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S U M M A R Y
A 2-D numerical model for brittle creep and stress relaxation is proposed for the time-
dependent brittle deformation of heterogeneous brittle rock under uniaxial loading conditions.
The model accounts for material heterogeneity through a stochastic local failure stress field,
and local material degradation using an exponential material softening law. Importantly, the
model introduces the concept of a mesoscopic renormalization to capture the co-operative
interaction between microcracks in the transition from distributed to localized damage. The
model also describes the temporal and spatial evolution of acoustic emissions, including their
size (energy released), in the medium during the progressive damage process. The model
is first validated using previously published experimental data and is then used to simulate
brittle creep and stress relaxation experiments. The model accurately reproduces the classic
trimodal behaviour (primary, secondary and tertiary creep) seen in laboratory brittle creep
(constant stress) experiments and the decelerating stress during laboratory stress relaxation
(constant strain) experiments. Brittle creep simulations also show evidence of a ‘critical level
of damage’ before the onset of tertiary creep and the initial stages of localization can be
seen as early as the start of the secondary creep phase, both of which have been previously
observed in experiments. Stress relaxation simulations demonstrate that the total amount of
stress relaxation increases when the level of constant axial strain increases, also corroborating
with previously published experimental data. Our approach differs from previously adopted
macroscopic approaches, based on constitutive laws, and microscopic approaches that focus on
fracture propagation. The model shows that complex macroscopic time-dependent behaviour
can be explained by the small-scale interaction of elements and material degradation. The fact
that the simulations are able to capture a similar time-dependent response of heterogeneous
brittle rocks to that seen in the laboratory implies that the model is appropriate to investigate
the non-linear complicated time-dependent behaviour of heterogeneous brittle rocks.

Key words: Probability distributions; Microstructures; Creep and deformation; Acoustic
properties; Mechanics, theory, and modelling.

1 I N T RO D U C T I O N

A detailed knowledge of time-dependent brittle deformation mech-
anisms, such as brittle creep (also known as static fatigue) and
stress relaxation, is a vital prerequisite for understanding the long-
term behaviour of the rocks found within the Earth’s upper crust
(Karato & Li 1992; Wang et al. 1994). Its comprehension is there-
fore not only crucial for assessing geophysical hazards such as earth-
quake rupture (Main & Meredith 1991) and volcanic eruption (Main
1999; Kilburn 2003; Heap et al. 2011), but for the construction and
long-term stability of engineering structures such as underground

mines and excavations (Kaiser & Morgenstern 1981; Diederichs
& Kaiser 1999) and nuclear waste repositories (Nara et al.
2010).

Deformation during laboratory brittle creep experiments is nor-
mally explained in terms of time-dependent, subcritical crack
growth (Atkinson 1984). In the Earth’s brittle upper crust, stress
corrosion cracking is often considered the most prevalent subcriti-
cal crack growth mechanism (Atkinson 1982, 1984) and is powered
by reactions that occur between a chemically activated geofluid
(commonly water) and the strained atomic bonds at the tips of
microcracks within a material (Michalske & Freiman 1982, 1983;
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Freiman 1984; Hadizadeh & Law 1991). Such reactions facilitate
microcrack growth (and ultimately sample failure) without the need
for an increase in the applied differential stress and at lower applied
differential stresses than anticipated from the short-term failure
characteristics of the material. Three regimes are usually observed
during brittle creep experiments (when the measured strain is plotted
against time): primary creep or transient creep (decelerating strain
rate), secondary creep or steady-rate creep (constant strain rate)
and tertiary or accelerating creep (accelerating strain rate). The end
of the tertiary creep phase is signalled by the dynamic rupture of the
test sample (Scholz 1968). This kind of trimodal behaviour (note
that although it is generally accepted that this behaviour is the result
of subcritical crack growth, not all are exclusively interpreted in
terms of stress corrosion cracking, especially carbonate rocks) has
been observed in sandstone (Baud & Meredith 1997; Heap et al.
2009a,b; Yang & Jiang 2010), granite (Kranz 1979), basalt (Heap
et al. 2011), oolitic iron ore (Grgic & Amitrano 2009) and limestone
(Rutter 1972). In the primary creep phase, the strain rate deceler-
ates with time via a power law. This experimental law was first
observed in metals (Andrade 1910), and then for other materials,
such as glass (Charles 1958; Maes et al. 1998), rocks (Lockner
1993b; Singh 1975) and composite materials (Nieh 1984; Tuttle
& Brinson 1986; McMeeking 1993; Madgwick et al. 2001). The
strain rate during secondary creep is considered to be essentially
constant (see the ‘bath-tub’ curve, fig. 8 in Heap et al. 2009a) and
depends strongly on the applied differential stress (see Heap et al.
2009a), the presence of a reactive species (Kranz et al. 1982; Grgic
& Amitrano 2009) and the sample temperature (see Heap et al.
2009b). The sensitivity of the creep strain rate (the strain rate dur-
ing the secondary creep phase) to the applied differential stress has
been illustrated for granite (Kranz 1980; Lockner 1993b), sandstone
(Baud & Meredith 1997; Ngwenya et al. 2001; Heap et al. 2009a;
Yang & Jiang 2010) and basalt (Heap et al. 2011). In general, the
experimentally derived relationship between differential stress and
creep strain rate, that is, differential stress = f (creep strain rate),
can be adequately fitted to either a power law or an exponential law
(e.g. see Ngwenya et al. 2001; Heap et al. 2009a). The non-linearity
of the process is highlighted by the values found for the exponents
to these fits (for example, at an effective confining pressure of 30
MPa, the power law exponents for sandstone (Heap et al. 2009a) and
basalt (Heap et al. 2011) were calculated at 45 and 32, respectively).
Since brittle creep is facilitated by a chemically activated process,
sample temperature has also been observed to greatly increase the
creep strain rate during secondary creep (see Kranz et al. 1982;
Heap et al. 2009b). Kranz et al. (1982) observed a decrease in the
time-to-failure in brittle creep experiments on granite by up to three
orders of magnitude upon increasing sample temperature from 24
to 200 ◦C. Similarly, Heap et al. (2009b) experimentally observed
an increase in creep strain rate of three orders of magnitude from 20
to 75 ◦C in experiments on sandstones. Tertiary creep and eventual
sample failure (by means of a shear fault under triaxial stress con-
ditions) have been ascribed as the result of the sample reaching a
microcrack density at which microcracks can interact and coalesce,
known as the ‘critical damage threshold for tertiary creep’ (Kranz
& Scholz 1977; Kemeny 1991; Baud & Meredith 1997; Miura
et al. 2003; Heap et al. 2009a, 2011). A power law acceleration of
strain rate has been postulated for the tertiary creep phase (Voight
1989; Main 2000). Recently, a power law model has been used to
fit the tertiary creep curves for a suite of experiments on basalt at
different constant applied differential stresses (Heap et al. 2011).
Results of their maximum-likelihood model illustrate that the ter-
tiary creep exponent shows no strain rate dependence and its value is

consistent with accelerating power law exponents observed in anal-
ogous natural systems, such as tectonic seismicity rates and seis-
micity and strain rates before volcanic eruptions.

