9)

for p 	= 1 and
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Fig. 4. Calculated versus measured uniaxial compressive strength (UCS) using (a) the inferred mean pore radius 〈a〉 from Eq. (7) and (b) the inferred inter-particle distance l2
from Eq. (5) for all the samples studied here and colour-coded for porosity. Inset – the evolution of stress σ with crack length c for 4 different porosity values as calculated 
from Eq. (1) for a sample subjected to uniaxial loading.
ln(L) =
n∑

i=1

ln
(
k(tp − ti)

−1) + k
(
ln(tp − t1) − ln(tp − t0)

)
(10)

for p = 1. This yields a retrospective forecasted failure time tp

based on precursory signals only.
Alternatively, the approach of Ω̇ to failure may be exponential: 

Ω̇(t) = h exp(qt), where h is another scaling parameter and q con-
trols the evolution of Ω̇ . The exponential model can be fit in the 
same way using another form of the ML method but does not have 
the same degree of forecast power as there is no unambiguous sin-
gularity in Ω̇ at any time. The ML solution for the exponential law 
is

ln(L) = q
n∑

i=1

ti + n ln(h) − h

q

(
exp(qt1) − exp(qt0)

)
(11)

The forecasting window was restricted to 90% of the known 
failure time tc . In cases where the TROL is an appropriate model 
for the underlying process, the analysis by Bell et al. (2011) indi-
cates a typical random error (precision) of ±6% at 95% confidence 
or so when the forecast was made at 90% of tc . Hence any differ-
ence between forecast and observed tc above ±6% or so is diag-
nostic of a systematic error or bias (loss of accuracy) at this level 
of confidence, requiring a correction to the TROL.

The Bayesian Information Criterion (BIC) is a statistical tool to 
quantify the relative performance of different models in describ-
ing a dataset (i.e. when making an inference, the preferred model 
is more likely to have the lower BIC value). It is based on the 
likelihood L of the observation given the model, with a weight-
ing favouring the model with fewer parameters, and is given by 
B IC = −2 ln(L) + N ln(n) for which N is the number of free param-
eters. Therefore, calculating the positive difference �B IC between 
the BIC value of the TROL and the exponential law respectively 
helps discriminate which is the preferred model. As such, when 
the �B IC becomes negative it indicates a strong statistical prefer-
ence for the TROL over the exponential law.

4. Results and analysis

4.1. Comparing results with the mechanical model

Using the peak stress σc observed in the uniaxial compression 
experiments, we can test the micromechanical model presented. 
Applying Eq. (1) allows us to compute the normalized uniaxial 
stresses for every normalized crack length value for a given poros-
ity (see Fig. 4a inset for this result for four porosities). We can com-
pute the normalized critical crack length cc for a failure to occur in 
a sample of given porosity using Eq. (2), and then convert that to a 
critical peak stress required for failure σc using Eq. (1). The model 
and observed peak stresses can then be compared directly as a hy-
pothesis test. As we know the mean particle radius for all of our 
experimental samples, we can compute a characteristic pore radius 
using either Eq. (5) to find l2 or Eq. (7) to find a. We can use this 
to find the stress required for failure, termed the uniaxial com-
pressive strength (UCS). In Fig. 4 we show that when we perform 
this analysis using a in the dimensional result for cc and σc , the 
model performs poorly (Fig. 4a). Whereas when we use δl2 (with 
a calibrated δ = 3/2) in the result, we find that the predicted peak 
stress is in good agreement with the observed peak stress (Fig. 4b). 
This validates the micromechanical model used here (Sammis and 
Ashby, 1986), and confirms l2 as the best metric for the charac-
teristic pore dimension. This is in contrast with previous work in 
which investigators use a characteristic pore radius a in Eq. (2)
(Zhu et al., 2011). The success of using l2 (Fig. 4b), demonstrates 
that the challenges associated with defining and measuring l2 in 
rocks can be circumvented and represents an advance on previous 
approaches.

4.2. Predicting the rupture time

We show in Fig. 5 that all samples exhibit apparent accelera-
tion of Ω̇ toward the observed failure time tc . Here we normalize 
the time data so that deformation begins at −1, and tc occurs 
at 0 (Fig. 5). Across the full range of porosities tested, these ac-
celerations are well-fit by a power-law TROL (see Eq. (8)). While 
we plot the cumulative number of events for the model and ob-
served data in Fig. 5, the model was fitted on the rate data, so 
that the data points remain independent. Here we do not show 
explicitly the best-fit p, which lie below 1 and compare favourably 
with previously published values for synthetic tests (Bell et al., 
2013) and deformation experiments (Cornelius and Scott, 1993;
Voight, 1989). The best-fit tp diverges from tc as φ → 0, indicat-
ing that the power-law extends systematically beyond tc toward 
its singularity at tp > tc . The time deficit between the forecast and 
observed failure time exceeds the estimated precision of ±6% or 
so described above, and increases systematically as porosity de-
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Fig. 5. Examples of failure forecasting for two sample types studied herein (a)–(d) sintered glass beads; Vasseur et al., 2015 and (e)–(h) welded volcanic debris; Heap et 
al., 2015) with varying porosity. The colourful thick solid lines represent the raw data, while the black thin solid lines represent the model output. The predicted (from the 
model) tp and the actual failure times tc are marked by vertical dashed and dotted lines, respectively. One can notice how the time deficit between tp and tc reduces as 
porosity increases and how this corresponds well with a decrease in distance deficit as shown in Fig. 7.
creases: the systematic error is as high as 100% at a porosity of 3% 
(Fig. 5).

