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Abstract
A numerical hydro-mechanical model for brittle creep is proposed to describe the time-dependent deformation of heteroge-
neous brittle rock under constant confining and pore pressures. Material heterogeneity and a local material degradation law 
are incorporated into the model at the mesoscale which affects the mechanical behavior of rocks to capture the co-operative 
interaction between microcracks in the transition from distributed to localized damage. The model also describes the spati-
otemporal acoustic emissions in the rock during the progressive damage process. The approach presented in this contribution 
differs from macroscopic approaches based on constitutive laws and microscopic approaches focused on fracture propaga-
tion. The model is first validated using experimental data for porous sandstone and is then used to simulate brittle creep 
tests under varying constant confining and pore pressures and applied differential stresses. We further explore the influence 
of sample homogeneity on brittle creep. The model accurately replicates the classic creep behavior observed in laboratory 
brittle creep experiments. In agreement with experimental observations, our model shows that decreasing effective pressure, 
increasing the applied differential stress, and decreasing sample homogeneity increase the creep strain rate and decrease 
the time-to-failure, respectively. The model shows that complex macroscopic time-dependent behavior can be explained by 
the microscale interaction of elements. The fact that the simulations are able to capture a similar hydro-mechanical time-
dependent response to that of laboratory experiments implies that the model is an appropriate tool to investigate the complex 
time-dependent behavior of heterogeneous brittle rocks under coupled hydro-mechanical loading.

Keywords  Time-dependent deformation · Pore pressure · Differential stress · Creep strain rate · Numerical simulation

List of Symbols
A	� Material constant
D	� Damage variable
ef	� Energy released from a failed element
eij	� Strain deviator of the elastic strain components
E, E0	� Young’s moduli of damaged material and undam-

aged material
fi	� Body forces per unit volume
F1, F2	� Tensile and shear damage threshold functions
ft0, fc0	� Uniaxial tensile strength and uniaxial compres-

sive strength
G	� Shear modulus
h	� The convective heat transfer coefficient
k	� The coefficient of permeability
K′, Ks	� Bulk modulus of the porous medium, and effec-

tive bulk modulus of the solid constituent
m	� A fraction constant
n	� Stress component of greater than one
ni	� The number of failed elements in the ith step
N	� Total number of elements
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P, Peff	� Fluid pore pressure and effective pressure
R	� Universal gas constant
r	� Constitutive coefficient
Sij	� Stress deviator tensor of the elastic stress 

components
T	� Absolute temperature
U	� Creep activation energy
νe	� The volume of single element
Vf, V	� The volume of failed elements, the total volume 

of all elements
α	� Biot’s efficient
φ	� Porosity
β1	� The bulk modulus of fluid
ε	� Total strain
ε1, ε3	� The maximum and minimum principal strain
εC	� Creep strain
εe	� Elastic strain
εij	� Small strain tensor
εt0, εc0	� The maximum tensile and compressive strain
εtr, εcr	� The residual tensile and compressive strain cor-

responding to residual strength
εtu	� The ultimate tensile strain corresponding to com-

plete damage
K	� The intrinsic permeability in a general continuum
ρl	� The fluid density
u, u0	� Scale parameter of an element, the average ele-

ment parameter
ui	� Mechanical parameter of the element i
μl	� The dynamic fluid viscosity
δij	� Kronecker delta
λ	� Lame’s constant
ζ	� Residual strength coefficient
η	� Ultimate tensile strain coefficient
ρ	� Bulk density of medium
χ	� Homogeneity index
ϕ	� Angle of internal friction
ωi	� Random numbers ranging from 0 to 1
ψ	� The ratio of the volume of failed rock to total 

volume of rock
ξ	� The factor that reflects damage-induced perme-

ability increase
σe	� Effective stress
σij	� Total stress tensor
σii	� Average stress
σ1, σ2	� The maximum and minimum principal stress

1  Introduction

The stressed rock mass in most rock engineering structures 
(deep underground rock engineering, high-slope rock engi-
neering, dam engineering, and radioactive waste disposal) 
is either saturated with water or subjected to high humidity 

levels. The presence of the water in rock not only affects 
the mechanical behavior of rocks (e.g., Baud et al. 2000; 
Duda and Renner 2012), but also allows chemical interac-
tions between water and rock to occur (e.g., Brantut et al. 
2013). The mechanical effect, which results in rock failure 
at lower applied differential stresses, is caused by an increase 
in pore or joint water pressure that reduces the effective 
stress and the applied normal stress acting on the rock 
mass. The chemical effects are more difficult to interpret as 
they involve complex chemical reactions between the rock 
and the water or water vapor. The chemical effects usually 
weaken the rock via the reduction of surface free energy due 
to the absorption of pore water into the internal pore sur-
faces (Andrade and Randall 1949; Baud et al. 2000) and by 
promoting subcritical crack growth due to stress corrosion 
(Atkinson and Meredith 1981; Meredith and Atkinson 1983; 
Brantut et al. 2013). In the design of complex rock engi-
neering projects, neglecting the influence of time-dependent 
deformation could provide models that do not accurately 
capture the trends seen in field measurements (Maranini and 
Brignoli 1999; Weng et al. 2010), which may lead to an 
incorrect evaluation or even a serious disaster. Moreover, 
elevated pore pressures (i.e., reduced effective pressures) 
likely impart a significant influence on the time-dependent 
behavior of the host rock, and consequently affect the overall 
long-term performance of rock engineering projects. There-
fore, a good understanding through the reliable modeling of 
the time-dependent behavior of the host rock under elevated 
pore pressure (i.e., reduced effective pressure) is essential for 
stability and safety assessments in rock engineering (Peng 
et al. 2010).

The influence of confining and pore pressure on the time-
dependent deformation of rock is of great importance in the 
upper crust (Brantut et al. 2013). Indeed, many studies have 
investigated the time-dependent behavior of soft rocks such 
as sedimentary rocks (Carter and Hansen 1983; Cristescu 
1993; Baud and Meredith 1997; Dubey and Gairola 2008; 
Heap et al. 2009a, b, 2015; Okubo et al. 2010; Yang et al. 
2014; Brantut et al. 2014a, b; Nicolas et al. 2017) and hard 
rocks such as granite or basalt (Kranz 1980; Lajtai et al. 
1987; Lockner 1993a, b; Katz and Reches 2002; Lin et al. 
2009; Heap et al. 2011). Baud et al. (2000) investigated 
water weakening in porous sandstones and found that the 
presence of water reduced the strength of sandstones. Was-
antha et al. (2014) investigated the mechanical behavior and 
the energy-releasing characteristics of dry and saturated bed-
ded sandstone by adopting the acoustic emission (AE) tech-
nique. Heap et al. (2009a) reported the results from a study 
of time-dependent brittle creep in water-saturated samples 
of Darley Dale sandstone under triaxial stress conditions 
and found that, for a given differential stress, creep strain 
rates are considerably lower at high effective pressures. Yang 
et al. (2014) performed an experimental study on short-term 
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and creep tests on saturated red sandstone under different 
effective pressures. Xu and Yang (2016) analyzed the per-
meability of sandstone under increasing differential stress 
in both short-term and brittle creep experiments. Brantut 
et al. (2013) reviewed our understanding of time-depend-
ent cracking and brittle creep in crustal rocks and pointed 
out that an extension of the range of available laboratory 
data to lower strain rates and the development of new mod-
eling approaches are needed to further improve our current 
understanding of time-dependent brittle deformation in 
rocks. However, the above-mentioned investigations mainly 
focus on the study of brittle creep in the laboratory and few 
numerical studies have been performed on coupled hydro-
mechanical creep in brittle rocks.

