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Abstract An understanding of the influence of tempera-

ture on brittle creep in granite is important for the man-

agement and optimization of granitic nuclear waste

repositories and geothermal resources. We propose here a

two-dimensional, thermo-mechanical numerical model that

describes the time-dependent brittle deformation (brittle

creep) of low-porosity granite under different constant

temperatures and confining pressures. The mesoscale

model accounts for material heterogeneity through a

stochastic local failure stress field, and local material

degradation using an exponential material softening law.

Importantly, the model introduces the concept of a meso-

scopic renormalization to capture the co-operative inter-

action between microcracks in the transition from

distributed to localized damage. The mesoscale physico-

mechanical parameters for the model were first determined

using a trial-and-error method (until the modeled output

accurately captured mechanical data from constant strain

rate experiments on low-porosity granite at three different

confining pressures). The thermo-physical parameters

required for the model, such as specific heat capacity,

coefficient of linear thermal expansion, and thermal

conductivity, were then determined from brittle creep

experiments performed on the same low-porosity granite at

temperatures of 23, 50, and 90 �C. The good agreement

between the modeled output and the experimental data,

using a unique set of thermo-physico-mechanical parame-

ters, lends confidence to our numerical approach. Using

these parameters, we then explore the influence of tem-

perature, differential stress, confining pressure, and sample

homogeneity on brittle creep in low-porosity granite. Our

simulations show that increases in temperature and differ-

ential stress increase the creep strain rate and therefore

reduce time-to-failure, while increases in confining pres-

sure and sample homogeneity decrease creep strain rate

and increase time-to-failure. We anticipate that the mod-

eling presented herein will assist in the management and

optimization of geotechnical engineering projects within

granite.
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List of symbols

A Material constant

D Damage variable

E, E0 Young’s moduli of damaged material and

undamaged material

Ft0, Fc0 Uniaxial tensile strength and uniaxial

compressive strength

F1, F2 Tensile and shear damage threshold functions

G Shear modulus

N Total number of elements

R Universal gas constant

Sij Stress deviator tensor of the elastic stress

components

T, Ta Temperature, ambient temperature
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U Creep activation energy

ve The volume of single element

Vf, V The volume of failed elements, the total volume

of all elements

c Heat capacity of the medium

ef Energy released from a failed element

eij Strain deviator of the elastic strain components

fi Body forces per unit volume

h The convective heat transfer coefficient

k Apparent thermal conductivity

m A fraction constant

n Stress component of greater than one

ni The number of failed elements in the ith step

qi, q The rate of heat conduction, heat source

generated inside the medium

u, u0 Scale parameter of an element, the average

element parameter

ui Mechanical parameter of the element i

a The coefficient of linear thermal expansion

b The coefficient of thermal stress

dij Kronecker delta

k Lamé’s constant

q Bulk density of medium

v Homogeneity index

/ Angle of internal friction

xi Random numbers ranging from 0 to 1

w The ratio of the volume of failed rock to total

volume of rock

re Effective stress

rij Total stress tensor

r1; r2 The maximum and minimum principal stress

e1; e3 The maximum and minimum principal strain

et0; ec0 The maximum tensile and compressive strain

e Total strain

ee Elastic strain

ec Creep strain

eT Thermal strain

eij Elastic strain tensor

1 Introduction

Geological disposal is currently considered as the preferred

option for waste management of long-lived radioactive

waste worldwide. In a geological repository, which are

designed to store and isolate waste over hundreds of

thousands of years, the temperature in the near field will be

increased due to the heat generated by the radioactive

waste (Gibb 2000; Chu and Majumdar 2012). This sus-

tained high temperature may have a significant influence on

the time-dependent behavior of the host rock and

consequently affect the overall long-term performance of

the disposal. Therefore, a good understanding through the

reliable modeling of the time-dependent behavior of the

host rock at elevated temperatures is essential to the sta-

bility and safety analysis of nuclear waste disposal.

Knowledge of the time dependence of rock deformation at

elevated temperature is also important in geothermal

reservoirs (e.g., Berard and Cornet 2003). Constraining the

mechanical behavior of geothermal reservoir rock is

important for resource management and optimization.

Extensive studies have been carried out on the time-

dependent behavior of soft rocks like sedimentary rock and

rock salt (Carter and Hansen 1983; Cristescu 1993; Dubey

and Gairola 2008; Heap et al. 2009a, b; Brantut et al. 2014;

Yang et al. 2014; Ye et al. 2015) and hard rocks like

granite (Kranz 1980; Kranz et al. 1982; Lockner 1993a, b;

Fujii et al. 1999; Katz and Reches 2002; Lin et al. 2009;

Chen et al. 2015; Wang et al. 2015) and basalt (Heap et al.

2011). Granite is of particular importance in the context of

nuclear waste disposal and geothermal energy. Granite is a

widely recognized potential host rock for the disposal of

nuclear waste due to its low permeability and high strength

(Heuze 1983; Gibb 2000; Wang et al. 2006) and many

geothermal sites host granitic rocks, such as the enhanced

geothermal reservoirs of the Upper Rhine Graben (France)

(Baria et al. 1999). Further, since granite is considered a

major constituent of the continental crust (Wedepohl

1995), an understanding of time-dependent deformation in

granite will assist in our understanding of crustal defor-

mation and natural hazards. The stress distribution and

permeability in a granite rock mass are important when we

consider natural hazards and rock engineering projects. The

distribution of stress (mechanical and thermal) dictates the

microcrack anisotropy and therefore permeability aniso-

tropy in granite (e.g., Sano et al. 1992; Benson et al. 2006;

Nara et al. 2011a, b). However, and despite the importance

of granite in these high-temperature environments, only

few studies of time-dependent brittle creep on granite have

been conducted at elevated temperature (Kranz et al. 1982;

Lin et al. 2009; Chen et al. 2015; Wang et al. 2015).

During a brittle creep experiment, in which a rock sample

is held at a constant differential stress for an extended period

of time, the strain against time (the ‘‘creep curve’’) first

decelerates before accelerating as macroscopic sample fail-

ure is approached, a behavior common to many rock types

(Brantut et al. 2013). The onset of the acceleration to failure

in brittle creep experiments has been ascribed as the result of

the sample reaching a microcrack density at which microc-

racks can interact and coalesce, sometimes referred to as the

‘‘critical damage threshold’’ (Kranz and Scholz 1977; Baud

and Meredith 1997; Heap et al. 2009b, 2011). The acceler-

ation in strain rate during this accelerating phase has been

previously described using a power law (Voight 1989).
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Time-dependent brittle deformation is often attributed to

a mechanism of subcritical crack growth called stress

corrosion cracking (Atkinson 1984; Brantut et al. 2013).

Stress corrosion describes fluid–rock reactions that occur

preferentially between a chemically active pore fluid and

strained atomic bonds at the crack tips and is therefore

sensitive to environmental factors such as stress, temper-

ature, and pore fluid reactivity (Atkinson 1984). Temper-

ature influences the crack growth rate through the

Arrhenius temperature dependence of crack growth rate

(Heuze 1983) and because temperature affects the stress

dependency of the rate of crack growth. Indeed, experi-

mental work has shown that speed of crack growth during

single crack double-torsion experiments is increased as

temperature is increased (Meredith and Atkinson 1983;

Nara et al. 2010, 2011a, b). Similarly, brittle creep exper-

iments have shown that strain rates and time-to-failure are

higher and lower, respectively, as temperature is increased

(Kranz et al. 1982; Lockner 1993a, b; Heap et al. 2009a;

Lin et al. 2009; Chen et al. 2015; Ye et al. 2015). For

example, Kranz et al. (1982) observed a decrease in the

time-to-failure in brittle creep experiments on granite by up

to three orders of magnitude upon increasing sample tem-

perature from 24 to 200 �C. Similarly, Heap et al.