Stress relaxation describes the time-dependent decay of stress
within a stressed elastic body under a constant strain (i.e. the length
of the sample is constant). During experimentation, the stored elastic
strain energy in the test sample dissipates over a period of time
through plastic deformation, allowing the value of stress supported
by the sample to decay over time. Stress relaxation experiments by
Rutter & Mainprice (1978) have highlighted that the strength of their
sandstone samples was dramatically weakened by the presence of
water at strain rates less than about 10−6 s−1. In contrast, the strength
of their dry samples showed a distinct insensitivity over a wide range
of strain rates. Stress relaxation experiments on samples of tuff have
shown there to be an exponential relationship between the load decay
and time (Peng & Podnieks 1972). Stress relaxation tests under
uniaxial compression for four rock types (conducted on a hydraulic,
servo-controlled stiff testing machine) have shown that the rock
stress relaxation curves exhibit two kinds of typical relaxation laws:
continuity and discontinuity (Li & Xia 2000). The stress relaxation
during creep convergence of a deep borehole excavated in rock salt
(at depth and non-equal far-field stresses) shows that sudden failure
is possible due to the slow variation of the stresses (Paraschiv-
Munteanu & Cristescu 2001).

Although laboratory experiments are an essential pre-requisite
for our understanding of time-dependent brittle deformation of
rocks, they can be experimentally challenging due to their long
(and sometimes ultra-long) duration. For example, recent data on
brittle creep from Heap et al. (2011) demonstrated that a basalt
from Mt Etna would fail after approximately 4400 min at a strain
rate of 2.4 × 10−9 s−1. However, if the laboratory data are extrap-
olated to 10−10 s−1, the experiment would last approximately 81 d;
and at 10−11 s−1, it would last almost two and a half years. Since
such experiments can be rather unfeasible in the laboratory, mod-
elling becomes an increasingly important tool to access the natural
strain rates observed in the Earth’s brittle upper crust. A variety
of approaches have been used to model the time-dependent brittle
deformation of materials, including rocks. Constitutive laws, based
on laboratory experiments, can provide a relation between strain,
stress and strain rate (Voight 1988; Lockner 1998; Shao et al. 2003;
Challamel et al. 2005). For instance, Costin (1985) developed a con-
tinuum damage model for the deformation of brittle materials based
on the mechanics of microcrack nucleation and growth. The model
was extended to include the effect of interaction among neighbour-
ing microcracks during the evolution of damage. With the inclusion
of interaction effects, a variety of non-linear, time-dependent be-
haviour such as constant stress rate loading, creep and uniaxial
strain can be realistically modelled. A constitutive law consisting
of a strain hardening approach with separate creep and relaxation
functions has been proposed by Haupt (1991), showing that when
compared with conventional steady-state creep equations, the vis-
cous behaviour of rock salt could be described more realistically.
A constitutive model for creep deformation in rock has also been
derived by Shao et al. (2003) to describe the main time-dependent
deformation features observed in cohesive frictional geomaterials
(in this case, rock and concrete), such as plastic deformation, dam-
age, volumetric dilation, pressure sensitivity, rate dependency and
creep. Challamel et al. (2005) developed a simple time-dependent
softening model to be applied to quasi-brittle materials to describe
phenomena like relaxation, creep and rate-dependent loading using
a unified framework. The model could be viewed as a generaliza-
tion of a time-independent damage model and is based on strong
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thermodynamical arguments. Models, such as those outlined above,
have successfully reproduced the behaviour of different types of
rocks under different loading conditions (creep, constant stress
rate or strain rate). Other approaches to modelling creep involve
a network of elements that interact by distributing the applied load
equally among all of the intact elements, such as the concept of
fibre bundles (e.g. Turcotte et al. 2003; Newman & Phoenix 2001).
Each element represents the mesoscale, much larger than the size
of one microcrack, and much smaller than the size of the system or
medium. These models can only provide the temporal evolution of
strain and damage during creep, and cannot model its spatial distri-
bution, localization before failure or the size distribution of damage
events. More recently, Amitrano & Helmstetter (2006) proposed a
finite element model based on static fatigue laws to model the time-
dependent damage and deformation of rocks under a constant stress.
They used an empirical relation between time-to-failure and the ap-
plied stress to simulate the behaviour of each element. Their model
produces a power law distribution of damage event sizes, aspects of
localization and the trimodal behaviour seen in experimental brit-
tle creep curves. A micromechanical model for subcritical crack
growth has been proposed by Kemeny (1991), by incorporating
Charles’ power law relation into a ‘sliding crack’ model. The model
reproduces the trimodal form of the creep curve, indicates that there
is a critical density of microcracks at the onset of tertiary creep and
allows time-to-failure predictions. At the microscopic scale, other
studies have modelled the macroscopic strain using the growth of
individual microcracks (Lockner & Madden 1991; Lockner 1993a).
Lockner & Madden (1991) developed a numerical multiple-crack
interaction model to simulate the failure process in brittle solids
containing a significant population of flaws. Lockner (1993b) de-
rived a time-dependent model for the temporal evolution of strain
based on reaction rate theory and reproduced empirical laws be-
tween strain rate and stress during secondary creep. Macroscopic
creep models of power law form (Charles 1958) and of exponen-
tial form (Hillig & Charles 1965; Wiederhorn & Bolz 1970) have
been developed to apply the concept of stress corrosion-controlled,
time-dependent cracking to large-scale geophysical problems. In
practice, it can sometimes be hard to discriminate between power
law and exponential rheology, due to the high stress sensitivity
and the low bandwidth of stresses available (Ngwenya et al. 2001;
Heap et al. 2009a). In the mean-field theory of damage mechanics,
Horri & Nemat-Nasser (1985) developed a mean-field theory for the
acoustic emissions (AEs) and dilatancy related to microcracking by
considering a population of initially weakly interacting microcracks,
with a transition to strong interactions and failure when the mean
crack density reached a critical threshold. Main (2000) further de-
veloped the mean-field theory of damage mechanics and suggested
a simple damage mechanics model for the apparently trimodal be-
haviour of the strain and event rate dependence, by invoking a phase
of strain hardening involving distributed crack damage, and a phase
of strain softening involving crack interaction and coalescence. The
model of Main (2000) has been applied to recent experimental data
sets (Heap et al. 2009a, 2011).

In this manuscript, we present a time-dependent material soften-
ing model to simulate the time-dependent deformation of heteroge-
neous brittle rocks under constant uniaxial compressional loading.
We also model the accompanying AE, which is considered as a
macroscopic consequence of the progressive degradation of mate-
rial structure at the mesoscale. First, the time-independent model
and time-dependent model are described and validated by previously
published experimental data. We then present and discuss the results
of our simulated brittle creep and stress relaxation experiments. Fi-

nally, the underlying mechanisms for the transition from primary
to tertiary creep in heterogeneous brittle rocks are discussed us-
ing the relative roles of the renormalization, the stochastic strength
field, the progressive localization and the transition from tensile to
shear mechanism at different stages of damage evolution. In this
work, we only present the modelling of time-dependent behaviour
of heterogeneous rock in uniaxial compression. The modelling of
the time-dependent behaviour of rock in triaxial loading and the
extension of the model to coupled poromechanical behaviour will
be the focus of future manuscripts.