During a brittle creep experiment, in which a rock sam-
ple is held at a constant differential stress for an extended 
period of time, the strain against time (the “creep curve”) 
first decelerates before accelerating as macroscopic sample 
failure is approached (Brantut et al. 2013). The onset of the 
acceleration to failure in brittle creep experiments has been 
ascribed as the result of the sample reaching a microcrack 
density at which microcracks can interact and coalesce, 
sometimes referred to as the “critical damage threshold” 
(Kranz and Scholz 1977; Baud and Meredith 1997; Heap 
et al. 2009a, 2011; Xu et al. 2012). The acceleration in 
strain rate during this accelerating phase has been previ-
ously described using a power law (Voight 1989; Bell et al. 
2011a, b).

Time-dependent brittle deformation is often attributed to 
a mechanism of subcritical crack growth called stress cor-
rosion cracking (Atkinson 1984; Brantut et al. 2013). Stress 
corrosion describes fluid-rock reactions that occur prefer-
entially between a chemically active pore fluid and strained 
atomic bonds at the crack tips and is therefore sensitive to 
environmental factors such as stress, temperature, and pore 
fluid reactivity (Atkinson 1984). An important aspect is the 
influence of the presence of a pore fluid, which significantly 
decreases the specific fracture energy and hence the fracture 
toughness of sandstones (Baud et al. 2000). Indeed, experi-
ments on Westerly granite (Kranz et al. 1982) have shown 
that times-to-failure are shorter by around three orders of 
magnitude under saturated conditions than under ambient 
humidity conditions.

Based on experimental investigations, various creep mod-
els have been proposed over the last few decades, which 
can be grouped into three classes: empirical models, com-
ponent models, and mechanism-based constitutive models. 
Empirical models, based on laboratory investigations, are 
widely used in engineering (Cristescu 1993). However, due 
to the difference in timescale between laboratory investiga-
tions and the timescale of interest in engineering projects, 
the validation and suitability of these models in the long-
term prediction are dubious. Component models (Maranini 

and Yamaguchi 2001), which are generally a combination 
of standard elements such as the Newtonian dashpot, the 
Hooke spring, and the frictional element, have the advantage 
of a flexible description of the different creep deformations. 
The use of viscoplastic models such as Perzyna viscoplastic 
model for describing the non-linear and rate-sensitive behav-
ior of other geomaterials, such as clays, is well established 
and many rheological models have been issued from this for-
malism (Perzyna 1966, 1971; Pan and Wan-xie 1991; Wang 
et al. 2015). The Perzyna viscoplastic model is implemented 
by allowing the stress state to be outside the yield surface 
and directly define the plastic relaxation equations in the 
stress space. However, the formulation of these models is 
always complex and often lacks physical meaning. In recent 
years, a mechanism-based creep model has been developed 
based on cracking and damage evolution at the microscale 
(Lockner and Madden 1991; Yoshida and Horii 1992; Shao 
et al. 1997; Amitrano and Helmstetter 2006; Chen and Koni-
etzky 2014; Li and Konietzky 2014; Lu et al. 2014; Li et al. 
2016; Xu et al. 2017); this type of model tries to build a 
bridge between phenomenology and micromechanisms 
(Shao et al. 2003, 2006). Micromechanical models have also 
successfully captured brittle creep behavior in rock (Brantut 
et al. 2012) and glass (Mallet et al. 2015).

Due to the aforementioned importance of understanding 
the long-term mechanical behavior of rock in deep under-
ground rock engineering projects, high slope rock engineer-
ing projects, dam engineering projects, and radioactive waste 
disposal, we present here a hydro-mechanical constitutive 
model to describe the time-dependent deformation of brittle 
rocks under different constant pore and confining pressures. 
We also model the accompanying AEs, which are considered 
as a macroscopic consequence of the progressive degrada-
tion of the material at the mesoscale. First, we formulate 
the hydro-mechanical coupled time-dependent model and 
validate the model with experimental data. We then present 
and discuss the results of the brittle creep simulations and 
compare them with the wealth of available experimental data 
and observations.

2 � Formulation of Time‑Dependent 
Constitutive Model

In this section, we propose a quantitative model for the 
coupled water flow and time-dependent deformation of a 
stressed rock, and we further develop the numerical code 
for hydro-mechanical time-dependent deformation of rock 
to investigate time-dependent deformation of rock at dif-
ferent pore and confining pressures. When formulating 
the model in mathematical language, various levels of 
complexity should be incorporated into each component, 
with the accuracy and versatility of the model depending 
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on the refinement of the description of each component. 
For a model used to investigate hydro-mechanical time-
dependent deformation of a stressed rock, the coupled effect 
between the deformed medium and water flow is very impor-
tant. Three components should be considered: a fluid flow 
description, a creep and stress description, and a description 
of the evolution of damage. The descriptions of these com-
ponents will now be discussed in turn.

The model is based on the theory of elastic damage 
mechanics and assumes that the damage is elastic and 
isotropic. The model accounts for material heterogeneity 
through a stochastic local failure stress field, and then uses 
solid mechanics and fluid flow to calculate the stress distri-
bution. Every step local material degradation is calculated 
using an exponential material softening law (i.e., differ-
ent to the approach adopted by Amitrano and Helmstetter 
2006). The maximum tensile strain criterion and a modified 
Mohr–Coulomb criterion with a tension cut-off are adopted 
as two failure thresholds in the model. The tensile strain cri-
terion is always used with priority to judge whether the ele-
ment is damaged (since, as discussed above, rock is weaker 
in tension than in compression). If the element is not dam-
aged in tension, the Mohr–Coulomb criterion is then used to 
judge whether the element is damaged in shear. According 
to the constitutive law, the damage variable calculated is 
always from zero to one regardless of the type of damage 
(tensile or shear). If any of the elements in a stressed speci-
men are damaged, the damaged elements will undergo a deg-
radation of their elastic modulus ( E = E0(1 − D) ) according 
to the elastic damage constitutive relationship. In this model, 
D = 1 corresponds to the complete failure of the element, 
and the elastic modulus of this element tends to zero. If the 
damage variable D of the element less than 1, then the ele-
ment will be still calculated in the next step until the whole 
model is failed or this element is completely failed. This 
approach makes it possible to simulate the transition from 
distributed damage by tensile microcracking to damage 
where microcracks can interact, coalesce, and ultimately 
form a shear fault. The model also describes the temporal 
and spatial evolution of AEs, including their size (energy 
released), in the medium during the progressive damage 
process. Furthermore, the model can visually replicate the 
tempo-spatial evolution of the shear stress fields and a rich 
assortment of other parameters, such as compressive stress, 
tensile stress, displacement vector, and flow vector during 
the time-dependent brittle deformation of heterogeneous 
rock under a constant compressive stress and pore and con-
fining pressures.

2.1 � Fluid Flow Description

The fundamental assumption behind the model presented 
here is that the rock is elastic and saturated with a fluid such 

as water. As a result, the equation for fluid flow in porous 
media should be used. The equation that governs the fluid 
flow in a porous medium is known as Darcy’s law

where P is pore fluid pressure, z is the vertical coordinate, k 
is the coefficient of permeability [m4/(N s)] with k = �∕�l , 
where �l is the dynamic fluid viscosity (N s/m2), � is the 
intrinsic permeability in a general continuum (m2), �l is the 
fluid density (kg/m3), and g is the acceleration due to surface 
gravity (m/s2). The substitution of Eq. (1) into the conserva-
tion equation of fluid results in (Biot 1956):

where φ is the porosity, βl denotes the bulk modulus of fluid, 
KS is the effective bulk modulus of the solid constituent, and 
K� (K� = 2G(1 + �)∕3(1 − 2�)) is the drained bulk modulus 
of the porous medium.