(2009a, b) experimentally observed an increase in creep

strain rate of three orders of magnitude from 20 to 75 �C in

experiments on sandstones. Ye et al. (2015) also found that

high temperature (80 �C) reduced time-to-failure in brittle

creep experiments on tuff. The enhanced rate of creep

deformation is of particular interest in the context of

nuclear waste disposal and geothermal energy.

Based on the experimental investigations, various creep

models have been proposed over the last few decades

which can be grouped into three classes: empirical models,

component models, and mechanism-based constitutive

models. Empirical models, based on laboratory investiga-

tions, are widely used in engineering (Cristescu 1993).

However, due to the difference in timescale between lab-

oratory investigations and the engineering project, the

validation and suitability of these models for long-term

predictions are dubious. Component models (Maranini and

Yamaguchi 2001), which are generally a combination of

standard elements such as the Newtonian dashpot, the

Hooke spring, and the frictional element, have the advan-

tage of a flexible description of the different creep defor-

mations. The formulation of these models is always

complex and often lacks physical meaning. In recent years,

a mechanism-based creep model has been developed based

on cracking and damage evolution at the microscale

(Lockner and Madden 1991; Yoshida and Horii 1992; Shao

et al. 1997; Amitrano and Helmstetter 2006; Lu et al.

2014); this type of model tries to build a bridge between

macroscopic phenomenology and micromechanisms on a

microscale (Shao et al. 2003, 2006; Bikong et al. 2015;

Zhao et al. 2016).

Due to the aforementioned importance of understanding

the long-term mechanical behavior of rock hosting nuclear

waste disposal sites and geothermal reservoir rock, we

present here a two-dimensional constitutive creep model to

describe the time-dependent deformation of granite

exposed to different temperatures and confining pressures.

We also model the accompanying acoustic emissions

(AEs), a diagnostic tool often used to monitor the pro-

gressive degradation of material at the mesoscale. We first

formulate the thermo-mechanical coupled time-dependent

model. We then validate the model and determine the

required thermo-physico-mechanical properties using pre-

viously published experimental data (from Chen et al.

2015, 2017). Finally, we present and discuss the results of

brittle creep simulations performed at different tempera-

tures, differential stresses, confining pressures, and sample

homogeneities.

2 Formulation of Time-Dependent Constitutive
Model

The rapid advance of computer technology has enabled

applied mathematicians, engineers, and scientists to make

significant progress in the solution of previously

intractable problems. Numerical modeling is currently the

most commonly used method in the solution of important

problems in rock mechanics and engineering. Thus, in this

paper, a quantitative model is proposed to describe the

coupled heat transfer and rock failure problems associated

with rock exposed to elevated temperatures. To this end, a

numerical thermo-mechanical creep code was developed to

investigate time-dependent deformation at elevated

temperature.

When formulating the model in mathematical language,

various levels of complexity can be incorporated into each

component, with the accuracy and versatility of the model

depending on the refinement of the description of each

component. For a model that can be used to investigate

time-dependent creep deformation at high temperature, the

coupled effect of the medium deformation and heat transfer

must be important. Three components must be accounted

for: (1) a heat transfer description, (2) a stress description,

and (3) a failure description. The descriptions of heat

transfer, stress, and failure in the model are, respectively,

presented in this section.

The model is based on the theory of elastic damage

mechanics and assumes that the damage is elastic and iso-

tropic. The model accounts for material heterogeneity

through a stochastic local failure stress field, and local

material degradation using an exponential material softening
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law. The maximum tensile strain criterion and a modified

Mohr–Coulomb criterionwith a tension cutoff are adopted as

two failure thresholds in the model. The tensile strain crite-

rion is preferential since the tensile strength of rock is

commonly a tenth or twelfth of its compressive strength

(Jeager et al. 2007). This approach makes it possible to

simulate the transition from distributed damage by tensile

microcracking to damage where microcracks can interact,

coalesce, and ultimately form a throughgoing shear fracture.

The model also describes the temporal and spatial evolution

of AEs, including their size (energy released), in the medium

during the progressive damage process.

Our approach differs from similar models, such as Ami-

trano andHelmstetter (2006), by accounting for heterogeneity

by allowing the material strength and Young’s modulus to

follow aWeibull statistical distribution.Weibull distributions

are often used in the field of failure analysis due to their

flexibility and have been adopted bymany researchers (Lajtai

and Schmidtke 1986; Sornette et al. 1992; Tang 1997; Váz-

quez-Prada et al. 1999; Lu et al. 2002; Wong et al. 2006; Xu

et al. 2012, 2013, Heap et al. 2016; Griffiths et al. 2017).

Amitrano andHelmstetter (2006) introducedheterogeneity by

assuming that the cohesions of the elements conform to a

uniform distribution. Furthermore, our model can visually

replicate the tempo-spatial evolution of the shear stress fields,

the associated AE, and a rich assortment of other parameters,

such as compressive stress, tensile stress, displacement vector,

stress vector, and Young’s modulus during the time-depen-

dent brittle deformation of heterogeneous rock under a con-

stant compressive stress, confining pressure, and temperature.

2.1 Characterization of Heterogeneity

In the absence of heterogeneity, the behavior of the model

is entirely homogenous, no damage localization occurs,

and the local behavior is replicated at the macroscopic

scale. Thus, it is necessary to introduce heterogeneity to

obtain a collective macroscopic behavior different from

that of the individual elements. In order to reflect the

material heterogeneity at a mesoscale, the mechanical

parameters (e.g., strength and Young’s modulus) of the

mesoscopic material elements, which are assumed to be

homogeneous and isotropic, are assigned randomly using a

Weibull statistical distribution (Weibull 1951), as defined

in the following statistical probability density function:

f uð Þ ¼ v
u0

u

u0

� �v�1

exp � u

u0

� �v� �
ð1Þ

where u is the scale parameter of an individual element such

as the strength or Young’s modulus and the scale parameter

u0 is related to the average element parameter. The shape

parameter v reflects the degree of material homogeneity and

is denoted as a homogeneity index. Figure 1 presents the

statistical density distribution curves of uniaxial compres-

sive strength of elements with a given scale parameter

100 MPa at different homogeneity indices (v = 1.2, 1.5, 2,

3 and 5). According to the Weibull distribution and the

definition of homogeneity index as shown in Fig. 1, a larger

v implies that more elements will have the mechanical

properties similar to the given scale parameter value,

100 MPa, resulting in a more homogeneous material.

To obtain a set of values of uniaxial compressive

strength and Young’s modulus following the Weibull

statistic distribution, a set of random numbers xi ranging

from 0 to 1 are generated based on the Monte Carlo

method, and then, the uniaxial compressive strength and

Young’s modulus of each element can be obtained from:

ui ¼ u0 ln
1

1� xi

� �1
v

ð2Þ

where ui is the uniaxial compressive strength and Young’s

modulus of the element i.