2 D E S C R I P T I O N O F T H E N U M E R I C A L
M O D E L

The model is based on the theory of elastic-damage mechanics and
assumes that the damage is elastic and isotropic. The model accounts
for material heterogeneity through a stochastic local failure stress
field, and local material degradation using an exponential material
softening law (i.e. different to the approach adopted by Amitrano &
Helmstetter 2006). The maximum tensile strain criterion and a mod-
ified Mohr-Coulomb criterion with a tension cut-off are adopted as
two damage thresholds in the model. This approach makes it pos-
sible to simulate the transition from distributed damage by tensile
microcracking to damage where microcracks can interact, coalesce
and ultimately form a shear fault. The model also describes the
temporal and spatial evolution of AEs, including their size (energy
released), in the medium during the progressive damage process.

Our approach differs from similar models, such as Amitrano &
Helmstetter (2006), by accounting for heterogeneity by allowing the
material strength and Young’s modulus to follow a Weibull statis-
tical distribution. Weibull distributions are often used in the field
of failure analysis due to their flexibility, and have been adopted
by many researchers (Gulino & Phoenix 1991; Singh & Behrendt
1994; Tang 1997; Gupta & Bergstrom 1998; Fang & Harrison 2002;
Van Mier et al. 2002; Xu et al. 2004). Amitrano & Helmstetter
(2006) introduce heterogeneity by assuming that the cohesions of
the elements conform to a uniform distribution. In addition, we in-
corporate two further statistical distributions: a uniform and normal
distribution. Successful numerical simulations have previously used
the Weibull distribution, normal distribution and uniform distribu-
tion to account for material strength and Young’s modulus (Liang
2005). Furthermore, our model can visually replicate the tempo-
spatial evolution of the shear stress fields, the associated AE and
a rich assortment of other parameters, such as compressive stress,
tensile stress, displacement vector, stress vector and Young’s modu-
lus during the time-dependent brittle deformation of heterogeneous
rock under a constant uniaxial compressive stress.

The model therefore allows us to simulate a large range of ob-
servations from the laboratory scale (Tang 1997; Tang et al. 2000)
to the in-situ macroscopic scale (Xu et al. 2006; Tang et al. 2008),
and even the crustal scale (Tang et al. 2003). We first summarize
the main features of our time-independent model, and then focus
on incorporating a time dependence to the deformation.

2.1 Time-independent model

In the model, the system is analyzed at the mesoscale, and its stress-
strain relationship can be described by an elastic damage constitu-
tive law. Continuum damage mechanics can describe the effects of
progressive microcracking, void nucleation and microcrack growth
at high stress levels using a constitutive law, by making use of
a set of state variables modifying the material behaviour at the
macroscopic level. Using an isotropic continuum damage
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formulation, the constitutive law for an isotropic and elastic material
at instantaneous loading can be written as (Lemaitre & Chaboche
2001)

εi j = 1 + ν

E
σi j − ν

E
σkkδi j , (1)

E = E0(1 − D), (2)

where εi j is the damaged elastic strain tensor, σi j is the stress tensor,
E and E0 are the Young’s moduli of the damaged and the undamaged
material, respectively, D is the isotropic damage variable, ν is the
Poisson’s ratio and δi j is the Kronecker symbol. In the case of a
uniaxial state of stress (σ11 �= 0, σ22 = σ33 = 0), the constitutive
relation can be rewritten in terms of the longitudinal stress and strain
components only:

σ11 = E0(1 − D)ε11. (3)

Hence, for uniaxial loading, the constitutive law is explicitly
dependent on damage index D.

The model is based on progressive isotropic elastic damage.
When the stress on an element exceeds a damage threshold, its
Young’s modulus E is modified according to eq. (2). In the begin-
ning, each element is considered to be elastic, defined by a specific
Young’s modulus and Poisson’s ratio. The stress–strain curve of the
element is considered linear elastic with a constant residual strength
until the given damage threshold is reached. This proceeded by a
phase of softening. The maximum tensile strain criterion and modi-
fied Mohr-Coulomb criterion with tension cut-off (Brady & Brown
2004; Jeager et al. 2007) are selected as two damage thresholds. At
any time, the tensile strain criterion is preferential since the tensile
strength of rock is far lower than its compressive strength (Jeager
et al. 2007).

Specifically, when the mesoscopic element is under uniaxial ten-
sile stress, the linear elastic constitutive law (with a given specific
residual strength) can be illustrated as in Fig. 1. No initial damage
is incorporated in this model and, in the beginning, the stress–strain
curve is linear elastic and no permanent damage occurs. When the
maximum tensile strain criterion is met for a given element, the el-
ement is damaged. According to the constitutive law of mesoscopic
element under uniaxial tension (as shown in Fig. 1), the damage
evolution of element D can be expressed as

D =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, ε < εt0,

1 − σtr

εE0
, εt0 ≤ ε < εtu,

1, ε ≥ εtu,

(4)

Figure 1. Elastic damage constitutive law of an element under uniaxial
tensile and compressive stress.

where σtr is the residual uniaxial tensile strength and σtr = λσt0,
where λ is the residual strength coefficient and σt0 is the uniaxial
tensile strength at the elastic strain limit εt0. εtu is the ultimate
tensile strain of the element. Eq. (4) indicates that an element would
be completely damaged when the tensile strain of the element attains
this ultimate tensile strain.

Since it is assumed that the damage of a mesoscopic element
in a multi-axial stress field is also isotropic and elastic, the above-
described constitutive law for uniaxial tensile stress can be extended
to 3-D stress states. Under multi-axial stress states, an element is still
damaged in a tensile mode when the equivalent strain ε̄ (Lemaitre
& Desmorat 2005) attains the aforementioned threshold strain εt0.
The constitutive law for an element subjected to multi-axial stresses
can be easily obtained by substituting the strain ε in eq. (4) with
equivalent strain ε̄. The equivalent strain ε̄ is defined as follows:

ε̄ =
√

〈ε1〉2 + 〈ε2〉2 + 〈ε3〉2, (5)

where the equivalent strain ε̄ =
√

〈ε1〉2 + 〈ε2〉2 + 〈ε3〉2, where ε1,
ε2 and ε3 are the three principal strains, 〈 〉 stands for the positive
part of a scalar and 〈x〉 = (x + |x |)/2.

Similarly, when the element is under uniaxial compression, and
damaged in shear mode according to the Mohr–Coulomb criterion,
the damage variable D can be described as follows:

D =

⎧⎪⎨
⎪⎩

0, ε > εc0,

1 − σcr

εE0
, ε ≤ εc0,

(6)

where σcr is the residual uniaxial compressive strength and is defined
as σcr = λσc0. In the model, it is assumed that σcr/σc0 = σtr/σt0 = λ

holds true when the mesoscopic element is under uniaxial compres-
sion or tension.

Shear damage occurs when an element is under multi-axial stress
state and satisfies the Mohr–Coulomb criterion, and the effect of
the other principal stresses in the model during damage evolution
process is considered. When the Mohr–Coulomb criterion is met,
the maximum compressive principal strain εc0 at the peak value of
the minimum principal stress is given by

εc0 = 1

E0

[
fc0 + 1 + sin ϕ

1 − sin ϕ
σ3 − μ (σ2 + σ3)

]
. (7)

In addition, it is assumed that the damage evolution is only related
to the maximum compressive principal strain ε1. Therefore, the
maximum compressive principal strain ε1 of damaged element is
used to substitute the uniaxial compressive strain ε in eq. (6). Thus,
eq. (6) above can be extended to biaxial or triaxial stress states:

D =

⎧⎪⎨
⎪⎩

0, ε̄ > εc0,

1 − σcr

ε̄E0
, ε̄ ≤ εc0.