2.2 � Creep and Stress Description

It is assumed here that the total strain for a stressed medium 
is the sum of three components: elastic strain, plastic strain, 
and creep strain. Plastic strain is not considered in our model 
since we focus on brittle creep. The total strain can therefore 
be decomposed as follows:

where the subscripts e and c refer to the elastic strain 
and creep strain, respectively. The elastic strain �e can be 
expressed in a tensor form of Hooke’s law for an elastic 
medium:

where G is the shear modulus and �ij is the strain tensor form 
of the elastic strain �e , and Sij is the stress deviator tensor of 
the elastic stress components �ij , Sij = �ij −

1

3
�kk�ij , in which 

�ij is the Kronecker delta. The Kronecker delta equals zero 
when i ≠ j and one when i = j.

The creep strain �c is in fact a function of the stress � , 
temperature T  , and time t, i.e., �c = F(�, T , t) . It is custom-
ary to assume that the effects are separable and are written 
as:

where (�) , g(T) and h(t)are the functions related to stress, 
temperature, and time, respectively.

(1)ql = −k∇
(
P + �lgz

)
,

(2)c1
��V

�t
+ c2

�P

�t
= ∇[k

(
∇P + �lg∇z

)
],

(3)c1 = 1 −
K�

KS

and c2 =
�

�1
+

(1 − �)

KS

,

(4)� = �e + �c

(5)�e = �ij =
1

2G
Sij +

1

3
�kk�ij ,

(6)�c = f (�)g(T)h(t),
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For creep problems, a constitutive law of the creep strain 
rate, a Norton–bailey equation (Heard 1976; Carter and 
Hansen 1983), was adopted to characterize time-dependent 
creep deformation based on the approach of the equation of 
state theory:

where A, m, and n are the constants that are a function of the 
temperature. The constant n usually denotes the stress com-
ponent and is greater than one; m is usually a fraction; U is 
the creep activation energy which can be determined empiri-
cally as proportional to the slope of a plot of log �c vs 1∕T 
at constant � , R is the universal gas constant, and T is the 
absolute temperature (in Kelvin).

For a time-dependent problem, the strain rate is of great 
interest. Hence, Eq. (7) can also be expressed in strain rate 
form:

The creep flow rule can be expressed in tensor form under 
multi-axial stress conditions (Kraus 1980):

in which �e is the effective stress and �e =
√

3

2
SijSij , d𝜀̄c is 

the effective creep strain, and d𝜀̄c =
√

2

3
d𝜀c

ij
d𝜀c

ij
 . Now, if we 

substitute Eq. (8) into Eq. (9), the creep strain rate can be 
extended to the multi-axial stress case:

where 𝜀̇cij is the creep strain rate, Sij is the deviatoric part of 
σij, and σe is the effective stress defined as

where �11, �22, and �33 are the normal stresses and 
�12, �23, and �31 are shear stresses. This creep model can 
describe decelerating creep, but it fails to accurately capture 
accelerating creep. Thus, a damage evolution law for accel-
erating creep of rock must be incorporated.

The static stress equilibrium equation for macroscopic 
total stresses in the absence of an inertia term can be written 
in the tensor form as follows:

where σij is the total stress tensor (i, j = 1, 2, 3) in MPa and 
fi is the body force per unit volume in the direction of the 

(7)�c = A�ntmexp
(
−

U

RT

)
,

(8)𝜀̇c = nA𝜎ntm−1exp
(
−

U

RT

)
.

(9)𝜀̇c
ij
=

3

2

d𝜀̄c

dt

Sij

𝜎e
,

(10)𝜀̇c
ij
=

3

2
AnSij𝜎

n−1
e

tm−1exp
(
−

U

RT

)
,

(11)
�2

e
= �2

11
+ �2

22
+ �2

33
− �11�22 − �22�33

− �11�33 + 3(�2

12
+ �2

23
+ �2

31
),

(12)�ij,j + fi = 0,

coordinate axes in MPa. For a perfectly elastic isotropic 
continuum, the Cauchy’s infinitesimal strain tensor �ij is 
expressed in terms of the partial derivatives of the compo-
nents of displacement ui:

Thus, the constitutive stress–strain relation for an elastic 
isotropic medium has the following form:

where the constants G and λ are called the Lamé constants, 
p is the pore pressure, and the parameter α (≤ 1) is the Biot’s 
coefficient, which depends on the compressibility of the con-
stituents and can be defined as

Based on the theory presented above, the static stress 
equilibrium equation, the Cauchy strain tensor equation, and 
the constitutive stress–strain relation, the equation of fluid 
flow in a deformed medium can be written in the displace-
ment form as follows:

2.3 � Characterization of Heterogeneity

Rock is a heterogeneous material, and it is this heterogene-
ity that causes the stressed rock to fracture via the forma-
tion, extension, and coalescence of microcracks in rock. 
In the absence of heterogeneity, no damage localization 
occurs and the local behavior of the homogenous model is 
replicated at the macroscopic scale. Thus, it is necessary to 
introduce heterogeneity to obtain a collective macroscopic 
behavior different from that of the individual elements. 
Heterogeneity is also a key factor that influences material 
failure forecasting (Vasseur et al. 2015, 2017). To reflect 
the material heterogeneity at the mesoscale, the mechani-
cal parameters (e.g., strength and Young’s modulus) of the 
mesoscopic material elements, which are assumed to be 
homogeneous and isotropic, are assigned randomly using a 
2-parameter Weibull statistical distribution (Weibull 1951), 
as defined in the following statistical probability density 
function:

where u is the scale parameter of an individual element such 
as the strength or Young’s modulus and the scale parameter 
u0 is related to the average element parameter. The shape 
parameter � is larger than zero and reflects the degree of 
material homogeneity. This shape parameter is called the 
“homogeneity index”. According to the Weibull distribution, 

(13)�ij =
1

2

(
ui,j + uj,i

)
.

(14)�ij = ��kk�ij + 2G�ij − �P,

(15)� = 1 −
K�

KS

.

(16)(� + G) ⋅ uj,ji + Gui,jj + fi − �Pi = 0.

(17)�(u) = �∕u0
(
u∕u0

)�−1
exp

(
−
(
u∕u0

))�
,
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and the definition of homogeneity index as shown in Fig. 1, 
a larger � implies that more elements will have the mechani-
cal properties similar to the mean value, resulting in a more 
homogeneous material. An extremely high shape parameter 
� yields a Gaussian distribution with high kurtosis. The 

scale parameter u approaches the average element parameter 
u0 when the shape parameter � tends to infinity.

To obtain a set of values of uniaxial compressive strength 
and Young’s modulus conforming to the Weibull statistical 
distribution, a set of random numbers �i ranging from 0 to 
1 are generated according to the Monte Carlo method, and 
then the uniaxial compressive strength and Young’s modulus 
of each element can be obtained from

where ui is the uniaxial compressive strength, and u0 is the 
average uniaxial compressive strength and Young’s modulus 
of the element i.

By randomly specifying a uniaxial compressive strength 
and Young’s modulus to each of the elements, which follows 
the Weibull distribution according to Eq. (18), a heteroge-
neous numerical sample can be created. Figure 2 shows a 
numerical rock sample of 100 × 50 mm with a homogeneity 
index of 5 composed of 20,000 (200 × 100) square elements, 
produced randomly according to the Weibull distribution 
and using the uniaxial compressive strength scale parameter 
100 MPa. The different brightness in Fig. 2 correspond to 
different values of element strength (in MPa). The homoge-
neity index is therefore an important parameter in control-
ling the macroscopic response of a numerical sample.