By randomly specifying a uniaxial compressive strength

and Young’s modulus to each of the elements, which fol-

lows the Weibull distribution according to Eq. (2), a

heterogeneous numerical sample can be created. Figure 2

shows two numerical rock samples of 100 mm 9 50 mm

with a homogeneity index v of 5 composed of twenty

thousand (200 9 100) square elements. The uniaxial

compressive strength (Fig. 2a) and the Young’s modulus

(Fig. 2b) are determined randomly according to the Wei-

bull distribution (using a scale parameter of 350 MPa and

43 GPa for the strength and Young’s modulus, respec-

tively). The different colors in Fig. 2 correspond to dif-

ferent values of element strength and Young’s modulus.
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Fig. 1 Distribution density function of parameters of elements with

different homogeneity indices v (v = 1.2, 1.5, 2, 3, and 5) at a given

scale parameter of u0 ¼ 100
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High values of v lead to more homogeneous numerical

samples, and vice versa. Therefore, the homogeneity index

is an important parameter in controlling the macroscopic

response of a numerical sample. Although a simplification,

the differences in physical properties between different

elements within a particular sample reflect differences in

mineralogy (granite, for example, typically contains quartz,

feldspar, and mica), cleavage or microcracks within indi-

vidual crystals, crystal boundaries, among others.

2.2 Heat Transfer Description

Here we begin by considering the heat transfer descrip-

tion. The fundamental assumption behind the model pre-

sented here is that the conductive flux may saturate at a

value comparable to the enthalpy per unit volume. Ther-

mal conduction is defined as heat transport in a material

by transfer of heat between portions of the material that

are in direct contact with each other. The equation that

governs the heat transfer in a medium is known as

Fourier’s Law:

qi ¼ �kijgrad Tð Þ ð3Þ

where qi is the rate of heat conduction (i = 1, 2, 3) in

W/m2, kij is the apparent thermal conductivity tensor of the

medium (i, j = 1, 2, 3) in W/m �C, and grad Tð Þ is the

temperature gradient in �C/m. The negative sign implies

that heat is transferred in the direction of decreasing tem-

perature. The thermal conductivity k varies between dif-

ferent materials and can be a function of temperature and

temporal direction, but it can be treated as a constant for

each element in the sample.

Assuming thermal equilibrium between the phases and

heat conduction as the dominant mechanism of heat

transfer, the energy balance equation in an anisotropic

material can be expressed as:

o

oxi
kij

oT

oxj

� �
þ q ¼ qc

oT

ot
ð4Þ

where q denotes the heat source generated inside the

medium in W/m3, q is the bulk density of medium in kg/

m3, c is the specific heat or heat capacity of the medium in

J/kg �C, and t is the time. For an isotropic material, the

energy balance equation reduces to the following:

kr2T þ q ¼ qc
oT

ot
: ð5Þ

2.3 Stress Description

It is assumed here that the total strain for a stressed medium

is made up of elastic, creep, and thermal components. The

total strain can therefore be decomposed as follows:

e ¼ ee þ ec þ eT ð6Þ

where the subscripts e, c, and T refer to the elastic strain,

creep strain, and thermal strain, respectively. The elastic

strain ee can be obtained using the tensor form of Hooke’s

law for elastic medium:

ee ¼ eij ¼
1

2G
Sij þ

1

3
ekkdij ð7Þ

where G is the shear modulus, eij is the strain tensor form of

the elastic strain ee, and Sij is the stress deviator tensor of

Fig. 2 Numerical specimens (100 mm in length and 50 mm in

width) with a homogeneity index v of 5. Each sample is composed of

20,000 elements. a The distribution of uniaxial compressive strength

according to the Weibull distribution (scale parameter of 100 MPa)

(see Eq. (1)). b The distribution of Young’s modulus according to the

Weibull distribution (scale parameter of 100 GPa) (see Eq. (1))
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the elastic stress components rij; Sij ¼ rij � 1
3
rkkdij, in

which dij is the Kronecker delta. The Kronecker delta

equals zero when i 6¼ j and one when i ¼ j. The thermal

strain eT is induced by thermal expansion due to the vari-

ation of temperature and can be expressed by:

eT ¼ aDTdij ð8Þ

where a is the coefficient of linear thermal expansion and

DT is the temperature change. The creep strain ec is a

function of the stress r, temperature T , and time t, i.e.,

ec ¼ F r; T; tð Þ. It is customary to assume that the effects

are separable and can be written as:

ec ¼ f rð Þg Tð Þh tð Þ ð9Þ

where f rð Þ, g Tð Þ, and h tð Þ are the functions related to

stress, temperature, and time, respectively.

For creep problems, a Norton–Bailey equation (Heard

1976; Carter and Hansen 1983) known as a constitutive law

of the creep strain rate was adopted to characterize time-

dependent creep deformation based on the approach of the

equation of state theory:

ec ¼ Arntm exp � U

RT

� �
ð10Þ

where A, m, n are constants that are a function of tem-

perature. The constant n usually denotes stress component

and is greater than one; m is usually a fraction; U is the

creep activation energy that can be determined empirically

as proportional to the slope of a plot of log ec as a function
of 1=T at constant r, R is the universal gas constant, and

T is the absolute temperature (in Kelvin).

Since modeling the strain rate is of great interest for this

study, Eq. (10) can also be expressed in a strain rate form:

_ec ¼ mArntm�1 exp � U

RT

� �
ð11Þ

Since creep flow rule can be expressed in tensor form under

multi-axial stress conditions (Kraus 1980):

_ecij ¼
3

2

d�ec
dt

Sij

re
ð12Þ

in which re is the effective stress and re ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2
SijSij

q
, d�ec is

the effective creep strain, and d�ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
decijde

c
ij

q
. Now,

substitute Eq. (12) into Eq. (11), the creep strain rate is

also extended to the multi-axial stress case:

_ecij ¼
3

2
AmSijr

n�1
e tm�1 exp � U

RT

� �
ð13Þ

where _ecij is the creep strain rate, Sijis the deviatoric part of

rij, and re is effective stress defined as:

This creep model can describe the decelerating creep

commonly seen at the start of a brittle creep experiment

(e.g., see Brantut et al. 2013), but it fails to represent the

acceleration in strain rate in the approach to macroscopic

sample failure. Thus, a damage evolution law for the

accelerating creep of rock is incorporated at this stage.