(8)

From the above derivation of damage variable D (which is gen-
erally called the damage evolution law in damage mechanics) and
eq. (3), the damaged Young’s modulus of an element at differ-
ent stress or strain levels can be calculated. The unloaded element
keeps its original Young’s modulus and strength prior to its strength
threshold. That is to say, the element will elastically unload and
no residual deformation will occur in the simulation. It must be
emphasized that when D = 1, eq. (3) stipulates that the damaged
Young’s modulus will be zero, which would make the system of
equations ill-posed. Therefore, a relatively small value (1.0e−0.5)
is given for the Young’s modulus under this condition.
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In the absence of heterogeneity, the behaviour of the model is
entirely homogenous, no damage localization occurs and the lo-
cal behaviour is replicated at the macroscopic scale. Thus, it is
necessary to introduce heterogeneity to obtain a collective macro-
scopic behaviour different from those of the elements. To reflect the
material heterogeneity at a mesoscale, the mechanical parameters
(e.g. strength and Young’s modulus) of the mesoscopic material
elements, which are assumed to be homogeneous and isotropic, are
assigned randomly from the Weibull statistic distribution (Weibull
1951) as defined in the following statistic probability density func-
tion:

σ (u) = m

u0

(
u

u0

)m−1

exp

[
−

(
u

u0

)m]
, (9)

where u is the scale parameter of an individual element (such as the
strength or Young’s modulus) and the scale parameter u0 is related
to the average element parameter. The shape parameter m reflects
the degree of material homogeneity and is defined as a homogeneity
index. According to the Weibull distribution and the definition of
homogeneity index, a larger m implies that more elements will have
the mechanical properties similar to the mean value, resulting in
a more homogeneous material. Fig. 2 shows two numerical spec-
imens that are composed of 20 000 (200 × 100) square elements
of the same size, produced randomly according to the Weibull dis-
tribution and using the same uniaxial compressive strength scale
parameter 100 MPa. The only difference is their homogeneity in-
dices (m). Fig. 2(a) has an m of 2, whereas Fig. 2(b) has an m of
10. In Fig. 2, the different grey scale corresponds to different values
of element strength. The corresponding stochastic distribution his-
togram of element strength is presented in Fig. 3. It shows that the
strengths of the elements are distributed in a narrower range around
the mean value when m is higher. Therefore, high values of m lead
to more homogeneous numerical specimens, and vice versa. There-
fore, the homogeneity index is an important parameter to control
the macroscopic response of a numerical specimen.

AEs are transient elastic waves generated by the rapid release of
energy within a material, such as the strain energy released during
microcrack propagation. Monitoring AE during deformation has
become an increasingly important diagnostic tool in material sci-
ence and has provided a wealth of information regarding the failure
process in brittle materials. AE monitoring has shed light on the

onset of microcracking during deformation (or C′, see Wong et al.
1997), the evolution the spatial and temporal progression of micro-
cracks (e.g. Knill et al. 1968; Ohnaka 1983; Lockner 1991; Lockner
1993a; Benson et al. 2007; Brantut et al. 2011), and can be used in
failure forecasting modelling (e.g. Bell et al. 2011a,b). For instance,
Lockner et al. (1991) and Lockner (1993a) analyzed catalogues of
AE events recorded during compressive loading tests on rock. The
events were analyzed in terms of the information they offer about the
accumulated state of damage in a material. This measured damage
state can be combined with a model for the weakening behaviour
of cracked solids, showing that reasonable predictions of the me-
chanical behaviour are possible. Based on this prior knowledge, it is
reasonable to assume that the number of AE events is proportional
to the number of damaged elements and the strain energy released
(the strain energy before and after damage) corresponds to the en-
ergy of that particular AE event (Tang 1997; Tang et al. 1997). In
our model, we can use the output of AE to indirectly assess the dam-
age evolution. However, it must be mentioned that aseismic damage
during rock brittle creep tests could possibly occur. The sources of
aseismic damage can be numerous, for example: the low surface
energy of calcite, radiated energy being absorbed by neighbouring
dislocation and/or intermittent dislocation flow (Weiss & Marsan
2003; Schubnel et al. 2006), amongst many more. Although this
approximation is obviously a simplification of what occurs in re-
ality, it has been shown that this micromechanical representation
of microcracking can yield realistic patterns and can reproduce the
macromechanical behaviour of heterogeneous rock.

The cumulative damage, ψ , in a given volume of rock, due to
local failures, can be defined as the ratio of the volume of failed
rock, V f , to the total volume V :

ψ = Vf

V
= ve

∑s
1 ni

Nve
= 1

N

s∑
1

ni , (10)

where ve is the volume of single element, s is the number of cal-
culation steps, ni is the number of failed elements in the ith step
and N is the total number of elements in the model. For a perfectly
elastic brittle material, the energy ef released by the failure of each
element can be calculated from the element peak strength:

ef = σ 2
0

2E
ve, (11)

Figure 2. Numerical specimens with different strength homogeneity index m. (a) m = 2 and (b) m = 10.
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Figure 3. Histogram of the strength of an element in a numerical specimen with a different homogeneity index (m). In this example, m = 2 and 10. (The
numerical specimen is shown in Fig. 2, which is composed of 20 000 elements and the scale parameter u0 is 100 MPa).

where σ 2
0 is the peak strength of the element and E is the Young’s

modulus of the element. The cumulative seismic energy can then
be obtained by:

∑
ef =

∑ σ 2
0

2E
ve = ve

2

∑ σ 2
0

E
. (12)

Thus, by recording the number of failed elements, the AE asso-
ciated with the progressive failure of the material can be simulated
in our model.

2.2 Time-dependent model

In recent studies (Pietruszczak et al. 2004; Shao et al. 2006, 2003;
Amitrano & Helmstetter 2006), a general methodology has been
proposed for the description of brittle creep in rock in terms of
microstructural evolution. Shao et al. (2003) studied the time-
dependent deformation of rock in terms of the evolution of mi-
crostructure leading to the progressive degradation of the Young’s
modulus and the failure strength of the material. Based on these
principals, they proposed a constitutive model for brittle creep de-
formation in rock. A time-independent creep model has also been
developed based on dislocation mechanics at the continuum scale
that incorporates damage to simulate the creep of metal (Esposito &
Bonora 2009). Xu (1997) performed a series of brittle creep tests on
weak rock in uniaxial compression and suggested that the strength
and Young’s modulus of weak rock degraded with a similar law.
More recently, Heap et al. (2010) reported the degradation of elas-
tic moduli (Young’s modulus and Poisson’s ratio) with increasing
microcrack damage in experiments on gabbro, basalt, granite and
two sandstones.