(18)ui = u0 ln
(
1∕(1 − �i)

) 1

� ,

Fig. 1   Distribution density function of parameters of elements with 
different homogeneity indices of 1.1, 3, 7, and 15  at a given scale 
parameter of u

0
 = 100. The scale parameter u approaches to the given 

average element parameter u
0
 = 100 when the homogeneity index χ 

tends to infinity

Fig. 2   Numerically generated 
rock specimen with a geometry 
of 100 × 50 mm at a given 
average uniaxial compressive 
strength of 100 MPa and at a 
homogeneity index of χ = 5 
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2.4 � Damage Evolution Description

In the model, the system is analyzed at the mesoscale 
and an elastic damage constitutive law describes its 
stress–strain relationship. Continuum damage mechanics 
can describe the effects of progressive microcracking, void 
nucleation, and microcrack growth at high stress levels 
using a constitutive law, by making use of a set of state var-
iables that modify the material behavior at the macroscopic 
level. Using an isotropic continuum damage formulation, 
the elastic modulus for an isotropic and elastic medium 
at instantaneous loading can be written as (Lemaitre and 
Desmorat 2005)

where �ij is the damaged elastic strain tensor, σij is the stress 
tensor, E and E0 are the Young’s moduli of the damaged 
and the undamaged material, respectively, D is the iso-
tropic damage variable, � is the Poisson’s ratio and �ij is the 
Kronecker symbol. In the case of a uniaxial state of stress 
( �11 ≠ 0, �22 = �33 = 0 ), the constitutive relation can be 
rewritten in terms of the longitudinal stress and strain com-
ponents only

Hence, for uniaxial loading, the constitutive law is explic-
itly dependent on damage index D.

The model used herein is based on progressive isotropic 
elastic damage. Although other modeling approaches exist 
that use viscoplastic (e.g., Zhu and Cescotto 1995; Pellet 
et al. 2005; Sterpi and Gioda 2009) and hydraulic damage 
(e.g., Karrech et al. 2014) approaches to describe damage 
accumulation, we highlight here that elastic damage models 
have been very successful in capturing the brittle behavior 
of rocks. In the elastic damage model employed here, when 

(19)E = E0(1 − D),

(20)�11 = E0(1 − D)�11.

the stress on an element exceeds a damage threshold, its 
Young’s modulus E is modified according to Eq. (20). Prior 
to deformation, each element is considered to be elastic, 
defined by a specific Young’s modulus and Poisson’s ratio. 
The stress–strain curves of the elements are considered lin-
ear elastic until the given damage threshold is reached, fol-
lowed by strain softening with a constant residual strength. 
The elastic damage constitutive law of each element under 
uniaxial stress condition is illustrated in Fig. 3 (Zhu et al. 
2014). As stated above, the stress–strain curve of each ele-
ment is considered linear elastic until the attainment of a 
given damage threshold. The damage thresholds, the maxi-
mum tensile stress criterion and the modified Mohr–Cou-
lomb criterion are used to judge the tensile damage and 
shear damage of elements, respectively, and are expressed 
as follows:

where σ1 and σ3 are the maximum and minimum princi-
pal stresses, respectively, fc0 is the uniaxial compressive 
strength, φ is the internal friction angle of the element, ft0 is 
the uniaxial tensile strength, and F1 and F2 are the two dam-
age threshold functions. At a given deformation or load-
ing level, the maximum tensile stress criterion is always 
checked first with priority to judge whether the element is 
damaged (since, as discussed above, rock is far weaker in 
tension than in compression). If the element is not dam-
aged in tension, the Mohr–Coulomb criterion is then used 
to judge whether the element is damaged in shear. The sign 
convention used throughout this paper is that compressive 
stresses and strains are positive and tensile stresses and 
strains are negative.

(21)

F1 = −�3 − ft0 = 0 and F2 = �1 − �3
1 + sin�

1 − sin�
− fc0 = 0,

Fig. 3   Elastic compressive 
and tensile damage constitu-
tive relations of an element. 
Each element with a randomly 
assigned mechanical proper-
ties conforming to statistical 
Weibull distribution in the 
numerically generated specimen 
possesses the elastic compres-
sive and tensile damage consti-
tutive relation

Compression

Unloading

Tension

Loading
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According to the constitutive law as shown in Fig. 3, the 
damage variable D can be described as follows:

where ε1 and ε3 are the major principal strain and minor 
principal strain, respectively. �t0 is the uniaxial tensile strain 
at the elastic limit in tension and �t0 = ft0∕E0 , and �c0 is the 
uniaxial compressive strain at the elastic limit in compres-
sion and �c0 = fc0∕E0 , and the exponent r is a constitutive 
coefficient with a value of 2.0.

Specifically, the damage variable D of the elements in 
tension can be expressed as

where �t0 is the uniaxial tensile strain at the elastic limit in 
tension (also called threshold strain) and �t0 = ft0∕E0 , � is the 
residual strength coefficient and � = ftr∕ft0 = (�t0∕�tr)(r−1) , 
and ftr is the uniaxial residual tensile strength in tension and 
�tr is the corresponding strain at residual tensile strength in 
tension, �tu is the ultimate tensile strain corresponding to 
the completely damaged state (i.e., failure at D = 1) of an 
element. The ultimate tensile strain coefficient � = �tu∕�tr 
is introduced in our model and is set to 5 by default. The 
exponent r is a constitutive coefficient with a value of 2.0.

The damage variable D of the elements in compression 
can be expressed as

where �c0 is the uniaxial compressive strain at the elastic 
limit in compression and �c0 = fc0∕E0 , � is the residual 
strength coefficient and � = fcr∕fc0 = (�c0∕�cr)(r−1) , and �cr is 
the ultimate residual compressive strain and �cr = � r−1�c0.

In this respect, the damage variable calculated with 
Eqs. (23) and (24) is always from zero to one regardless 
of the type of damage (tensile or shear). We should note 
that the occurrence of damage should not be confused with 
the initiation of cracks. The elements whose ultimate tensile 
strains are attained can only “crack” within a width of the 
element. That is to say, cracking is coincident with complete 
damage or failure. Shear-induced damage will not lead to the 
occurrence of cracks but the degradation of elements. Using 
this method, the initiation, growth and coalescence of cracks 

(22)D =

⎧
⎪⎨⎪⎩

0, F1 < 0 and F2 < 0,

1 − (𝜀t0∕𝜀3)
r, F1 = 0 and dF1 > 0

1 − (𝜀c0∕𝜀1)
r, F2 = 0 and dF2 > 0,

(23)D =

⎧⎪⎨⎪⎩

0, 𝜀 > 𝜀t0,

1 − (𝜀t0∕𝜀)
r, 𝜀tr < 𝜀 ≤ 𝜀t0,

1 − 𝜁𝜀t0∕𝜀, 𝜀tu ≤ 𝜀 ≤ 𝜀tr,

1 𝜀 < 𝜀tu,

(24)D =

⎧
⎪⎨⎪⎩

0, 𝜀 ≤ 𝜀c0,

1 − (𝜀c0∕𝜀)
r, 𝜀c0 < 𝜀 ≤ 𝜀cr

1 − 𝜁𝜀c0∕𝜀, 𝜀 > 𝜀cr,

can be easily reproduced. Furthermore, in the damage zone, 
to distinctly display the two kinds of damage modes (i.e., 
tensile damage and shear damage) in the post-processing 
figures, the tensile damage is represented as negative num-
bers, while the shear damage is represented as positive ones. 
During the numerical implementation of the above equations 
with finite element analysis, Eq. (21) was used as a dam-
age criterion to check the stress conditions calculated with 
Eqs. (4) and (10) to judge if damage occurs. Thus, Eq. (22) 
was used to calculate the damage variable D. If any of the 
elements in a stressed specimen are damaged, the damaged 
elements will undergo a degradation of their elastic modulus 
according to the elastic damage constitutive relationship.