The description of stress can be formulated in a number

of ways. The static stress equilibrium equation for

macroscopic total stresses in the absence of an inertia term

takes the form:

rij;j þ fi ¼ 0 ð15Þ

where rij is the total stress tensor (i, j = 1, 2, 3) in MPa and

fi is the body force per unit volume in MPa. According to

the continuous conditions, for a perfectly elastic isotropic

continuum, the continuity equation is expressed in terms of

the displacement gradient:

eij ¼
1

2
ui;j þ uj;i
� �

ð16Þ

where ei;j is small strain tensor (i, j = 1, 2, 3), and u is the

displacement of the medium. The constitutive equation of

deformation fields for elastic isotropic medium can be

expressed as:

rij ¼ kdijeii þ 2Geij � bdijDT ð17Þ

where G is shear modulus, k is Lamé’s constant, b is the

coefficient of thermal stress in 1/�C, and b ¼ 3kþ 2Gð Þa.
Based on the theory presented above, the static stress equi-

librium equation, the continuity equation, and the constitu-

tive equations, the final governing equation of heat transfer

in a medium can be written in displacement form as follows:

kþ Gð Þ � uj;ji þ Gui;jj þ fi � bdijDT ¼ 0 ð18Þ

2.4 Damage Evolution Description

Damage mechanics is concerned with the representation or

modeling of damage of materials. This approach is suit-

able for making engineering predictions about the initia-

tion, propagation, and fracture of materials without

re ¼
1ffiffiffi
2

p
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r11 � r22ð Þ2þ r33 � r22ð Þ2þ r11 � r33ð Þ2þ6 r212 þ r223 þ r213
� �q

ð14Þ
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resorting to a microscopic description that would be too

complex for practical engineering analysis (Krajcinovic

2000; Lemaitre and Desmorat 2005). Damage mechanics is

a commonly used approach in engineering to model com-

plex phenomena. It has been widely adopted in the study of

damage of various materials, such as metal-based materials

(Khelifa et al. 2007), biomaterials (Zitnay et al. 2017),

composites (Yang and Cox 2005), and quasi-brittle mate-

rials (Zhu and Shao 2015; Qi et al. 2016). In the model

used herein, the theory of damage mechanics is also

adopted and the system is analyzed at the mesoscale and an

elastic damage constitutive law can describe its stress–

strain relationship. Continuum damage mechanics can

describe the effects of progressive microcracking, void

nucleation, and microcrack growth at high stress levels

using a constitutive law, by making use of a set of state

variables modifying the material behavior at the macro-

scopic level. Using an isotropic continuum damage for-

mulation, the elastic modulus for an isotropic and elastic

medium at instantaneous loading can be written as (Le-

maitre and Desmorat 2005):

E ¼ E0 1� Dð Þ ð19Þ

where eij is the damaged elastic strain tensor, rij is the

stress tensor, E and E0 are the Young’s moduli of the

damaged and the undamaged material, respectively, D is

the isotropic damage variable, m is the Poisson’s ratio and

dij is the Kronecker symbol. In the case of a uniaxial state

of stress (r11 6¼ 0; r22 ¼ r33 ¼ 0), the constitutive relation

can be rewritten in terms of the longitudinal stress and

strain components only:

r11 ¼ E0 1� Dð Þe11 ð20Þ

Hence, for uniaxial loading, the constitutive law is

explicitly dependent on damage index D.

The model is based on progressive isotropic elastic

damage. When the stress on an element exceeds a damage

threshold, its Young’s modulus E is modified according to

Eq. (19). At the beginning, each element is considered to

be elastic, defined by a specific Young’s modulus and

Poisson’s ratio. The stress–strain curve of the element is

considered linear elastic with a constant residual strength

until the given damage threshold is reached. This pro-

ceeded by a phase of softening.

The elastic damage constitutive law of each element

under uniaxial stress condition is illustrated in Fig. 3 (Zhu

et al. 2014). The stress–strain curve of each element is

considered linear elastic until the given damage threshold

is attained. We choose the maximum tensile stress criterion

and modified Mohr–Coulomb criterion as the damage

thresholds to determine whether any elements are damaged

in tension or shear, respectively, which are expressed as:

F1 ¼ �r3 � ft0 ¼ 0 and

F2 � r1 � r3
1þ sinu
1� sinu

� fc0 ¼ 0
ð21Þ

where r1 and r3 are the maximum and minimum principal

stresses, respectively, fc0 is the uniaxial compressive

strength, / is the internal friction angle of the element, ft0 is

the uniaxial tensile strength, and F1 and F2 are two damage

threshold functions. The tensile strain criterion is always

used with priority to judge whether the element is damaged

or not. If the element is not damaged in tension, the Mohr–

Coulomb criterion is then used to judge whether the ele-

ment is damaged in shear. The sign convention used

throughout this paper is that compressive stresses are

positive and tensile stresses are negative.

According to the constitutive law as shown in Fig. 3, the

damage variable D can be described as follows:

D ¼

0 F1\0 and F2\0

1� et0
e1

				
				
r

F1 ¼ 0 and dF1 [ 0

1� ec0
e3

				
				
r

F2\0 and dF2 [ 0

8>>>><
>>>>:

ð22Þ

where e1 and e3 are major principal strain and minor

principal stain, respectively. et0 and ec0 are the maximum

principal strain in tension and the maximum principal

strain in compression when damage occurs according to the

maximum tensile stress criterion and Mohr–Coulomb cri-

terion, respectively, and r is a constitutive coefficient with

a value of 2. We highlight that the element will behave

elastically during loading and unloading when the main

tensile strain or the main compressive strain of the element

is less than the maximum principal strain in tension and the

maximum principal strain in compression, respectively (see

Fig. 3). When either of these strain thresholds is exceeded,

0c cr

0cf

0tf

0ttrtu

0
0

r
cE

0
0

r
tE

Fig. 3 Elastic damage constitutive law for element under uniaxial

compression and tension
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the element will be damaged and the behavior can be

described, during loading or unloading, by Eq. (22).

The damage variable calculated with Eq. (22) is always

from 0 to 1, regardless of the type of damage (tensile or

shear). However, in the damage zone, in order to distinctly

display the two kinds of damage modes (i.e., tension and

shear) in the post-processing figures, tensile damage is

represented as negative numbers, while the shear damage is

represented as positive ones. During the numerical imple-

mentation of the above equations with finite element

analysis, Eq. (21) was used as a damage criterion to check

the stress conditions calculated with Eqs. (6) and (13) in

order to judge whether damage occurs or not. Thus,

Eq. (22) was used to calculate the damage variable D. If

any elements are damaged in the stressed specimen, the

damaged elements will undergo degradation of their elastic

modulus according to the elastic damage constitutive

relationship. In this model, D = 1 means the complete

failure of the element, and elastic modulus of the element

tends to zero. In order to avoid possible instability in finite

element analysis, a small decimal (1.0 9 10-5 MPa by

default) is specified to the elastic modulus of a failed ele-

ment. Correspondingly, total strain will increase due to the

elastic modulus degradation and increasing time. When

damaged or failed elements are clustered, it may lead to the

acceleration in strain rate that precedes macroscopic fail-

ure. Therefore, although Eq. (22) is time-independent, it

can be capable of describing the time-dependent evolution

of damage when it is coupled with the creep model given in

Eq. (13) to describe the creep behavior of rock.

AEs are transient elastic waves generated by the rapid

release of energy within a material, such as the strain

energy released during microcrack propagation. Monitor-

ing AE during deformation has become an increasingly

important diagnostic tool in material science and has pro-

vided a wealth of information regarding the failure process

in brittle materials. AE monitoring has, for example, shed

light on the onset of inelastic damage during deformation

(Wong et al. 1997) as well as its spatial and temporal

evolution (Ohnaka 1983; Lockner 1993a, b; Townend et al.

2008; Fortin et al. 2009; Aker et al. 2014; Heap et al.

2015). For instance, Lockner (1993a, b) analyzed cata-

logues of AE events recorded during compressive loading

tests on rock. The events were analyzed in terms of the

information they offer about the accumulated state of

damage in a material. This measured damage state can be

combined with a model for the weakening behavior of

cracked solids, showing that reasonable predictions of the

mechanical behavior are possible. Based on this prior

knowledge, it is reasonable to assume that the number of

AE events is proportional to the number of damaged ele-

ments and that the strain energy released (the strain energy

before and after damage) corresponds to the energy of that

particular AE event (Tang 1997). In our model, we can use

the output of AE to indirectly assess the damage evolution.