As an approach to study the time-dependent deformation and
failure of rock, our time-dependent model is logically formulated
from the time-independent model presented above. In the model,
the time-dependent behaviour of rock is considered as a macro-
scopic consequence of evolution of microstructure at the elemen-
tary scale. The evolution of microstructure is a time-dependent

Figure 4. Schematic of the strength degradation law of an element.

progressive damage process. Based on a general understanding of
time-dependent behaviour of rocks, we assume that the material
degradation with time is due to the degradation of its internal ma-
terial properties (such as the elastic moduli), which is attributed
to microcracking within rock (Lin et al. 2009). We therefore intro-
duce a material degradation law, an exponential relation between the
time-dependent strength of each element and the time-to-failure of
each element, to model the failure of each element when subjected
to a constant stress σi (maximum stress on the element) smaller
than its short-term strength σ0,i as shown in Fig. 4 and expressed in
eq. (13):

σti = σ∞ + (
σ0,i − σ∞

)
e−a1ti , (13)

where σti is the time-dependent strength at time ti, σ∞ is the long-
term failure strength at time t approaching infinity, σ0,i is the initial
short-term failure strength of each element and a1 is the coefficient
of strength degradation of the element. An element fails either when
the time t is equal to its failure time ti, or, during an avalanche,
when the stress σi on this element reaches the rupture criterion
σ0,i . The damage variable, the stress, the strength and the times-to-
failure of all elements are updated after each failure event. If we let
σ∞/σ0,i = k, defined as the ratio of long-term failure strength to
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Figure 5. A flow chart for the numerical model.

the short-term failure strength, eq. (13) can be rewritten as

σti = σ0,i [k + (1 − k) e−a1ti ]. (14)

This is the exponential relation between the time-to-failure of
each element and its normalized stress σi/σ0,i . Further, the Young’s
modulus of each element is assumed to follow a similar degradation
law as in eq. (14). The system is loaded by imposing a constant
stress σi on its upper boundary (for brittle creep experiments). The
simulation stops when the macroscopic strain reaches a threshold
(after macroscopic sample failure).

To clarify the implementation of our numerical model, a flow
chart of the model is shown in Fig. 5. It is important to note that
eq. (14) can be easily implemented into a numerical integration
algorithm using the finite element method, with nodal displace-
ments as the principal unknowns. By introducing a time-dependent
degradation of material properties into our model, the damaged be-
haviour with time can be obtained. In the model, the element may
degrade and damage gradually with time according to the elastic
damage constitutive relationship. The combined interaction of time-
dependent tensile damage and compressive shear damage leads to
the macroscopic failure of material. According to the general frame-
work described above, the model can use a unified approach for the
description of both short-term and long-term behaviour of hetero-
geneous brittle rock.

3 N U M E R I C A L S I M U L AT I O N S

3.1 Geometry of the modelled samples

The geometry of the modelled sample was 100 mm × 50 mm (the
same sample dimensions as in Li & Xia 2000) and was discretized
into a 200 × 100 (20 000 elements) square grid (i.e. each square
element had sides of 0.5 mm). The size of the modelled sample was
kept constant for all of the numerical simulations throughout this
paper. Steel end caps (10 mm thick and 50 mm wide) were applied
to both ends of the modelled rock sample. During the simulation, the
elements within the modelled rock sample are fixed in the vertical
direction but can move freely in the horizontal direction (as is the
case for uniaxial compressive loading).

3.2 Validation of the numerical model

The validity of our numerical model was tested via an attempt to
replicate previously published experimental data from uniaxial brit-
tle creep experiments on four different rocks (from Li & Xia 2000).
The rocks used in the experimental study of Li & Xia (2000) cover
a wide range of rock physico-mechanical properties (summarized
in Table 1) and are therefore represent an ideal data set to test our
model.
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Table 1. Physico-mechanical parameters of tested rock specimens.

Uniaxial
compressive Elastic Ultimate

strength modulus strain
Rock (MPa) (GPa) (per cent) Origin

Marble 120 70 0.23 Emei mountain,
Red
sandstone

60 17 0.67 Sichuan province

Sandstone 12 3 0.52 Shenbei coal field,
Claystone 5 1.5 0.55 Liaoning province

Table 2. Physico-mechanical parameters of model specimens.

Uniaxial
compressive Elastic

Homogeneity strength modulus Poisson’s
Rock index (MPa) (GPa) ratio

Marble 2 640 95 0.25
Red sandstone 2 188 24 0.3
Sandstone 2 37.5 4.8 0.3
Claystone 2 14 2.2 0.3

The Young’s modulus and the Poisson’s ratio of the marble (70
GPa and 0.25, respectively) and the red sandstone (17 GPa and 0.3,
respectively) were also retrieved from published literature (Wu &
Zhang 2003). For the sandstone and the claystone, the Young’s mod-
uli and Poisson’s ratios were estimated to be 3 GPa and 0.3 for the
sandstone, and 1.5 GPa and 0.3 for the claystone. A typical brittle
creep experiment involves holding a rock at a constant applied dif-
ferential stress for a protracted period of time (usually until failure).
For all of the experiments conducted by Li & Xia (2000), a fixed
percentage (75 per cent) of the short-term peak stress was used (i.e.
90, 44, 9 and 3.75 MPa for the marble, red sandstone, sandstone
and claystone, respectively). To rigorously test our model, the val-
idation simulations were set up using the rock physico-mechanical

properties and performed at the applied differential stresses outlined
above.

First, and before we can perform the numerical simulations, the
mechanical parameters (such as the mean uniaxial compressive
strength) for each of the model elements were obtained using a
back analysis method based on both the macroscopic rock physico-
mechanical properties (see Table 1) and the statistical distribution
relationship between the physico-mechanical parameters of the el-
ements at the mesoscale and the physico-mechanical properties of
rock samples at the macroscale. The computed physico-mechanical
parameters for elements within the modelled samples are listed
in Table 2. We must note that the mesoscale element parameters
listed in Table 2 represent the macroscale mechanical properties
of the rock sample. The ratio of the long-term failure strength
to short-term failure strength was set to 0.8 and the coefficient
of degradation of each element was chosen, by trial and error, to
be 0.05 s−1.

The simulated creep curves (curves of strain versus time at a con-
stant applied differential stress) are plotted in Fig. 6, together with
the published experimental data of Li & Xia (2000). Fig. 6 shows
that the simulated creep curves are in good agreement with the ex-
perimental creep curves. Furthermore, the simulations accurately
capture the trimodal nature of a classic experimental creep curve,
that is, the three creep phases (primary, secondary and tertiary), are
all observed. We therefore contend that, based on these validations,
our rheological model can be used to investigate the time-dependent
brittle response of inhomogeneous rock under uniaxial compression
loading conditions.

3.3 Modelling of basic mechanical properties

Prior to investigating brittle creep and the stress relaxation behaviour
of rocks, a constant displacement rate uniaxial experiment (i.e. a
conventional unconfined compressive strength experiment, or UCS
experiment) was conducted numerically to obtain the macroscopic
physico-mechanical properties of our studied rock. The mesoscale
physico-mechanical properties of the individual elements used in

Figure 6. Comparison between simulated brittle creep curves (red dashed lines) and experimental brittle creep curves (blue solid lines) from Li & Xia (2000).
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Table 3. Physico-mechanical parameters of numerical
model.

Items Specimen

Homogeneity index 1.5
Mean uniaxial compressive strength, MPa 200
Mean Young’s modulus, MPa 60 000
Poisson ratio 0.25
Ratio of compressive to tensile strength 10
Frictional angle, ◦ 30

the simulation are given in Table 3. The modelled sample was then
uniaxially loaded under a constant displacement rate.