In this model, D = 1 corresponds to the complete dam-
age or failure of the element, and the elastic modulus of 
this element tends to zero. To avoid possible instability in 
finite element analysis, a small decimal (1.0 × 10−5 MPa by 
default) is given to the elastic modulus of a failed element. 
Correspondingly, the total strain will increase due to the 
elastic modulus degradation with increasing time. When 
damaged or failed elements are clustered, it may lead to the 
macroscopic failure of the specimen. Therefore, although 
the Eq. (22) is time-independent, it is capable of describing 
the time-dependent evolution of damage when it is coupled 
with the creep model as given in Eq. (10) to describe the 
creep behavior of rock.

AEs are transient elastic waves generated by the rapid 
release of energy within a material, such as the strain energy 
released during microcrack propagation. Monitoring AE 
during deformation has become an increasingly important 
diagnostic tool in material science and has provided a wealth 
of information regarding the failure process in brittle materi-
als. AE monitoring has shed light on the onset of microc-
racking during deformation (Wong et al. 1997), the evolution 
the spatial and temporal progression of microcracks (Ohnaka 
1983; Lockner 1993a, b; Fortin et al. 2009; Aker et al. 2014), 
amongst many more. For instance, Lockner (1993a, b) ana-
lyzed catalogs of AE events recorded during compressive 
loading tests on rock. The AE events were analyzed in 
terms of the information they offer about the accumulated 
state of damage in a material. This measured damage state 
can be combined with a model for the weakening behavior 
of cracked solids, showing that reasonable predictions of 
the mechanical behavior are possible. Based on this prior 
knowledge, it is reasonable to assume that the number of 
AE events is proportional to the number of damaged ele-
ments and that the strain energy released (the strain energy 
before and after damage) corresponds to the energy of that 
particular AE event (Tang 1997). In our model, we can use 
the output of AE to indirectly assess the damage evolution. 
However, it must be mentioned that aseismic damage during 
rock creep tests could possibly occur. The causes of aseismic 
damage are numerous, for example, the low surface energy 
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of calcite, radiated energy being absorbed by neighboring 
dislocation, and/or intermittent dislocation flow (Weiss and 
Marsan 2003; Schubnel et al. 2006), amongst many more. 
Indeed, an experimental study showed that pressure solu-
tion creep is an important mechanism in the time-dependent 
behavior of porous limestone (Brantut et al. 2014b).

Although the assumption that the number of AE events 
is proportional to the number of damaged elements and that 
the strain energy released corresponds to the energy of that 
particular AE event is obviously a simplification of what 
occurs in reality, it has been shown that this micromechani-
cal representation of microcracking can yield realistic pat-
terns and can reproduce the macromechanical behavior of 
heterogeneous rock. In our model, by recording the number 
of failed elements and calculating the elastic energy released 
from the failed elements, the AE counts and AE energy asso-
ciated with the progressive failure of the material can be 
simulated (Xu et al. 2017).

In the numerical code, the numerical model is loaded 
either in a displacement control mode (i.e., constant dis-
placement rate) or in a load control mode (i.e., constant 
stress). At each loading or time increment, the stress and 
strain and the stress field and flow field are examined and 
those elements that are strained beyond the pre-defined 
strength threshold are broken irreversibly. The stiffness 
and strength of an element is reduced if it is broken, as dis-
cussed above. If some elements fail, then the model, now 
containing new parameters for some of its elements, moves 
to a new equilibrium. The next load or time increment is 
added only when there are no more elements strained beyond 
the strength threshold at an equilibrium strain field. Thus, 
numerical loading in the model is similar to that of deforma-
tion experiments performed in the laboratory.

3 � Implementation of Numerical Model

The modeling approach described above requires that both 
the damage state and the damage-induced modification of 
elastic stiffness in brittle rocks are continually updated. Con-
sequently, the problem is non-linear and an iterative numeri-
cal procedure is therefore implemented that is based on the 
finite element method. A flow chart of the model is shown 
in Fig. 4 to clarify the implementation of the numerical 
model. The procedure outlined in Fig. 4 was first performed 
in MATLAB to define the evolution of the damage constitu-
tive parameters and then implemented into the finite element 
model COMSOL Multiphysics to define the spatial behavior.

A point worth emphasizing here is that the proposed 
model needs to be calibrated with experimental data to 
determine the appropriate input parameters. In principle, 
a complete calibration process must be undertaken at both 
the mesoscale and the macroscale. At the mesoscale, the 

behaviors of the representative elemental volume (REV) 
are governed by the initial microstructural parameters, the 
damage-based constitutive law, and the failure criterion of 
the REV. It is straightforward to obtain accurate parameters 
to represent the initial mesoscale structures in the REV from 
mesoscopic observations, but the calibration of the damage 
constitutive law and the failure criterion at the mesoscale is 
more challenging—principally due to the difficulties in per-
forming direct mechanical tests on the REV. An approximate 
method is the utilization of macroscopic standard labora-
tory tests instead of mesoscopic tests (Homand-Etienne et al. 
1998). However, the development of novel experiments at 
the mesoscale of the REV is needed to further improve the 
model calibration at the mesoscale. With the calibrated mes-
oscale parameters defined, then the macroscopic numerical 
model can be calibrated from conventional constant strain 
rate tests and creep tests on standard rock samples to deter-
mine the parameters of heterogeneity and the REV size. 
After the full calibration of the proposed model, it can be 
used to predict the time-dependent deformation and fractur-
ing behavior of brittle rocks at elevated pore pressure and 
under external loading.

Currently, a few calibration studies—partially related 
to our proposed model—have been performed on different 
types of rocks (Golshani et al. 2006; Wong et al. 2006). 
The input model parameters chosen herein were selected by 
referring to these calibrated parameters. However, further 
studies must explore a more accurate and rigorous method 
for model calibration that includes new experiments con-
ducted on the same rock type at both the mesoscale and 
the macroscale. In the following section, the model is first 
validated against previously published experimental data to 
obtain the input parameters of the simulations. Our model 
is then used to simulate the time-dependent brittle creep 
behavior (constant external loading) of rocks under various 
constant pore and confining pressures.

4 � Validation of the Model

Before we can investigate the influence of various param-
eters (such as pore pressure, confining pressure, and sample 
homogeneity) on brittle creep, we must first validate our 
model using published experimental data on an appropriate 
experimental material. We use here the experimental data 
of Yang et al. (2014) on red sandstone. This study includes 
constant strain rate and brittle creep experiments performed 
at various constant pore and confining pressures. The high 
permeability of the red sandstone used in Yang et al. (2014) 
ensured drained conditions over the range of strain rates 
used. Therefore, our simulations are set such that the bound-
ary conditions ensure drained conditions (i.e., the pore pres-
sure does not change during the deformation of the sample).
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4.1 � Constant Strain Rate Tests on Sandstone Under 
Confining and Pore Pressures

A series of constant displacement rate experiments (i.e., 
conventional confined compressive strength experiments) 
were numerically conducted to obtain the input parameters 
at the mesoscale from the macroscopic physico-mechanical 
properties of our studied rock. The macroscopic mechani-
cal properties of red sandstone have been investigated and 
described previously (Yang et al. 2014). The connected 
porosity of tested red sandstone is approximately 8.6%. All 
the experiments of Yang et al. (2014) were performed at 
room temperature. The geometry of the cylindrical sandstone 

samples in laboratory was 100 mm in length and 50 mm in 
diameter. The compressive strength of red sandstone under 
confining pressures of 5, 10, 20, and 30 MPa was meas-
ured to be 132, 162, 228, and 252 MPa, respectively (Yang 
et al. 2014). The Young’s modulus and Poisson’s ratio of 
red sandstone in uniaxial compression are 20 MPa and 0.25, 
respectively. Similar to the experimental tests in laboratory, 
numerical specimens with 100 mm in length and 50 mm in 
width were randomly generated and were discretized into 
200 × 100 (20,000 elements) square elements (i.e., each 
square element had sides of 0.5 mm). The dimensions of the 
two-dimensional modeled sample were kept the same for all 
of the numerical simulations throughout this paper. A suite 