The observation in Fig. 5 is consistent with those of Vasseur et 
al. (2015; data from this study is repeated here for context and 
comparison) and Jiang et al. (2016), whereby system-sized failure 
can only forecast failure accurately (i.e. within the calculated pre-
cision of the ML method) in highly heterogeneous, porous samples. 
Conversely it does not provide accurate forecasts of failure in rel-
atively homogeneous, low-porosity materials. Vasseur et al. (2015)
also showed that failure of porous materials is best described by an 
inverse power-law acceleration at high porosity, and by the expo-
nential acceleration at low porosity (φ < 0.3; Fig. 6 inset). However, 
the low-porosity trends are not necessarily exponential in nature 
and this is an effect of the non-existence of a power-law singular-
ity in these data. Additionally the failure time is not defined by the 
dynamics underlying the exponential model and failure forecasts 
using this model must be based on other metrics. These obser-
vations highlight a current shortcoming in our ability to forecast 
system-sized material failure in natural and synthetic porous me-
dia, which we now address.

The first clue to accounting for the systematic bias in the fail-
ure time is illustrated in Fig. 7a. Here we see a strong positive 
correlation between the bias, expressed as the ratio of the pre-
dicted to the observed failure time, and the inter-pore distance 
l1(φ). This implies that failure is poorly resolved when the dis-
tance between two pores is large and thus that the crack-length 
required to connect two pores should also be large. If we apply 
the micromechanical model used to accurately predict the failure 
stress, we would expect that 2cc is the crack length required to 
connect two pores (given that a crack grows from each pore at 
the same time; dashed line in Fig. 7b). But as porosity decreases, 
there is a systematic deviation from the micromechanical model 
result for cc(φ) from l1(φ), calculated using Eqs. (2) and (5) re-
spectively. We find a correlative relation between the normalized 
failure forecast and the normalized critical crack length, such that 
tp/tc ≈ 2cc/δ (with cc = cc/l2) and hence tp/tc as a function of 
l1 (solid line in Fig. 7b). We infer that this represents a distance 
deficit between the crack length and the length required to con-
nect two pores, which is larger for low porosity samples than for 
Fig. 6. The dependence of the forecast error (cast as the ratio between the predicted 
failure time tp from the TROL and the observed failure time tc ) on the sample 
porosity φ (or heterogeneity index H defined in Vasseur et al., 2015) for a range 
of rock types and material analogues (Heap et al., 2013, 2015; Vasseur et al., 2015;
Wadsworth et al., 2016). Inset – the transition from an exponential to a power law 
approach of the acoustic emission rate to failure on a statistical basis (see text for 
definition of the statistical �B IC criterion). The vertical grey bar marks the approx-
imate transition between a power-law and an exponential approach to failure and 
is the same as in Fig. 7.

high porosity samples. We note a strong correlation between this 
increasing distance deficit (between the dashed and solid lines in 
Fig. 7b) and the increasing forecast bias with respect to decreas-
ing porosity previously illustrated in Fig. 5. The implication is that 
low porosity materials have relatively large distances that must 
be spanned by cracks in order to fail, and that this leads to late 
time, rapid time-dependent crack growth rather than equilibrium 
crack growth predicted by the static model here presented. This 
also seems to correlate with the shift from AE accelerations that 
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Fig. 7. Testing the micromechanical origin of errors in failure prediction. (a) The ratio between the predicted failure time tp from the TROL and the observed failure time 
tc as a function of the normalized mean nearest-neighbour length l̄1. The vertical grey line represents the transition between low l̄1 where the acoustic emission output 
as failure is approached is a power-law and high l̄1 where this approach to failure is an exponential function (see Fig. 6 inset). (b) The equilibrium crack lengths at failure 
from a micromechanical model for deformation of porous solids compared with the mean nearest-neighbour length (solid line calibrated in Fig. 2; Sammis and Ashby, 1986). 
Shown for comparison are the data from panel (a) (grey data) showing that the failure forecast discrepancy grows as the critical crack length at failure becomes less than 
the half-distance between pores. (c) The empirical correction proposed herein provides well-resolved failure forecasts.
are well-predicted by power laws (and accurately forecast failure) 
to those that are better predicted by exponential accelerations and 
which cannot accurately forecast failure.

Finally, we use the distance deficit of Fig. 7b to correct for the 
bias in the forecast failure time, as illustrated in Fig. 7c. The agree-
ment is very good within the remaining (random) scatter in the 
data about the optimal line. This figure validates the modification 
to the TROL we have made using the microstructural and microme-
chanical models presented, and the empirical results of Figs. 7a 
and 7b.

