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Volcanic conduit failure as a trigger to magma fragmentation
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Abstract In the assessment of volcanic risk, it is often
assumed that magma ascending at a slow rate will erupt
effusively, whereas magma ascending at fast rate will lead to
an explosive eruption. Mechanistically viewed, this assess-
ment is supported by the notion that the viscoelastic nature of
magma (i.e., the ability of magma to relax at an applied strain
rate), linked via the gradient of flow pressure (related to
discharge rate), controls the eruption style. In such an
analysis, the physical interactions between the magma and
the conduit wall are commonly, to a first order, neglected.
Yet, during ascent, magma must force its way through the
volcanic edifice/structure, whose presence and form may
greatly affect the stress field through which the magma is
trying to ascend. Here, we demonstrate that fracturing of the
conduit wall via flow pressure releases an elastic shock
resulting in fracturing of the viscous magma itself. We find
that magma fragmentation occurred at strain rates seven
orders of magnitude slower than theoretically anticipated

from the applied axial strain rate. Our conclusion, that the
discharge rate cannot provide a reliable indication of ascending
magma rheology without knowledge of conduit wall stability,
has important ramifications for volcanic hazard assessment.
New numerical simulations are now needed in order to
integrate magma/conduit interaction into eruption models.
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Introduction

During periods of volcanic unrest, magma is transported to
the surface through an evolving conduit, which, to
propagate, must overcome the strength of the country rock
(Gudmundsson and Brenner 2005). Upon nearing the
surface, magma faces two choices: it may ascend slowly
and (generally) erupt effusively or ascend quickly to erupt
explosively (Woods and Koyaguchi 1994). This assessment
is based on knowledge of the viscoelastic properties of
magmas and their discharge rate, whereby the ability of
magma to relax following application of stress controls the
eruption style (Dingwell 1996). However, key processes of
magma interaction with its conduit (Costa et al. 2009) are
not understood and thus not considered in the balancing of
forces used in this rheological analysis. Such information is
important because during ascent, magma needs to force its
way through the volcanic edifice, and this both greatly
affects the stress field and creates conditions conducive for
fracturing of the conduit wall (Chadwick et al. 1983). In the
extreme, such overpressure can even jeopardize the stability
of the volcanic edifice. This was exemplified on a large
scale by the May 18, 1980, partial collapse of the Mount St.
Helens' edifice, which triggered an explosive eruption. In
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what is typical for such scenarios, that explosion is usually
interpreted in terms of magma pressurization (Spieler et al.
2003), with little consideration of the exact process by
which the edifice failed.

Conduit fracturing experiments

We experimentally simulate mechanical magma/conduit in-
teraction during magma ascent and fracturing of the conduit
wall rock. Conduit fracturing involved uniaxial compression
of a 20-mm-diameter cylinder of crystal-poor rhyolitic magma
residing at 918°C within a 60-mm annular basaltic wall rock
shell (see Fig. 1). These experiments are novel because in
conventional rock mechanics, hydraulic fracturing has been
studied at low temperatures on systems dominated by fluids
(e.g., water, oil; Vinciguerra et al. 2004) with viscosities far
lower than magmatic ones. In our experiments, fracturing of
the wall rock was simulated by cyclically pressing a solid
plug (of basalt) onto a viscous rhyolitic magma, thereby
compressing the rhyolite and causing cyclical deformation at
axial strain rates of 1.3×10−6 for 180 s and 3.2×10−5 s−1 for
30 s. During deformation, the load was monitored. The
fractures were observed, in real time, via the released micro-
seismicity, recorded as acoustic emissions (AEs), and post-
experimentally imaged using high-resolution (30 μm) neu-
tron computed tomography as well as optical microscopy.

These deformation experiments were characterized in
their initial stages by cyclic stressing and relaxation of the
magma and an absence of acoustic emissions, indicating
viscous flow (see Fig. 1). [Note: very little stress initially
accumulated, as the magma was not in contact with the
shell, due to the narrow mismatch resulting from sample
preparation.] As magma began to deform against the inner
wall of the basalt rock shell, stress accumulated. Failure of
the annular shell was accompanied by a brief, 126-ms burst
in released AE energy at an applied stress of 16 MPa and
was followed by a stress drop to 0 MPa.