Fig. 4   Flow chart of the coupled 
hydro-mechanical time-depend-
ent model

Start

Initialization:
(1) Select physical field (solid mechanics and fluid flow)
(2) Establish geometric model , generate computation mesh
(3) Set initial value and iterative error
(4) Assign heterogeneity and initial statistical distribution

Compute stress and strain over the nth unit in the kth step

Check whether the stress and strain in the nth 
unit satisfy the criteria of maximum tensile stress 

Check whether the stress and strain in the 
nth unit satisfy the criteria of  Mohr-Coulomb 

No

No Reduce elastic modulus or strength

Yes

Yes

Check whether the unit failure occurs

Remove failed unit and record acoustic emission
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Go to next unit, n=n+1

Check whether the precision
requirements is satisfied

End

Add next step, k=k+1
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of prescribed displacement increments was applied to both 
ends of the modeled rock samples at constant confining pres-
sures of 5, 10, 20, and 30 MPa (pore pressure = 0 MPa). The 
physico-mechanical input parameters of the individual ele-
ments at the mesoscale used in the simulations were deter-
mined by trial and error according to the experimental data 

(the determined parameters are listed in Table 1). It is noted 
that the input parameters for the elements at the mesoscale 
listed in Table 1 represent the statistical mechanical proper-
ties of the sandstone specimen at a macroscale.

Figure 5 presents the numerical stress–strain curves of 
dry red sandstone specimens deformed at confining pres-
sures of 5, 10, 20, and 30 MPa (pore pressure = 0 MPa), 
together with the experimental stress–strain curves (Yang 
et al. 2014). The compressive strength of sandstone samples 
increases with each increase in confining pressure. We high-
light that the simulated stress–strain curves are in reason-
able agreement with the experimental stress–strain curves 
(Fig. 5). It is again highlighted that the model input param-
eters were the same for each of the simulations shown in 
Fig. 5 (Table 1), adding confidence that our model is capable 
of accurately capturing the short-term mechanical behavior 
of sandstone under different confining pressures.

Table 1   Physico-mechanical parameters of numerical model

Items Specimen

Homogeneity index 5
Mean uniaxial compressive strength (MPa) 280
Mean Young’s modulus (GPa) 20
Poisson ratio 0.25
Ratio of compressive to tensile strength 10
Frictional angle (°) 30
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Fig. 5   Comparisons between numerical (orange circles) and experi-
mental (blue squares) stress–strain curves of red sandstone specimens 
under various confining pressures of 5, 10, 20, and 30  MPa (pore 

pressure = 0  MPa). All simulations were performed under the same 
input parameters except for the confining pressure. Experimental data 
from Yang et al. (2014). (Colour figure online)
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Conventional triaxial compressive tests on the saturated 
red sandstone samples deformed under the same confin-
ing pressure (30 MPa) but various pore pressures (5, 10, 
and 15 MPa) were also performed in the laboratory (Yang 
et al. 2014). Assuming a simple effective pressure law, 
these conditions correspond to effective pressures of 25, 
20, and 15 MPa, respectively. We performed numerical 
simulations under the same experimental conditions. The 
physico-mechanical input parameters of the individual ele-
ments at the mesoscale used in these simulations are kept 
the same (listed in Table 1). The numerical stress–strain 
curves of the sandstone specimens at a confining pres-
sure of 30 MPa and pore pressures of 5, 10, and 15 MPa, 
together with the experimental stress–strain curves of 
Yang et al. (2014), are presented in Fig. 6. We find that 
the compressive strength of sandstone samples decreases 
with an increase in pore pressure at a given confining pres-
sure (i.e., a reduction in effective pressure), and that the 
simulated stress–strain curves are in reasonable agreement 
with the experimental stress–strain curves.

It is typically observed that the effective pressure 
(defined here as the confining pressure minus the pore 
pressure multiplied by a poroelastic coefficient) usually 
controls stress–strain and strength behavior in rock, inde-
pendent of the magnitude of the pore pressure. Thus, we 
performed two additional tests on sandstone specimens 
under the same effective pressure to evaluate the appli-
cability of effective pressure principle in our model. One 
sandstone specimen was deformed under a confining 
pressure of 24 MPa without pore pressure (i.e., effective 
pressure = 24 MPa), and another sandstone specimen was 
deformed under a confining pressure of 34 MPa and a pore 
pressure of 10 MPa (i.e., effective pressure = 24 MPa). 
Figure 7 shows the experimental stress–strain curves of 
the sandstone specimens under the same effective pressure, 
together with the modeled curves. We notice that the peak 
stress of the two sandstone specimens is almost identical 
under the same effective pressure (Fig. 7). It is well known 
that the coefficient of pore pressure is an important com-
ponent of the effective pressure law. Some existing stud-
ies (She and Xuan 2010; Baud et al. 2015; Farquharson 
et al. 2016) have shown that the pore pressure coefficient 
is close to but less than one. Thus, the coefficient of pore 
pressure was set to one in the numerical simulations per-
formed in this study. We highlight that the numerical and 
experimental stress–strain curves under the same effective 
pressure, as shown in Fig. 7, are in very good agreement.

From the simulated mechanical behavior of sandstone 
specimens under various pressure conditions (Figs. 5, 6, 
7), we can arrive at the conclusion that the proposed model 
is capable of capturing the short-term (time-independent) 
mechanical behavior of porous sandstone.
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Fig. 6   Comparisons between numerical (red lines) and experimen-
tal (blue lines) stress–strain curves at constant confining pressures 
of 30 MPa and various constant pore pressures of 5, 10, and 15 MPa 
(i.e., effective pressures of 25, 20, and 15  MPa, respectively). All 
simulations were performed under the same input parameters except 
for the pore pressure. Experimental data from Yang et  al. (2014). 
(Colour figure online)
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4.2 � Brittle Creep Tests on Sandstone Under 
Confining and Pore Pressures

As described above, the validity of our numerical model 
was tested by trying to replicate experimental data from tri-
axial deformation experiments on sandstone under different 
constant confining and pore pressures. The proposed model 
will now be used to simulate a suite of conventional brittle 
creep experiments under a constant confining pressure of 
30 MPa and at different constant pore pressures of 5, 10, and 
15 MPa (i.e., effective pressures of 25, 20, and 15 MPa). The 
numerical creep simulations were all performed using the 
determined physico-mechanical parameters listed in Table 1. 
In addition to the constant strain rate experiments described 
above, to simulate coupled hydro-mechanical time-depend-
ent behavior, hydro-physical parameters such as permeabil-
ity, and dynamic viscosity, as well as the material constants 
A, m, and n are also needed. Based on the experimental 
data on the macroscopic physico-mechanical properties of 
rocks and the statistical distribution relationship between the 
physico-mechanical properties of the elements at the mes-
oscale and the physico-mechanical properties of rocks at 
a macroscale, the input parameters for physico-mechanical 
properties of the elements at the mesoscale can be deter-
mined by an inverse analysis method. Thus, these hydro-
physical parameters such as permeability and dynamic 
viscosity are determined from the experimental data (Yang 
et al. 2014) and material constants A, m, and n can also be 
determined using a fitting method. All input parameters for 

the numerical model are listed in Table 2. During the simula-
tions, the elements at the bottom of the modeled rock sample 
are fixed in the vertical direction but they can move freely 
in the horizontal direction, as is the case for conventional 
triaxial compressive loading in the laboratory (i.e., the ele-
ments cannot move into the piston/baseplate).