5. Discussion and conclusions

Our work shows that as the nearest-neighbour distance ap-
proaches the pore size, i.e. l1 → 1, the forecast failure time be-
comes more accurate, and that this transition can be associated 
with the case where 2cc = l1. More specifically, if the equilibrium 
crack length at failure approaches half the total distance between 
pores which must be bridged to achieve failure, then the precur-
sory AE rate indeed exhibits an inverse power law approach to 
a critical singularity that coincides with the observation of catas-
trophic failure. However, when the nearest-neighbour distance is 
much greater than the pore size l1 � 1, then the forecast is not 
successful and there is a length-deficit between the equilibrium 
crack length c and the distance that must be bridged l1. This im-
plies that there is not a simple approach to a critical failure point 
for systems in which there is a length-deficit: instead failure oc-
curs suddenly and early. This is consistent with the observation 
that the approach to failure is better described by an exponential 
than a power-law evolution in the AE rate on a statistical basis 
for these samples (Fig. 6 inset). Finally, this finding suggests that 
it is the inter-pore length (the nearest-neighbour distance) that 
is more important than the porosity of a medium in determining 
whether a crack can propagate the required half-distance between 
two neighbouring pores to precipitate failure.

Although we focus on the uniaxial loading case for experimen-
tal convenience, the full triaxial micromechanical model provided 
by Sammis and Ashby (1986) could be used to extend the results 
to the compressional stress field relevant to the Earth’s crust. There 
is no reason to anticipate a distance deficit term would not act as a 
control on the early failure time in this case, though this may take 
a different functional form to the results presented here, which it-
self may be dependent on confining pressure. This remains to be 
tested in future work. We also note the materials here tested are 
structurally isotropic, so there is no directional dependence of the 
inter-pore length scaling. This is not necessarily true at all scales in 
natural and synthetic systems, so the effect of anisotropy remains 
to be examined.

There is large variability in the accuracy and reliability of fore-
cast attempts using the classic failure forecast method (De la Cruz-
Reyna and Reyes-Dávila, 2001; Kilburn, 2003; Kilburn and Voight, 
1998; Ortiz et al., 2003; Smith et al., 2007; Smith and Kilburn, 
2010; Voight and Cornelius, 1991) or the TROL (Bell et al., 2013) or 
variations thereof (Boué et al., 2015; Salvage and Neuberg, 2016). 
This applies even for fully retrospective forecasting of volcanic 
eruption time, based on precursory earthquakes at different vol-
canoes worldwide. This demonstrates that there is a wide range of 
error in applying this method to natural data, and that these tools 
are not always of the widest utility for real time monitoring. While 
we have proposed a correction that works well in a controlled lab-
oratory setting, it is unlikely that pore-scale heterogeneity controls 
volcano- or fault-scale rupture. However, it is likely that there are 
larger length scale domains of heterogeneity in those crustal sys-
tems, which control the flaw-to-flaw fracture propagation events 
precursory to system-sized rupture. Our model therefore suggests 
that if these larger scale flaws can be identified, then it is their 
inter-flaw distances that would most likely scale the error in fore-
casts. Nevertheless, in qualitative terms, our model suggests that 
it is the most apparently heterogeneous systems, with the low-
est inter-flaw distances, that might be expected to be well fore-
cast using the variants of the failure forecasting method outlined 
above. One example could be the Mt St Helens volcano (USA) in 
1985–1986, which had a systematic error in the forecast failure 
time of <0.1 expressed as a time since the start of the accelera-
tion (Voight and Cornelius, 1991).

In the volcanic case, there is a crucial distinction to be drawn 
between events that can be interpreted to be the result of magma 
fracturing during ascent (Kendrick et al., 2014; Neuberg et al., 
2006) in an established conduit and those that are likely related 
to the fracturing of crustal rocks during the initiation of erup-
tion and magma propagation to the surface (Kilburn et al., 2017;
Lamb et al., 2017). An example of the latter interpretation was 
made on the basis of the patterns of evolution of low-frequency 
events preceding individual eruption episodes at Soufriere Hills 
volcano (Montserrat) (Neuberg et al., 2006), and an example of 
the latter is the signal evolution without eruption at Campi Fle-
grei (Italy) (Kilburn et al., 2017). Our experiments are explicitly 
suited to explain the brittle mechanics involved in the latter pro-
cess of crustal fracturing ahead of a vanguard magma batch on its 
way to the surface. But additionally, our results are applicable to 
the highest viscosity systems in the former case of fracturing of 
magma itself (Lavallée et al., 2008).
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In summary this study provides a simple explanation for the 
substantial variability in the success of forecast attempts for 
system-sized catastrophic failure in natural and artificial systems 
(Bell and Kilburn, 2013, 2012) and the quantitative correction we 
provide offers the opportunity to scale lab-forecasts to natural sys-
tems, if a convincing scaling for lengths between large scale flaws 
can be identified.
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