However, it must be mentioned that aseismic damage

during rock creep tests could possibly occur, and subcriti-

cal micromechanisms other than stress corrosion, such as

pressure solution, may become important (Brantut et al.

2014). The causes of aseismic damage are numerous, for

example: the low surface energy of calcite, radiated energy

being absorbed by neighboring dislocation, and/or inter-

mittent dislocation flow (Weiss and Marsan 2003; Schub-

nel et al. 2006). Although this approximation is obviously a

simplification of what occurs in reality, it has been shown

that this micromechanical representation of microcracking

can yield realistic patterns and can reproduce the

macromechanical behavior of heterogeneous rock.

The cumulative damage, w, in a given volume of rock,

due to local failures can be defined as the ratio of the

volume of failed rock, Vf, to the total volume, V:

w ¼ Vf

V
¼ ve �

Ps
1 ni

N � ve
¼ 1

N

Xs

1

ni ð23Þ

where ve is the volume of single element, s is the number of

calculation steps, ni is the number of failed elements in the

ith step, and N is the total number of elements in the model.

For a perfectly elastic brittle material, the energy ef
released by the failure of each element can be calculated

from the element peak strength:

ef ¼
r20
2E0

þ
Z

f r; e� e0ð Þdðe� e0Þve ð24Þ

where r0 is the peak strength of the element and E is the

Young’s modulus of the element. The cumulative seismic

energy can then be obtained by:

X
ef ¼

X r20
2E

þ
Z

f r; e� e0ð Þd e� e0ð Þve
� �

ð25Þ

Thus, by recording the number of failed elements, the AE

associated with the progressive failure of the material can

be simulated in our model.

In the numerical code, for a given numerical model, the

numerical model is loaded either in a displacement control

mode (i.e., constant displacement rate) or in a load control

mode (i.e., constant stress). At each loading or time incre-

ment, the stress and strain, and the coefficient of thermal

conductivity in the elements are calculated, then the stress

field and flow field are examined, and those elements that

are strained beyond the pre-defined strength threshold level

are broken irreversibly. To break an element means to

reduce the element stiffness and its strength, and at the same

time, the coefficient of thermal conductivity also changes

with the stress. If some elements fail, then the model, now

containing new parameters for some of its elements, moves
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to a new equilibrium. The next load or time increment is

added only when there are no more elements strained

beyond the strength threshold level at an equilibrium strain

field. Thus, numerical loading in the model is similar to that

of deformation experiments performed in the laboratory.

2.5 Boundary conditions

Equations (5), (6), (11), (18), (19), and (22) represent

governing equations for the coupled thermal–mechanical

damage time-dependent model which are numerically

solved using finite element method. The unknowns are

displacement and temperature. Generalized initial dis-

placement and thermal conditions are:

Displacement: U x; y; tð Þ ¼ U x; y; 0ð Þ, on B

Thermal: T x; y; tð Þ ¼ T x; y; 0ð Þ, on B

where (x, y) represents a position vector, t represents time,

and U and T are the known displacement and temperature,

respectively. B denotes the continuum region enclosed by a

boundary. The following generalized boundary conditions

are set for the numerical computation:

Displacement: Ui x; y; tð Þ ¼ bUi x; y; 0ð Þ, on Bu

Traction: rij x; y; tð Þ � nj ¼ crij x; y; 0ð Þ, on Br

For the boundary conditions on the medium, it can be of

Dirichlet type, where the temperature on the boundary is

specified, that is:

T js¼ Tb B; tð Þ; B 2 S1; t[ t0ð Þ: ð26Þ

It can also be of Neumann type where the heat flux is

specified:

qnjs ¼ �k
oT

on

				
s

¼ qbðB; tÞ; ðB 2 s2; t[ t0Þ:
ð27Þ

A generalized Neumann boundary condition can also be

used. The generalized Neumann boundary condition

equation is written as:

qnjs ¼ �k
oT

on

				
s

¼ hðT � TaÞ; ðB 2 s3; t[ t0Þ
ð28Þ

where h is the rock/fluid convective heat transfer coeffi-

cient in W/m2 �C, and the Ta is the ambient temperature.

3 Implementation of Numerical Model

The modeling approach described above requires that both

the damage state and the damage-induced alteration of

elastic stiffness in brittle rocks be continually updated with

an increase in the applied stress induced by external con-

stant load or temperature, and the progression of time.

Consequently, this problem is highly nonlinear. An itera-

tive numerical procedure is implemented for this model

that is based on the finite element method. A flow chart of

the model is shown in Fig. 4 to clarify the implementation

of the numerical model. The procedure outlined in Fig. 4 is

first performed in MATLAB to define the evolution of the

damage constitutive parameters and then implemented into

the finite element model COMSOL Multiphysics to define

spatial behavior.

A point worth emphasizing here is that the proposed

model needs to be first calibrated with experimental data to

determine appropriate input parameters. In principle, a

complete calibration process must be undertaken at both

the mesoscale and the macroscale. At the mesoscale, the

behavior of the REV (representative elemental volume) is

governed by the initial microstructural parameters, the

damage-based constitutive law, and the failure criterion of

the REV. It is straightforward to obtain accurate parameters

to represent the initial mesoscale structures in the REV

from mesoscopic observations, but the calibration of the

damage constitutive law and the failure criterion at the

mesoscale is more challenging—principally due to the

difficulties in performing direct mechanical tests on the

REV. An approximate method is the utilization of macro-

scopic standard laboratory tests instead of mesoscopic tests

(Homand-Etienne et al. 1998). However, the development

of novel experiments at the mesoscale of the REV is nee-

ded to further improve model calibration at the mesoscale.

With the calibrated mesoscale parameters defined, then the

macroscopic numerical model can be calibrated from

conventional compression tests and creep tests on standard

rock samples to determine the parameters of heterogeneity

and REV size. After the full calibration of the proposed

model, it can be used to predict the time-dependent

deformation and fracturing behavior of brittle rocks at

elevated temperature.

Currently, a few calibration studies partially related to

our proposed model have been performed on different

types of rocks (Golshani et al. 2006; Wong et al. 2006). In

the following, the input model parameters are chosen

referring to these calibrated parameters. However, further

studies must explore more accurate and rigorous model

calibration with new experiments conducted on the same

type of rock samples at both the meso- and macroscale. In

the following section, the model is first validated against

previously published experimental data to obtain the input

parameters for the simulations. Then, our model is used to

simulate the time-dependent brittle creep behavior of rocks

under uniaxial and triaxial loading conditions at various

constant temperatures.
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4 Validation of the Model

Before we can investigate the influence of various param-

eters on brittle creep (such as temperature, differential

stress, confining pressure, and sample heterogeneity), we

must first validate our model using previously published

experimental data. To do so, we use recently published data

(Chen et al. 2015, 2017) on low-porosity Beishan granite

(described in detail below). Importantly for our validation,

these experiments cover a range of experimental conditions

(different confining pressures and temperatures) and load-

ing configurations (constant strain rate and constant stress).

We highlight that our model is two dimensional, and the

experiments of Chen et al. (2017) are conducted on

cylindrical samples. Nevertheless, we consider our two-

dimensional model to be a reasonable approximation of the

three-dimensional case.