The numerical simulated creep curves (axial strain vs. 
time), together with the experimental curves (from Yang 
et al. 2014), are plotted in Fig. 8. The experiments, and 
therefore simulations, were performed at constant differen-
tial stresses of 142, 160, and 180 MPa for the experiments/
simulations at effective pressures of 15, 20, and 25 MPa, 
respectively. It can be seen from Fig. 8 that the numerically 
simulated creep curves are in good agreement with the 
experimental curves. The numerical creep curves produced 
by our model clearly show the decelerating–accelerating 
phenomenology of brittle creep seen in laboratory experi-
ments (see the review by Brantut et al. 2013). In particular, 
the increase in axial strain rate preceding sample failure is 
well reproduced by the proposed model. We therefore con-
clude that, based on these validations, our model can be used 
to investigate the hydro-mechanical time-dependent creep 
response of inhomogeneous brittle rocks under different pore 
and confining pressures.

Figure 9 shows several snapshots of the damage evolu-
tion of numerical specimens for the three creep simulations 
performed at effective pressures of 15, 20, and 25 MPa. 
These images clearly show when and where the damage and 
failure occur in the rock specimen. Due to the heterogene-
ity of rock specimen, the elastic moduli for the elements in 
the rock sample at the mesoscale are spatially distributed at 
random. Elements with a low strength and elastic modulus 
are damaged first. As time goes on, the number of dam-
aged elements continued to grow, forming discrete damage 
zones. These local damaged zones modify the stress field in 

0

40

80

120

160

200

240

280

0 0.2 0.4 0.6 0.8 1 1.2

D
iff

er
en

tia
l s

tre
ss

 (M
Pa

)

Axial strain (%)

Experimental

Numerical

Experimental

Numerical

, P = 0 MPa, 3 = 24MPa

, P = 0 MPa, 3 = 24MPa

, P = 10 MPa, 3 = 34MPa

, P = 10 MPa, 3 = 34MPa

Fig. 7   Comparisons between numerical (orange circles) and experi-
mental (blue squares) stress–strain curves of red sandstone specimens 
under the same effective pressures. All simulations were performed 
under the same input parameters except for the confining and pore 
pressures. Experimental data from Yang et al. (2014). (Colour figure 
online)

Table 2   Physico-mechanical parameters of numerical model for sand-
stone

Parameters Values

Homogeneity index ( �) 5
Mean Young’ modulus (GPa) 20
Mean UCS (MPa) 280
Poisson ratio 0.25
Ratio of compressive to tensile strength 10
Frictional angle (°) 30
Permeability (m2) 1 × 10−18

Dynamic viscosity (Pa s) 1 × 10− 3

A 5 × 10− 11

n 1.65
m 0.6
U 5000
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their surrounding region and these modifications trigger the 
dynamic extension of damage into neighboring elements. 
Furthermore, we find that formation of the damage zone 
that ultimately results in sample failure initiates during the 
accelerating portion of the creep curve.

Since our simulations accurately capture the decelerat-
ing–accelerating nature of a classic experimental creep curve 
(Fig. 8), we therefore conclude that, based on these valida-
tions, our time-dependent model can be used to investigate 
the hydro-mechanical time-dependent brittle response of 
inhomogeneous brittle rock under different effective pres-
sures and applied differential stresses.

5 � Numerical Simulations and Discussion

5.1 � Model Setup

In this section, we use the proposed model to further 
investigate the influence of effective pressure, differential 
stress, and sample heterogeneity on brittle creep of rock. 
The numerical samples used in these simulations have 
a geometry of 100 × 50 mm (Fig. 10). The sample size is 
therefore the same as the samples modeled in the above-
described validation. The geometry of the modeled sample 
was discretized into a 200 × 100 (20,000 elements) square 
grid (i.e., each square element had sides of 0.5 mm). We 
will apply various axial differential stresses (138, 140, 142, 
144, and 146 MPa) and various constant effective pressures 
(10, 15, 20, and 25 MPa) on numerical heterogeneous sam-
ples ( � = 6, 7, and 8) to investigate brittle creep in inho-
mogeneous rock. The loading and boundary conditions are 
also shown in Fig. 10. Similar to conventional creep tests, 
the axial stress ( �y ) was maintained constant at the top of 
the specimen. At the same time, the sample is subject to 
a constant confining pressure ( �x ) and pore pressure dur-
ing the simulations. During the simulations, the elements 
at the bottom of the modeled rock sample are fixed in the 
vertical direction but they can move freely in the horizontal 
direction, as is the case for conventional triaxial compressive 
creep tests in the laboratory (i.e., the elements cannot move 
into the piston/baseplate). The relevant model parameters 
used in the simulations are the same as the parameters listed 
in Table 2.

5.2 � Effect of Effective Pressure

Based on these validations above, four additional numeri-
cal creep tests were performed at a differential stress of 
142 MPa and at constant effective pressures of 10, 15, 20, 
and 25 MPa to investigate the effect of effective pressure on 
the brittle creep of rock. The confining pressure for these 
simulations was 30 MPa and the pore pressures were 5, 10, 
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Fig. 8   Comparisons between numerical (orange circles) and experimental 
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input parameters except for the pore pressure and differential stress. (Col-
our figure online)
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Fig. 9   Damage and failure processes of numerical specimens at vari-
ous constant effective pressures of 25, 20, and 15  MPa (confining 
pressure = 30 MPa, pore pressure = 5, 10, and 15 MPa, respectively). 

The dark colors in the numerical specimen are the damage-induced 
fractures. (Colour figure online)
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15, and 20 MPa, respectively. Figure 11 shows the creep 
curves and AE activity as a function of time for the four 
constant effective pressures tested (10, 15, 20, and 25 MPa). 
We can see that all the simulated creep curves exhibit the 
decelerating–accelerating phenomenology of brittle creep as 
observed in the laboratory (Brantut et al. 2013). The start of 
the creep simulations is accompanied by a few AE events, 
the result of the failure of a few weak elements in numerical 
sample. With increasing time, the rock samples transition 
from decelerating to accelerating creep. Interactions among 
elements during accelerating creep results in strain localiza-
tion, and ultimately, the macroscopic failure of the sample. 
The approach to macroscopic failure is accompanied by an 
acceleration in the AE hit rate (Fig. 11). In general, the creep 
curves and the output of AE follow a very similar trend.

For comparison, the creep curves for these simulations 
are plotted together in Fig. 12. We can see that the effec-
tive pressure has a marked effect on creep behavior (as 
observed in experimental studies of, for example, Heap 
et al. 2009a, 2011; Brantut et al. 2013). For example, the 
minimum creep strain rate increases as the effective pres-
sure decreases (Fig. 13). The minimum creep strain rate was 
increased from ~ 1 × 10−8 to ~ 2–3 × 10−8 s−1 as the effective 
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Fig. 10   Numerical model with a geometry of 100 mm in height and 
50 mm in width for the confined creep simulations
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pressure was reduced from 25 to 10 MPa (Fig. 13). The 
time-to-failure was also reduced as the effective pressure was 
reduced (Fig. 14). In detail, time-to-failure was reduced from 
~ 19 to ~ 12 h upon reducing the effective pressure from 25 
to 10 MPa (Fig. 14).