The simulated constant strain rate of stress–strain curve and as-
sociated AEs are shown in Fig. 7. The model accurately simulates
the non-linear nature of a typical experimental constant strain rate
of stress-strain curve for heterogeneous brittle rock (see Paterson
& Wong 2005). The stress–strain response was first pseudo-linear
(elastic, recoverable strain) prior to the onset of dilational microc-
racking at about 9 MPa (as evidenced by the onset of AE output),
usually termed as C′ (see Wong et al. 1997). In terms of the simu-
lation, this represents the failure of individual elements within the
grid. Furthermore, at this early stage in the deformation, the distri-
bution of failed elements was diffused (i.e. not localized) throughout
the modelled sample. After the onset of dilational microcracking,
the curve deviated from pseudo-linearity as irrecoverable microc-
rack damage developed in the sample. Eventually, the sample failed,
reaching a peak stress (maximum strength) of about 30 MPa. Sam-
ple failure was the result of the failure of clusters of elements
(i.e. localized) and was accompanied by sharp burst in AE output
(Fig. 7).

The modelled final shear stress fields and final AE distributions
for the simulation are also shown in Fig. 7. The greyscale in the shear
stress field represents the relative magnitude of the associated shear
stresses, where lighter areas are indicative of higher shear stresses,
and vice versa. The black areas in the shear stress field represent
completely damaged elements (i.e. D = 1). In the AE distributions
of Fig. 7, each circle symbol represents one AE event. The size of
the circle represents the magnitude of the released energy and the

colour represents the type of event (white = shear crack induced
by a compressive stress and red = tensile crack induced by tensile
stress). A black circle represents a failed element or an AE event
in a former calculating step. The detailed spatial distribution of the
shear stress and the AE activity shows the location and orientation
of the shear fault that ruptured the sample. In this case, failure was
induced by two large conjugate shear faults (Fig. 7).

3.4 Modelling of brittle creep behaviour

The proposed model will now be used to simulate a suite of con-
ventional brittle creep experiments under different constant applied
differential stresses (i.e. we changed the ratio between the creep hold
stress and the short-term failure stress). Similar to laboratory brit-
tle creep experiments (e.g. see Heap et al. 2009a), the numerically
simulated brittle creep experiments consisted of two stages: (1) an
initial loading stage, where the sample is loaded (at the same rate)
to a pre-determined level of stress and (2) a constant stress stage,
where the sample is kept at a constant stress until macroscopic
sample failure or until it was clear that the sample would not fail
under the imposed constant stress in a reasonable time period (for
further details see fig. 1 in Heap et al. 2011). The numerical simula-
tions were all performed using the physico-mechanical parameters
presented in Table 3 and under uniaxial compressive loading con-
ditions. In addition to the constant displacement rate experiments
described above, to simulate time-dependent behaviour, the ratio
of the long-term failure strength to the short-term failure strength
and the coefficient of degradation of the element were set at 0.8
and 0.05 s−1, respectively. These parameters were maintained for
the steel end caps so that material degradation could not occur. The
constant stresses used in the simulations were 20, 21, 22, 23, 23.8,
24, 25 and 26 MPa. Since the modelled rock sample has a UCS of
30 MPa (see Fig. 7), these stresses equate to between 67 and 87 per
cent of the short-term failure stress. These stress ratios are within
the range where we should expect time-dependent brittle creep to
occur (see Heap et al. 2009a). The numerically modelled creep
curves (strain against time) together with the output of AE against
time for all of the brittle creep experiment simulations are presented

Figure 7. The stress–strain curve (solid blue line) and associated AE output (red bars) for a numerical sample deforming under a constant displacement rate
in uniaxial compression. The final plots of AE activity and shear stress field are also shown on the figure (see text for details).
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Figure 8. Creep (solid blue lines) curves and associated AE output (red bars) for constant stress simulations at constant stresses of (a) 26, (b) 25, (c) 24, (d)
23.8, (e) 23, (f) 22, (g) 21 and (h) 20 MPa. The final plots of AE activity and shear stress field are also shown on the graphs (see text for details).

Figure 9. Synopsis plots of the simulated creep curves shown in Fig. 8, showing (a) the creep curves, (b) the cumulative AE energy, (c) the calculated creep
strain rates on a log-linear plot and (d) the times-to-failure on a log-linear plot. (c) also shows some experimental data from Heap et al. (2009a). The green
triangle in (d) is the calculated time-to-failure for the simulation at 20 MPa (see text for details).

in Fig. 8. Further, we show synopsis plots of the creep (time ver-
sus strain) curves (Fig. 9a), the cumulative output of AE energy in
Joules (Fig. 9b), and the calculated creep strain rates (Fig. 9c) and
times-to-failure (Fig. 9d) for all of the simulations given in Fig. 8.
The results from the brittle creep simulations are also presented in
Table 4.

The simulations show that for the four lowest stress levels (be-
tween 67and 77 per cent of the short-term failure stress), sample
failure was not observed in the first 55 min and the simulations were
discontinued. These simulations did not result in sample failure and
only the primary and secondary creep phases were observed. The

strain and output of AE energy both decelerated with time (by a
power law or Andrade’s law, Andrade 1910) until both proxies for
sample damage reached what appear to be near-constant values.
However, in fact, the strain rates were not constant. The samples
were deforming at very slow strain rates. The creep strain rates
(the strain rate calculated from within steady-rate secondary creep)
were 3.1 × 10−9, 7.4 × 10−9, 9.3 × 10−9 and 1.5 × 10−8 s−1 for
the applied differential stresses of 20, 21, 22 and 23 MPa, respec-
tively. Heap et al. (2009a) postulated that the lower limit for brittle
creep is likely to be at the position of C′ (the lower limit of new
damage accumulation). For our simulated rock samples, the stress
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Table 4. Results of the brittle creep simulations.

Applied Applied creep stress Resultant creep Time-to-
creep stress (per cent of the strain rate failure
(MPa) short-term peak stress) (s−1) (min)

20 66.7 3.1 × 10−9 –
21 70.0 7.4 × 10−9 –
22 73.3 9.4 × 10−9 –
23 76.7 1.5 × 10−8 –
23.8 79.3 5.9 × 10−7 32.4
24 80.0 7.2 × 10−7 27.8
25 83.3 2.4 × 10−6 14.9
26 86.7 3.7 × 10−6 4.5

at the position of C′ was about 9 MPa (Fig. 7), much lower than
the minimum stress we have used in our simulations. Therefore, it
is likely that although the proxies for sample damage (strain and
AE energy) were progressing at very low rates, it is likely that the
samples would have eventually failed if given the appropriate time.
Indeed, complete conventional creep experiments have been known
to last longer than 55 min (e.g. Heap et al. 2009a, 2011).