4.1 Presentation of Beishan Granite

Based on the range of available experimental data, and

because the Beishan site is a potential site for a high-level

radioactive waste repository in China, we have chosen to

study Beishan granite. The macroscopic mechanical prop-

erties of Beishan granite have been investigated and

described in previous studies (Chen et al.

2012, 2014, 2015, 2017; Zhao et al. 2013; Zong et al.

2013). Beishan granite is a fine- to medium-grained granite

Start

  Initialization:
  (1) Select physical field (solid mechanics and heat transfer)
  (2) Establish geometric model , generate computation mesh
  (3) Set initial value and iterative error
  (4) Assign heterogeneity and initial statistical distribution

Compute stress and strain over the nth unit in the kth step

Check whether the stress and strain in the nth 
unit satisfy the criteria of maximum tensile stress 

Check whether the stress and strain in the 
nth unit satisfy the criteria of  Mohr-Coulomb 

No

No Reduce elastic modulus or strength

Yes

Yes

Check whether the unit failure occurs

Remove failed unit and record acoustic emission

Yes

Go to next unit, n=n+1

Check whether the precision
 requirements is satisfied

End

Add next step, k=k+1

Yes

No

Fig. 4 Flow chart of the

coupled numerical model
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(crystal diameter varies from a couple of hundred microns

up to a few mm) that contains a porosity of 0.4%. It con-

sists of 52% plagioclase, 17% quartz, 15% alkali feldspar,

12% biotite, 3% albite, and\1% myrmekite (Zhao et al.

2013).

4.2 Constant Strain Rate Experiments

We used mechanical data from constant displacement rate

uniaxial and triaxial experiments performed at room tem-

perature to obtain the physico-mechanical input parameters

at the mesoscale. The geometry of the granite samples in

laboratory experiments used here was 100 mm in length

and 50 mm in width (data from Chen et al. 2015). The

unconfined compressive strength of air-dried Beishan

granite is 165.2 MPa, and the compressive strength of air-

dried Beishan granite under confining pressures of 1 and

5 MPa are 174 and 216.8 MPa, respectively (Chen et al.

2015) (Fig. 5). The Young’s modulus and Poisson’s ratio

of air-dried Beishan granite in uniaxial compression are

43 GPa and 0.25 (Chen et al. 2015). As for the experi-

mental tests in laboratory, numerical specimens 100 mm in

length and 50 mm in width were prepared. These numer-

ical samples were randomly generated and discretized into

200 9 100 (20,000 elements) square elements (i.e., each

square element had sides of 0.5 mm). The size of the

modeled sample kept the same for all of the numerical

simulations throughout this paper. A suite of prescribed

displacement increments were uniaxially applied to both

ends of the modeled rock samples at constant room tem-

perature and constant confining pressures of 0, 1, and

5 MPa. During the simulations, the elements within the

modeled rock sample are fixed in the vertical direction but

can move freely in the horizontal direction, as is the case

for axial compressive loading in the laboratory. The

modeled samples were then loaded under a constant dis-

placement rate. The best-fit physico-mechanical input

parameters of the individual elements at a mesoscale used

in the simulations were determined by trial-and-error

(Table 1). It is noted that the input parameters for the

elements at a mesoscale listed in Table 1 represent the

statistical mechanical properties of the granite specimen at

a macroscale.

The numerical stress–strain curves for the granite sim-

ulations, together with the experimental stress–strain

curves from the published experimental data of Chen et al.

(2015), are plotted in Fig. 5. Figure 5 shows that the sim-

ulated stress–strain curves are in good agreement with the

experimental stress–strain curves. The nonlinear behavior

at the beginning of the experimental stress–strain curves is

a result of the closure of pre-existing compliant microc-

racks (Fig. 5). This nonlinearity is not replicated in the

model because the stress–strain behavior of an element is

considered linear elastic until the given damage threshold

is attained. Importantly, we highlight that the model input
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Fig. 5 Comparison between numerical (red circles) and experimental

(blue squares; data from Chen et al. 2015) stress–strain curves for

granite samples in compression. Values in MPa on each panel refers

to the confining pressure (rx) (color figure online)

Table 1 Thermo-physico-mechanical parameters of the numerical

model

Parameter Beishan granite

Homogeneity index v 5

Mean Young’ modulus (GPa) 43

Mean UCS (MPa) 350

Poisson ratio 0.25

Ratio of compressive to tensile strength 10

Frictional angle (�) 30

Prescribed constant stress (MPa) 150

Specific heat capacity (J/kg K) 900

Coefficient of linear thermal expansion (1/K) 4.6 9 10-6

Thermal conductivity (W/m K) 3.48

A 6.8 9 10-11

n 1.75

m 0.39

U 3000
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parameters were the same for each of the simulations

shown in Fig. 5 (Table 1), adding confidence that the

model is capable of accurately capturing the short-term

mechanical behavior of Beishan granite under different

confining pressures.

4.3 Conventional Brittle Creep Experiments

The validity of our numerical model was tested via a

successful attempt to replicate previously published uni-

axial and triaxial experimental data for air-dried Beishan

granite (Fig. 5) (Chen et al. 2015). We will now model a

suite of conventional brittle creep experiments on air-dried

Beishan granite under different constant temperatures of

23, 50, and 90 �C in order to find the required thermo-

physico-mechanical properties of the granite, such as

specific heat capacity, coefficient of linear thermal expan-

sion, and thermal conductivity. Importantly, we use here

the same physico-mechanical input parameters as for the

simulations presented in the previous section (listed in

Table 1). The temperatures of 23, 50, and 90 �C, respec-
tively, represent room temperature, the in situ rock tem-

perature, and the maximum temperature on the canister

surface according to the current nuclear waste disposal

concept in China. Similar to laboratory creep experiments

(Chen et al. 2015), the numerical brittle creep simulations

consisted of two stages: (1) an initial loading stage, where

the sample is loaded to a pre-determined level of stress, and

(2) a constant stress and constant temperature stage, where

the sample is kept at a constant stress and a given constant

temperature until macroscopic sample failure or until it was

clear that the sample would not fail under the imposed

constant stress in a reasonable time period.

The uniaxial numerical creep simulations were all

performed using the determined physico-mechanical

parameters listed in Table 1 and under constant temper-

atures of 23, 50, and 90 �C. To simulate time-dependent

behavior at elevated temperature, the thermo-physical

parameters such as specific heat capacity, coefficient of

linear thermal expansion, and thermal conductivity, as

well as the material constants A, m, and n, are required.

Based on the experimental data on macroscopic physico-

mechanical properties of rocks, and the statistical distri-

bution relationship between the physico-mechanical

properties of the elements at the mesoscale and the phy-

sico-mechanical properties of rocks at a macroscale, the

thermo-physico-mechanical properties of the elements at

the mesoscale can be determined using an inverse analysis

method. Thus, these thermo-physical parameters were

determined from the experimental data (Chen et al. 2015),

and material constants A, m, and n can be determined

using a fitting method. All of the input parameters for the

numerical model are listed in Table 1. Our determined

values of thermal properties are within the range expected

for granite (Clauser and Huenges 1995). For example, our

thermal conductivity value of 3.48 W/m K (Table 1) is

within the range of values found for granite from the

Soultz-sous-Forêts geothermal site in France (2.3–3.9 W/m K)

(Surma and Geraud 2003). During the simulations, the

elements in the modeled rock sample are fixed in the ver-

tical direction, but they can move freely in the horizontal

direction, as is the case for axial compressive loading in the

laboratory.