We also used the proposed model to simulate brittle 
creep of sandstone samples under different constant confin-
ing pressures of 20, 22, 25, 28, and 30 MPa but the same 
constant pore pressure of 15 MPa (i.e., effective pressures 
of 5, 7, 10, 13, and 15 MPa) and the same constant applied 
differential stress of 142 MPa. Figure 15 shows the numeri-
cally obtained axial creep strain curves and AE activity with 

time for these simulations, and Fig. 16 shows the creep strain 
rate as a function of time. As for the above-described simu-
lations, the simulations presented in Figs. 15 and 16 show 
that increasing the effective pressure for a given constant 
differential stress (1) reduces the creep strain rate and (2) 
increases the time-to-failure. For example, at an effective 
pressure of 5 MPa, the sample had a minimum creep strain 
rate of ~ 2 × 10−7 s−1 and failed after about 1.75 h, whereas 
at an effective pressure of 15 MPa, the minimum creep 
strain rate was reduced to ~ 2 × 10−8 s−1 and sample failure 
occurred after about 7.25 h (Figs. 15, 16).

These findings are qualitatively similar to those who 
have investigated the influence of effective pressure on brit-
tle creep in porous sandstones in the laboratory (e.g., Baud 
and Meredith 1997; Ngwenya et al. 2001; Heap et al. 2009a; 
Brantut et al. 2013, 2014a).

5.3 � Effect of Differential Stress

We will now run a suite of conventional brittle creep experi-
ments under different constants applied differential stresses 
(i.e., we changed the ratio between the creep hold stress and 
the short-term failure stress) to study the effect of differential 
stress (axial stress minus confining pressure) on creep. We 
performed creep tests at constant pore pressure of 15 MPa 
and constant confining pressure of 30 MPa (i.e., an effec-
tive pressure of 15 MPa) but at various constant differen-
tial stresses of 138, 140, 142, 144, and 146 MPa. Figure 17 
shows the numerically obtained creep curves for these five 
simulations, and Fig. 18 shows the numerically obtained 
creep strain rates against time curves. The simulated creep 
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curves exhibit the typical decelerating–accelerating phenom-
enology of experimental creep curves (Brantut et al. 2013). 
The decelerating–accelerating phenomenology of the creep 
process is best observed in the plot of creep strain rate as a 
function of time (Fig. 18). The strain rate first decelerates 
to a minimum value, before accelerating to failure (Fig. 18), 
as observed in creep experiments on porous sandstones in 
the laboratory (Brantut et al. 2014a). As the differential 
stress increases in the simulations, the minimum strain rate 

becomes higher (Fig. 18), and the time-to-failure becomes 
shorter (Fig. 17). For example, the time-to-failure at a dif-
ferential stress of 138 MPa is more than 11 h, but the time-
to-failure at 146 MPa is only about 5.5 h (Fig. 17). The 
simulated times-to-failure in semi-log space as a function of 
applied differential stress curves are plotted in Fig. 19. It is 
clearly seen that even a modest increase in differential stress 
can significantly alter the magnitude of the creep strain rate 
(Fig. 18) and the time-to-failure (Fig. 19). The results of the 
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simulations are in line with the many experimental studies 
that report on the influence of differential stress on brittle 
creep strain rate (see Brantut et al. 2013 for a review).

5.4 � Effect of Sample Homogeneity

It is well known that rock is a heterogeneous material. It is 
for this reason we use a Weibull statistical distribution to 
reproduce mechanical heterogeneity within a realistic rock 
medium. We recall here that we use the Weibull distribu-
tion to provide heterogeneity in the strength (compressive 
and tensile) and Young’s modulus of the sample at the mes-
oscale. To examine the effect of the value of homogeneity 
index on brittle creep, a set of simulations performed on rock 
samples with different homogeneity indices ( � = 6, 7, and 8) 

but at the same effective pressure of 15 MPa (confining pres-
sure = 30 MPa, pore pressure = 15 MPa) and the same con-
stant applied differential stress of 142 MPa were performed. 
Figures 20, 21, and 22 show axial strain, AE activity, final 
failure patterns, and creep strain rate as a function of time for 
these three simulations. It is seen that an increase in homo-
geneity index leads to a decrease in creep strain rate of the 
specimen (Fig. 22) and a corresponding increase in time-to-
failure (Figs. 20, 21, 22). For example, the minimum creep 
rate is 7.11 × 10−8 s−1 when the sample homogeneity index 
is � = 6, while the minimum creep strain rate is decreased 
to 1.77 × 10−8 s−1 when the homogeneity index is increased 
to � = 8. The corresponding times-to-failure are 3.25 and 
7.25 h, respectively. Such observations can be explained by 
the fact that the peak strength of a more homogeneous rock 
sample is higher. These simulations could be analogous to 
performing brittle creep experiments on, for example, gran-
ites containing progressively more microcracks or lime-
stones that contain progressively more microporosity.

6 � Conclusions

We have presented a numerical hydro-mechanical model 
for brittle creep to replicate time-dependent brittle defor-
mation of heterogeneous brittle rock (here demonstrated for 
red sandstone) under loading conditions at different con-
stant pores and confining pressures. To reflect the material 
heterogeneity at the mesoscale, the mechanical parameters 
(e.g., strength and Young’s modulus) of the mesoscopic 
material elements, which are assumed to be homogene-
ous and isotropic, are assigned randomly using a Weibull 
statistic distribution. The model introduces the concept of 
a mesoscopic renormalization to capture the co-operative 
interaction between microcracks in the transition from dis-
tributed to localized damage. We have validated our model 
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Fig. 17   Axial strain versus 
time curves (i.e., creep curves) 
for simulated rock samples at 
constant confining pressure of 
30 MPa and a constant pore 
pressure of 15 MPa and various 
constant differential stresses 
of 138, 140, 142, 144, and 
146 MPa. All simulations were 
performed under the same input 
parameters
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against time-independent and time-dependent experimental 
data and then used it to simulate conventional brittle creep 
experiments at various constant pores and confining pres-
sures and at various applied differential axial stresses. The 
simulation results adequately replicate typical observations 
of creep tests including the acceleration to failure. In addi-
tion, the influence of sample homogeneity on creep behavior 
was also studied.

Our simulations show, in line with experimental 
observations, that (1) creep strain rate is decreased and 

time-to-failure is increased when the effective pressure is 
increased (for a given differential stress and sample homo-
geneity), (2) creep strain rate is increased and time-to-failure 
is decreased when the differential stress is increased (for a 
given effective pressure and sample homogeneity), and (3) 
creep strain rate is decreased and time-to-failure is increased 
when the sample homogeneity is increased (for a given dif-
ferential stress and effective pressure). We find that the pro-
posed model reproduces the progressive development of 
fracture processes and the evolution of failure morphology 
in heterogeneous rocks during brittle creep.
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Fig. 20   Axial creep strain and AE activity curves for simulated rock 
samples with various homogeneity indices (from 3 to 5) at constant 
differential stress of 142 MPa and effective pressure of 15 MPa (con-
fining pressure = 15 MPa, pore pressure = 15 MPa)
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This model provides insight into the creep process of 
brittle rocks. Importantly, the simulations accurately cap-
ture the decelerating–accelerating phenomenology of a 
classic experimental creep curve. We therefore contend 
that, based on these validations, our time-dependent model 
is not only able to characterize the progressive time-inde-
pendent damage up to failure, but also reveals the time-
dependent damage evolution for sandstone under different 
conditions (i.e., different pore and confining pressures and 
different applied differential axial stresses). The presented 
procedure allows us to investigate the hydro-mechanical 
time-dependent response of inhomogeneous rock under 

external loading and to glean a deeper understanding of 
rock failure processes at the meso- and macroscale.
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