Post-experimental optical analysis revealed the presence of
two radially oriented extensional cracks along the entire length
of the shell (see figure). Tomographic analysis of the fracture
network revealed much more—namely, the extension of the
radial cracks into the magma itself (see figure inset).
Microscopic analysis showed the presence of a 5-mm-wide
damage zone containing multiple dendritic extensional
fractures at the interface between the rhyolite and the basalt.
The fractures converged 1 mm inside the rhyolite. In the
basalt, the fractures were not intruded by the dyking of
magma (as the viscosity was too high, and the experiment
was stopped before its occurrence), but they were partially
filled by tuffisitic ash fragments.

Brittle failure of this magma, whose viscosity (η) at 918°
C is 108.3 Pa s, was not anticipated from the imposed axial

strain rates (<3.2×10−5 s−1). Using the Maxwell relation for
viscoelastic relaxation time (Dingwell and Webb 1989)

t ¼ 10 10=h ð1Þ
our magma would be expected to fail at a strain rate (τ) of
101.7 s−1, which is more than six orders of magnitude faster
than the axial strain rate at the time of failure. Thus, the

Fig. 1 Magma/conduit interaction experiment. The application of
pressure onto a solid basaltic plug compressed a rhyolitic magma
(light gray) against the solid inner shell of basalt (dark gray).
Pressurization was achieved by cyclically stepping the strain rate
between 1.3×10−6 for 180 s and 3.2×10−5 s−1 for 30 s. Cyclic
deformation of the magma was monitored as an increase in stress
followed by a period of relaxation. Hydraulic fracturing occurred at a
peak stress of 16 MPa and was followed by an instantaneous stress
drop. Hydraulic fractures propagated radially along the length of the
sample and were internally imaged using neutron computer tomogra-
phy as well as microscopy (provided with a sketch). A 5-mm-wide
dendritic network of extensional fractures formed and penetrated
1 mm inside the rhyolitic melt
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source of the stress/strain-rate conditions that generated
magma fracturing here must be sought elsewhere. We
propose that stress which accumulated in the shell during
compression was elastically released at failure, generating a
tangential shock that locally fractured the magma. The
opening of a 100-micron-wide extensional fracture within a
5-mm-wide damage zone would correlate to a near
instantaneous strain of 0.02 (which is more than the total
axial strain produced by the experiment). AE data show that
the most energetic fracturing lasted 126 ms, which signifies
that the tangential strain rate reached approximately
10−0.8 s−1, which concurs with Dingwell and Webb's
(1989) assessment that the onset of melt failure may take
place at strain rates up to three orders of magnitude slower
than that at the Maxwell viscoelastic limit.

Implications

The novel observation here—that conduit wall fracturing
can cause magma failure—is potentially a critical one for
volcanic hazard assessment. It implies that local deforma-
tion of the volcanic edifice may temporally subject magma
(even under slow ascent rates) to local strain-rate peaks that
may drive or sustain fragmentation. This finding suggests
that knowledge of the rheology of ascending magma cannot
be gained from assessment of the discharge rate alone, but
strongly relies on the understanding of elastic stress and
strain accumulated within the conduit walls. Whether
failure of the wall rock and subsequent fragmentation of
the magma would lead to formation of tuffisite and a
permeable network, resulting in enhanced degassing and
eruptive quiescence, or to catastrophic failure, serving as a
trigger for explosive volcanic eruption, may then depend on
the resulting decompression (Mueller et al. 2008). Both
outcomes are possible. We conclude that the evaluation of
volcanic stability requires an understanding of the response
of the volcanic conduit wall rock to magmatic pressure and

the potential for magma fragmentation in response to
fracturing of wall rock in the conduit. We strongly
recommend that numerical simulations be done to assess
the likelihood of magma fracturing/fragmentation by
conduit wall failure when evaluating volcanic stability.
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