The numerically simulated creep curves (axial strain as

a function of time), together with the experimental creep

curves (Chen et al. 2015), are plotted in Fig. 6. Figure 6

shows that the simulated creep curves are in good agree-

ment with the experimental curves. The numerical creep

curves produced by our model clearly capture the phe-

nomenology of brittle creep: the strain rate first decelerates,

followed by an acceleration in strain rate prior to macro-

scopic failure (Fig. 6). In detail, the time-to-failure and the

strain at the onset of acceleration to failure are very similar

between the simulations and the experiments (Fig. 6).

Figure 7 shows several snapshots of the damage evo-

lution of the numerical specimens deformed at constant

temperatures of 23, 50, and 90 �C (the same simulations

shown in Fig. 6). The snapshots of Fig. 7 show when and

where damage and failure occur in the numerical specimen.

Because the numerical rock samples are heterogeneous, the

value of Young’s modulus is randomly distributed. There

are therefore many elements that have a low Young’s

modulus; these elements act as nucleation sites for damage.

As time goes on, these damaged units grow and form

localized damage zones. The localized damaged zones

modify the stress field in their surrounding region, and

these modifications further trigger the dynamic extension

of the damage zone. Eventually, a throughgoing fracture

forms that signals the macroscopic failure of the sample, as

shown in the final snapshot for each experiment (Fig. 7).

4.4 Multi-Step Brittle Creep Experiments

Recently, Chen et al. (2017) performed a series of uniaxial

and triaxial multi-step creep experiments to investigate the

influence of temperature and stress on the time-dependent

behavior of air-dried Beishan granite. Multi-step creep tests

were conducted at various constant confining pressures of

0, 1, and 5 MPa and at temperatures of 23 (room temper-

ature) and 90 �C (the maximum temperature on the canister

surface according the current disposal conceptual design in

China), respectively. During the multi-step creep experi-

ments (Chen et al. 2017), the stress applied on the sample

was increased stepwise to pre-determined percentages of

the average peak stress (20, 40, 60, and 80%). The sample

was kept at each level of stress for one week. To further
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validate our model, we performed numerical multi-step

creep simulations under the same conditions. Importantly,

the numerical multi-step creep simulations were all per-

formed using the determined physico-mechanical and

thermo-physical parameters listed in Table 1. During the

simulations, the elements in the modeled rock sample are

fixed in the vertical direction, but they can move freely in

the horizontal direction, as is the case for axial compressive

loading in the laboratory.

The numerically simulated multi-step creep curves

(axial strain as a function of time), together with the

experimental multi-step creep curves (Chen et al. 2017),

are plotted in Fig. 8. Figure 8 shows that the simulated

multi-step creep curves are in good agreement with the

experimental curves. In detail, the model captures the

influence of both confining pressure and temperature on the

mechanical behavior, and the strain at the different stress

steps and the time-to-failure are very similar between the

experiment and the model (Fig. 8).

We therefore conclude that, based on the above vali-

dations, our model can be used to investigate time-depen-

dent creep of low-porosity granite at different

temperatures. We will now use our model to further
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Fig. 6 Creep curves (axial strain as a function of time) for simulations

performed under uniaxial conditions (rx = 0 MPa) at constant tem-

peratures of 23, 50, and 90 �C (red circles), together with experimental

data from Chen et al. (2015) under the same conditions (blue squares).

All simulations and experiments were performed under the same

constant differential stress (ry = 150 MPa) (color figure online)

23 °C (time 0 9000 and 42000 s)

50 °C (time 0 9000 and 15600 s)

90 °C (time 0 9000 and 12000 s)

Fig. 7 Snapshots of the failure process during the brittle creep

simulations shown in Fig. 7. All simulations were performed under

uniaxial conditions (rx = 0 MPa) and under the same constant

differential stress (ry = 150 MPa)
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explore the influence of temperature, differential stress,

confining pressure, and sample heterogeneity on brittle

creep in low-porosity granite.

5 Numerical Simulations and Discussion

5.1 Model Setup

In this section, we use the proposed model to further

investigate the influence of temperature, differential stress,

confining pressure, and sample heterogeneity on brittle

creep of low-porosity granite. Our numerical samples have

a geometry of 100 mm 9 50 mm (Fig. 9), the same as the

samples modeled in the validation described above. The

geometry of the modeled samples was discretized into a

200 9 100 (20,000 elements) square grid (i.e., each square

element had sides of 0.5 mm). We applied various axial

stresses (140, 145, 150, 155, and 160 MPa), and various

constant temperatures (23, 40, 50, 75, and 90 �C) on

numerical heterogeneous samples (v = 4, 5, and 6),

respectively, to investigate the influence of temperature,

differential stress, and sample heterogeneity on brittle

creep in granite. The loading conditions are also shown in

Fig. 9. Similar to conventional creep tests, the axial stress

(ry) was maintained constant at the top of the specimen. At

the same time, a constant confining pressure (rx) was

maintained on the sample (this pressure was set at 0 MPa

for uniaxial simulations), and the temperature was held

constant during the simulations. During the simulations,

the elements within the modeled rock samples are fixed in

the vertical direction but can move freely in the horizontal

direction, as is the case for axial compressive creep

experiments in the laboratory. The relevant model param-

eters used in the simulations are the same as the parameters

listed in Table 1.

5.2 Effect of Temperature

Based on the validations above, two additional brittle creep

simulations were performed under uniaxial compressive

loading conditions (ry = 150 MPa) at constant tempera-

tures of 40 and 75 �C. The resulting creep curves (axial

strain as a function of time) for various constant tempera-

tures (23, 40, 50, 75, and 90 �C) are presented in Fig. 10.

The creep curves presented in Fig. 10 clearly show the

accelerating–decelerating phenomenology of brittle creep
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Fig. 9 Model geometry and loading conditions for the simulated

creep experiments. T—temperature, ry—axial stress, and rx—
confining pressure
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seen in laboratory experiments (Brantut et al. 2013). From

these simulations, we can see that there is a clear temper-

ature effect on brittle creep in granite.

We first note that the creep strain rate (the strain rate

calculated during deformation at constant stress) strongly

depends on temperature, as observed in brittle creep

experiments (Heap et al. 2009a; Chen et al. 2015; Ye et al.

2015). The evolution of creep strain rate with time at

various constant temperatures is shown in Fig. 11. The

strain rate first decreases, reaches a minimum value (the

minimum creep strain rate), and finally increases as the

sample approaches macroscopic failure (Fig. 11). The

simulations show that the minimum strain rate is much

higher at higher temperatures. Indeed, there are several

orders of magnitude difference in the minimum creep strain

rate between the simulations performed at 23 and 90 �C
(Fig. 11).

The large increase in strain rate at higher temperature

also results in a large decrease in the time-to-failure

(Fig. 12), as observed in experiments on granite (Kranz

et al. 1982). For example, the sample at room temperature

(23 �C) failed after about 35,000 s; time-to-failure was

reduced to about 10,000 s at a temperature of 90 �C
(Fig. 12). These simulations reveal that a small change in

temperature results in large changes in creep strain rate and

time-to-failure. We note that the reductions in time-to-

failure observed experimentally for Barre granite by Kranz

et al. (1982) are much larger than those reported here.