However, brittle sample failure was observed, and hence all three
creep phases (primary, secondary and tertiary) were obtained, for
the four highest levels of constant applied stress (between 79 and 87
per cent of the short-term failure stress). The strain first decelerated
to a steady rate, before accelerating to failure (approximately ex-
hibiting a power law function) after a period of time (Fig. 9a). The
output of AE followed a very similar trend (Fig. 9b). In terms of the
simulation, the increase in the rate of these proxies for sample dam-
age was the result of interactions among elements and increasing
damage induced by element degradation. At 86.7 per cent, the sam-
ple had a creep strain rate of 3.7 × 10−6 s−1 and failed after about
4.5 min (Fig. 8a), whereas at 79.3 per cent, the creep strain rate was
reduced to 5.9 × 10−7 s−1 and sample failure occurred after about
32 min (Fig. 8d). It is well known that during brittle creep experi-
ments, creep strain rate increases and time-to-failure decreases as
the constant applied differential stress is increased (e.g. see Kranz
1980; Baud & Meredith 1997; Heap et al. 2009a, 2011); a notable
feature during the deformation of heterogeneous brittle rock, since
brittle fracture is a stochastic process.

The axial strain at the onset of tertiary creep for the simulations at
the four highest stresses was found to be approximately equal (they
each enter tertiary creep between about 0.65 and 0.70 per cent axial
strain). At the onset of tertiary creep, a critical mass of failed indi-
vidual elements developed, and, at that point, they began to interact
(both on a local scale and through the renormalization of softening
in the model) and coalesce. This resulted in strong damage local-
ization and damage acceleration too fast for the decreasing strength
reduction rate, possibly associated with an increasing proportion
of shear failure events. This agrees with previously published data
that postulates the existence of a ‘critical level of damage’ required
before the onset of acceleration to failure, in both brittle creep ex-
periments (Kranz & Scholz 1977; Baud & Meredith 1997; Heap
et al. 2009a, 2011) and modelling (Kemeny 1991). These authors
consider that the acceleration to sample failure is linked to the point
at which microcracks can start to interact and coalesce, a feature
also reproduced by our model. However, Heap et al. (2009a) show
that the distribution of AE hypocenters during a brittle creep ex-
periment on sandstone hints that early stages of localization could
begin as early as the primary creep stage. It must be noted that the
durations of the tertiary creep phase in our simulations are approx-
imately equal, whereas experimental data (e.g. Heap et al. 2009a,

2011) show that the duration of the tertiary creep phase is reduced
as the applied differential stress is increased. Further work will con-
centrate on a solution to this discrepancy and will be reported in a
future manuscript.

The data from the simulated conventional brittle creep experi-
ments can be summarized in log-linear plots of creep strain rate
(Fig. 9c) and time-to-failure (Fig. 9d) versus applied differential
stress. Experiments have demonstrated that the plot of creep strain
rate versus differential stress forms a linear curve on a log-linear
plot (see inset in Fig. 9c, experimental data for sandstone from Heap
et al. 2009a), that can be adequately fitted with either a power law
or exponential law function. However, the modelled results do not
accurately replicate this behaviour and show a substantial jump in
creep strain rate between 23 and 23.8 MPa. This sharp increase
in creep strain rate marks the boundary between those simulations
that resulted in sample failure and those that were arrested at 55
min, and therefore did not fail (marked by a line in Fig. 9c). This
discrepancy cannot be due to the fact that the four experiments be-
tween 67 and 77 per cent of the short-term failure stress did not
reach secondary creep, and therefore the calculated strain rates are
inaccurate, as this would only serve to overestimate the strain rates.
Further, if the simulations were allowed to run until sample failure,
the sample at a constant stress of 20 MPa would fail after about
7000 min (calculated using the creep strain rate and the strain re-
quired to reach an axial strain of 0.65 per cent). Extrapolation from
the simulations that resulted in sample failure offers a failure time
between 1000 and 2000 min for 20 MPa (see Fig. 9d). Experimental
data have demonstrated that this kind of extrapolation is reasonable
within the range of strain rates achievable in the laboratory (Heap
et al. 2009a, 2011). Nevertheless, the model does accurately repli-
cate specific aspects of time-dependent brittle deformation during
a conventional brittle creep experiment, such as the trimodal creep
behaviour and the ‘critical level of damage’ required for the onset
of tertiary creep. The solution to the problem of the sharp increase
in creep strain rate between 23 and 23.8 MPa is non-trivial and
future work will concentrate on resolving this discrepancy and will
be reported in a subsequent manuscript.

The modelled final shear stress fields and final AE distributions
for the complete range of applied differential stress levels are also
shown in Fig. 8. Large discrete shear faults can be seen for the
simulations at the four highest stress levels (between 79 and 87
per cent of the short-term failure stress), whereas more distributed
damage can be seen for the four lowest stress levels (between 67 and
77 per cent). The detailed temporal evolution and spatial distribution
of the shear stress field and the AE activity for two of the simulated
brittle creep experiments are shown in Fig. 10. Fig. 10(a) shows the
evolution of damage for a simulation that did not result in failure
after 55 min (constant stress = 22 MPa) and Fig. 10(b) shows the
evolution of damage for a simulation that resulted in failure after
about 16 min (constant stress = 25 MPa). Adjacent to the shear
stress field and the AE activity, images are the creep curves for both
simulations, indicating the position of the time steps.

For the simulation conducted at 25 MPa (Fig. 10b), the initial
state of damage (i.e. the damage incurred during the loading stage
of the brittle creep simulation) was seen to be distributed throughout
the sample (Fig. 10b, panel i). This was due to the wide distribu-
tion of weak elements (local minima in the strength distribution)
in the modelled sample. Relatively few diffused AEs had occurred,
resulting in an initial non-interacting microcrack network. Shear
cracks dominated the deformation (white circles represent shear
cracks and the red circles represent tensile cracks) during the initial
loading of the modelled sample. As damage accumulated in the
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Figure 10. Snapshots of the shear stress field and the AE activity from brittle creep simulations at (a) 22 and (b) 25 MPa. The times of the snapshots are given
below the panels (in minutes) and their locations on the creep curve are shown in the adjacent strain-time plots.

sample during the creep phase of the simulation, the number of
distributed local minima decreased and the microcracking became
increasingly clustered (Fig. 10b, panel vi), thus involving increas-
ingly more adjacent elements, that is, microcrack interaction (both
on a local scale and through the renormalization of softening in the
model) and coalescence was in motion. Indeed, a localized cluster
of tensile microcracking had formed in the top right of the sample
after just 5.3 min. After 12 min, the focus of damage had switched
to another localized zone parallel and immediately below the first
cluster. As the number of failed elements increased within these two
localized zones of damage, adjacent elements were exploited due
to their now reduced strength (when compared to other elements
far from the damaged zones). This stress concentration produced a
strong damage localization that more than overcame the decreas-
ing strength reduction rate, possibly associated with an increasing
proportion of shear failure events. In other words, the clusters pro-
duced their own stress fields that dominated further microcrack
growth. Eventually, the elements in and surrounding the localized
zones of damage became mechanically unstable and there was the
sudden collapse of sample structure, resulting in the formation of
two through-going shear faults (Fig. 10b, panel viii). The ultimate
failure of the sample, commensurate with a large number of small
tensile microcracks, exploited both of the earlier-formed clusters of
damage. The question of when damage starts to localize during a
brittle creep experiment is certainly an interesting one, and has been
discussed by many authors. During the initial stages of deforma-
tion, it is difficult to predict the location of the eventual shear fault.
However, perhaps, the beginning stages of a localized fault plane
can be observed in the 22 MPa simulation (Fig. 10a) from about
28.3 min onward, running northwest–southeast through the sample
(most clearly seen in the AE activity plots). As discussed above,
the same is true in the simulation conducted at 25 MPa (Fig. 10b).
Using the benefit of hindsight (i.e. looking at the final panel (viii)),