Kranz et al. (1982) found that time-to-failure is reduced by

a couple of orders of magnitude upon increasing the tem-

perature from 24 to 200 �C. The smaller difference in time-

to-failure seen in our simulations, compared to the

experiments of Kranz et al. (1982), is likely due to dif-

ferences in the ratio of the creep stress and the short-term

failure stress. The simulations provided here were per-

formed at a constant differential stress that is 92.5% of the

short-term failure stress. We anticipate that greater differ-

ences in time-to-failure as temperature is increased will be

observed at lower stresses, as suggested by the experiments

of Kranz et al. (1982).

5.3 Effect of Differential Stress

Here we show the results of a suite of conventional brittle

creep experiments under different constant applied
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Fig. 10 Creep curves (axial strain as a function of time) for

simulations performed under uniaxial conditions (rx = 0 MPa) at

constant temperatures of 23, 40, 50, 75, and 90 �C. All simulations

were performed under the same constant differential stress

(ry = 150 MPa)
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Fig. 11 The evolution of creep strain rate during deformation at a

constant stress (ry = 150 MPa) for simulations performed under

uniaxial conditions (rx = 0 MPa) at constant temperatures of 23, 40,

50, 75, and 90 �C

Fig. 12 Time-to-failure as a function of temperature for simulations

performed under uniaxial conditions (rx = 0 MPa) at constant

temperatures of 23, 40, 50, 75, and 90 �C. All simulations were

performed under the same constant differential stress

(ry = 150 MPa)
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differential stresses (i.e., we changed the ratio between the

creep stress and the short-term failure stress) to study the

effect of differential stress on brittle creep in granite. We

performed uniaxial creep simulations at a constant tem-

perature of 50 �C but various constant axial stresses of 140,

145, 150, 155, and 160 MPa. Figure 13 shows the

numerically obtained creep curves for the five simulations.

As before, the creep curves presented in Fig. 13 clearly

show the accelerating–decelerating phenomenology of

brittle creep seen in laboratory experiments (Brantut et al.

2013). These simulations highlight that the applied differ-

ential stress has a strong influence on brittle creep in

granite, as seen in brittle creep experiments (e.g., Brantut

et al. 2013). First, the creep strain rate is higher when the

differential stress is higher (Fig. 14). Indeed, a change in

differential stress from 140 to 160 MPa increases the

minimum strain rate by over an order of magnitude

(Fig. 14). Increases in strain rate of this magnitude for

small (5–10 MPa) increases in the differential stress have

been observed experimentally for many common rock

types (Heap et al. 2009b; Brantut et al. 2013). As a result of

the higher strain rate at higher differential stress, the time-

to-failure is reduced as differential stress is increased

(Fig. 15). For example, the time-to-failure at a differential

stress of 140 MPa is more than 30,000 s, but is reduced to

about 5000 s when the differential stress is increased to

160 MPa (Fig. 15).

Furthermore, we use the proposed model to perform

brittle creep simulations under different constant confining

pressures of 0, 2, and 10 MPa, but the same constant

temperature and applied axial stress of 50 �C and

150 MPa, respectively. As for the previous simulations, the

brittle creep curves (Fig. 16) capture the decelerating–

accelerating phenomenology of laboratory brittle creep

experiments (Brantut et al. 2013). These simulations

highlight that confining pressure has a strong influence on

brittle creep in granite. First, the creep strain rate is lower

when the confining pressure is higher (Fig. 17): an increase

in confining pressure from 0 to 10 MPa reduces the mini-

mum strain rate by about an order of magnitude, results

consistent with those from brittle creep experiments per-

formed at different confining pressures (Heap et al. 2009b,

Brantut et al. 2013). As a result of the lower strain rate at

higher confining pressure, the time-to-failure is increased

as confining pressure is increased. For example, the time-
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to-failure under uniaxial conditions is about 30,000 s, but

is increased to about 330,000 s when the confining pressure

is increased to 10 MPa. Therefore, even modest increases

in the confining pressure can significantly change the

magnitude of the creep strain rate and time-to-failure, as

observed experimentally (Heap et al. 2009b; Brantut et al.

2013).

Figure 16 also shows snapshots of each of the failed

samples (black represents tensile damage, while yellow

represents shear damage). It can be seen that more local-

ized shear damage occurred at higher confining pressures

(Fig. 16).

5.4 Effect of Sample Heterogeneity

It is well known that rock is a heterogeneous material. It is

for this reason we use a Weibull statistic distribution to

reproduce mechanical heterogeneity within a realistic rock

medium. To examine the effect of sample homogeneity on

brittle creep in granite, a set of simulations were performed

using different homogeneity indices of v = 4, 5, and 6

were performed (at a temperature of 50 �C, confining

pressure of 0 MPa, and constant applied axial stress of

150 MPa). In these simulations, we keep the mean Young’s

modulus and mean UCS of the elements the same (43 GPa

and 350 MPa, respectively; Table 1) and simply change

the homogeneity index. As explained above, a larger

homogeneity index implies that the elements within the

sample will be closer to the mean value of 350 MPa (see

Eq. (1) and Fig. 1). Therefore, a sample characterized by a

larger homogeneity index will contain fewer low-strength

elements and will be stronger and more brittle as a result.

In reality, a decrease in the homogeneity index could

reflect, for example, weathering of the feldspar within the

granite (weathering typical of granites within geothermal

reservoirs, e.g., Azaroual and Fouillac 1997).

The simulated creep curves (Fig. 18) and the evolution

of creep strain rate as a function of time (Fig. 19) show that

an increase in sample homogeneity leads to a decrease in

creep strain rate and a corresponding increase in time-to-

failure. For example, the minimum creep strain rate

decreases by about an order of magnitude and the time-to-

failure increases from about 111,600 to 358,200 s as the

homogeneity index is increased from 4 to 6 (Figs. 18, 19).

Decreasing sample homogeneity naturally has the opposite

effect, resulting in increases and decreases to the creep

strain rate and the time-to-failure, respectively.

6 Concluding Remarks

We have formulated a numerical model to simulate brittle

creep in low-porosity granite under different loading con-

ditions (differential stress and confining pressure) and

different temperatures. In order to reflect the material

heterogeneity at a mesoscale, the mechanical parameters

(e.g., strength and Young’s modulus) of the mesoscopic

material elements, which are assumed to be homogeneous

and isotropic, are assigned randomly using a Weibull

statistic distribution. Importantly, the model introduces the

concept of a mesoscopic renormalization to capture the co-

operative interaction between microcracks in the transition
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from distributed to localized damage. We validated our

model using previously published experimental data and

then used it to simulate conventional brittle creep experi-

ments at various constant temperatures, applied differential

stresses, confining pressures, and sample homogeneities.

Our simulations accurately capture the short- and long-

term mechanical behavior of the experimental data using

unique thermo-physico-mechanical properties, lending

confidence to our numerical approach. Our simulations

show that: (1) increases in temperature and differential

stress increase the creep strain rate and therefore reduce

time-to-failure and (2) increases in confining pressure and

sample homogeneity decrease creep strain rate and increase

time-to-failure. We anticipate that the modeling presented

herein will assist in the management and optimization of

geotechnical engineering projects within granite.
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