we can see that damage started to localize one of the eventual fault
planes after only 5.3 min (and can be seen in both the shear stress
and AE activity plots). In terms of the creep curve, this corresponds
to a position just after the onset of secondary steady-rate creep.
These observations are in agreement with the experimental find-
ings of Heap et al. (2009a) and Yanagidani et al. (1985). Heap
et al. (2009a) showed that in triaxial brittle creep experiments on
sandstone, AE hypocenters suggested that localization could start
as early as the primary creep phase. Yanagidani et al. (1985) came
to a similar conclusion based on uniaxial experiments on granite.
However, it must be noted that there is contradictory data (Hirata
et al. (1987) showed that clustering and localization increases as
creep progresses, with the biggest changes occurring during the ter-
tiary creep phase) and theories (e.g. the ‘critical level of damage’
theory, as explained above, suggests that the acceleration signalling
the start of the tertiary creep phase is due to microcrack interaction,
coalescence and localization).

In addition, the numerical simulations suggest that the evolution
of strain or AE during primary and secondary creep could be used to
forecast the time of macroscopic failure of material. A similar con-
clusion, based on creep experiments, was reached by Scholz (1972)
who suggested that the only characteristic time for the evolution of
the damage rate during brittle creep is the time of macroscopic fail-
ure. This is also in agreement with the experimental and analytical
results of Nechad et al. (2005a, 2005b) for heterogeneous material.
They found that the macroscopic time-to-failure was proportional
to the duration of the primary creep regime.

3.5 Modelling of relaxation behaviour

Relaxation tests have been numerically conducted with different ini-
tial constant axial strain levels (160, 240, 320, 400 and 650 με) and
are presented in Fig. 11(a). The physical and mechanical parameters
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Figure 11. (a) Simulated relaxation curves for the constant strains of 160, 240, 320, 400 and 650 με. (b) The final AE activity plots for each of the stress
relaxation simulations shown in (a).

of the model specimens are the same as those used for the above
brittle creep simulations (available in Table 3). The simulated sam-
ples were all loaded at the same rate. The curves of Fig. 11(a) clearly
show pronounced stress relaxation over time. The total amount of
stress relaxation increased when the level of constant axial strain
was increased. For example, at 650 με, the stress relaxed by about
10 MPa, whereas at 160 με, the stress was only reduced by about
1 MPa. In all of the experiments, the rate of stress relaxation de-
creased during the course of the experiment; indeed, after about
30 min, with the exception of the 650 με curve, the curves settled
down to a seemingly constant level of stress. However, the sample
held at the highest constant axial strain (650 με) failed at about
27 min (see Fig. 11b), after which the stress dropped to 0 MPa.

The final AE distributions for all five simulations are shown in
Fig. 11(b). It illustrates that the number of AE events in the samples
increased with increasing level of constant axial strain and, at 650
με, the deformation was localized and a shear fault was formed.
These numerical data are corroborated by the experimental studies
of Li & Xia (2000).

A simulated stress relaxation curve with different strain level
steps is shown in Fig. 12(a). When the first strain level of 640 με

was applied and kept constant, the stress relaxed from point (i)
(30 MPa) to point (ii) (24.8 MPa). The rate of stress relaxation
decreased over time, as observed in the previous simulations (see
Fig. 11a). When the second strain level of 660 με was applied and
sustained, there was no initial increase in the axial stress, instead
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Figure 12. (a) Multistep stress relaxation simulation showing both the re-
laxation of the stress with time (solid blue line) and the associated AE output
(red bars). (b) and (c) Snapshots of the shear stress fields and the AE activity,
respectively, for the positions labelled in (a).

the stress relaxed further, and at an increased rate, from 24.8 to
22.4 MPa. The initial stage of this stress drop was commensurate
with a large spike in AE activity (about 900 AEs). After about a
minute had passed under a constant strain of 660 με (point (iii)),
there was another, and this time larger, stress drop accompanied
by another burst of AE activity (about 500 AEs). This stress drop
marked the failure of the sample. Figs 12(a) and (b) show the shear
stress fields and the AE activity obtained from the experiment at
points (i)–(iv) (as indicated in Fig. 11), respectively. Fig. 12(b)

shows that the AE activity associated with changing the constant
level of axial strain from 640 to 660 με was localized on the eventual
failure surface. The stress drop commensurate with point (iii), which
signalled the failure of the sample, extended the beginning stages
of localization from point (ii) to form a through-going fault that
ruptured the sample. It follows that, in nature, stress relaxation in
rock should be important in regions of the crust that are highly
stressed. The mechanism of stress relaxation has therefore been
previously discussed in relation to earthquakes (Yang & Toksöz
1981) and volcanoes (Palano et al. 2009). Further, since it has been
postulated that stress relaxation occurs prior to earthquake rupture
(Gao & Crampin 2004; Crampin et al. 2008) and volcanic eruption
(Bianco et al. 2006), an increased understanding may be useful in
geophysical hazard prediction.

4 C O N C LU S I O N S

(1) We have presented a 2-D numerical model in an attempt to
replicate the time-dependent brittle deformation of heterogeneous
rock and the associated AE, under a constant uniaxial compressive
stress. The model accounts for material heterogeneity through a
stochastic local failure stress field, and local material degradation
using an exponential material softening law. Importantly, the model
introduces the concept of a mesoscopic renormalization to capture
the co-operative interaction between cracks in the transition from
distributed to localized damage. We have validated our model using
previously published experimental data and then used it to sim-
ulate conventional brittle creep experiments and stress relaxation
experiments.

(2) Our model reproduces the classic trimodal behaviour (pri-
mary, secondary and tertiary creep phases) seen in conventional
laboratory brittle creep experiments. Our simulations also show ev-
idence of the ‘critical level of damage’ before the onset of tertiary
creep commonly observed in laboratory experiments, and could add
to the debate as to when localization initiates during a brittle creep
experiment: our modelled output shows that the initial stages of
localization can be seen as early as the start of the secondary creep
phase. However, when compared with experimental data, the model
does not yet accurately reproduce the dependence of the applied
differential stress on the creep strain rate and time-to-failure.

(3) Our model reproduces the decelerating stress relaxation dur-
ing constant strain simulations. Our simulations demonstrated that
the total amount of stress relaxation increased when the level of
constant axial strain was increased. Our numerical data corroborate
with previously published experimental data.

(4) Our approach differs from previously adopted macroscopic
approaches, based on constitutive laws, and microscopic approaches
that focus on fracture propagation. The model shows that the com-
plex macroscopic time-dependent behaviour of heterogeneous brit-
tle rocks can result from the small-scale interaction of elements
and material degradation. The fact that the simulations are able to
capture a similar time-dependent response of heterogeneous brit-
tle rocks to that seen in the laboratory implies that our rheological
model is appropriate to investigate the non-linear complicated time-
dependent behaviour of heterogeneous brittle rocks.

(5) Our findings can be applied to the investigation of the time-
dependent instability of rock masses, to the mitigation of associated
rock hazards in rock engineering, and to a better understanding
of geological and geophysical phenomena occurring in the Earth’s
brittle upper crust.
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