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Abstract Volcanic rocks and magma display a wide range of
porosity and vesicle size, a result of their complex genesis.
While the role of porosity is known to exert a fundamental
control on strength in the brittle field, less is known as to the
influence of vesicle size. To help resolve this issue, here, we
lean on a combination of micromechanical (Sammis and
Ashby's pore-emanating crack model) and stochastic (rock
failure and process analysis code) modelling. The models
show, for a homogenous vesicle size, that an increase in
porosity (in the form of circular vesicles, from 0 to 40 %)
and/or vesicle diameter (from 0.1 to 2.0 mm) results in a
dramatic reduction in strength. For example, uniaxial com-
pressive strength can be reduced by about a factor of 5 as
porosity is increased from 0 to 40 %. The presence of vesicles
locally amplifies the stress within the groundmass and pro-
motes the nucleation of vesicle-emanating microcracks that
grow in the direction of the applied macroscopic stress. As
strain increases, these microcracks continue to grow and
eventually coalesce leading to macroscopic failure. Vesicle
clustering, which promotes the overlap and interaction of the
tensile stress lobes at the north and south poles of
neighbouring vesicles, and the increased ease of microcrack

interaction, is encouraged at higher porosity and reduces
sample strength. Once a microcrack nucleates at the vesicle
wall, larger vesicles impart higher stress intensities at the crack
tips, allowing microcracks to propagate at a lower applied
macroscopic stress. Larger vesicles also permit a shorter route
through the groundmass for the macroscopic shear fracture.
This explains the reduction in strength at higher vesicle diam-
eters (at a constant porosity). Themodelling highlights that the
reduction in strength as porosity or vesicle size increases is
nonlinear; the largest reductions are observed at low porosity
and small vesicle diameters. In detail, we find that vesicle
diameter can play an important role in dictating strength at low
porosity but is largely inconsequential above 15 % porosity.
Vesicle clustering and stress lobe interaction are implicit at
high porosity, regardless of the vesicle diameter. In the case of
an inhomogeneous vesicle size, the microcracks grow from
the largest vesicles, and brittle strength is closer to that of the
largest vesicle end-member. The results of this study highlight
the important role of vesicle size, and the complex interplay
between porosity and vesicle size, in controlling the brittle
strength of volcanic rocks and magma.
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Introduction

The genesis of volcanic rocks and magma is a complex and
varied process. Ascending magma vesiculates as it
depressurises on its journey to the surface (e.g. Sparks 1978;
Toramaru 1989; Mangan and Cashman 1993; Navon and
Lyakhovsky 1998; Gonnermann and Manga 2012). Viewed
simplistically, the rate of ascent (a function of volatile content,
crystal content and melt viscosity, amongst others; see
Gonnermann and Manga 2012 and references therein) exerts
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a fundamental control on the efficiency and extent of
outgassing or, in other words, the porosity of the magma.
Moderate to fast-ascending magma has little time for
outgassing and, as a consequence, can contain a high porosity.
By contrast, slow ascending magma has a greater opportunity
to outgas and therefore tends to contain a low porosity. This
porosity is present as bubbles (in the case of magma) or
preserved as vesicles (in the case of volcanic rock). The
diameter of the bubbles or preserved vesicles, and their diam-
eter size distribution, depends on numerous interconnected
factors including the melt viscosity, the magma volatile con-
tent and type and decompression rate, amongst others (e.g.
Shea et al. 2010; Gondé et al. 2011; Gonnermann and Manga
2012 and references therein). The consequence of this com-
plex genesis is that the porosity (e.g. Kueppers et al. 1995; see
Fig. 1 inWright et al. 2009) of volcanic rocks and magma can
range from almost 0 % to almost 100 % (porosity can be as
high as 98 % in the case of reticulite), and their vesicle
diameter can span multiple orders of magnitude (typically
from a few tens of microns to a few mm; see Shea et al.
2010 and references therein). Experimental studies have ex-
posed the fundamental control of porosity on rock strength in
the brittle field (e.g. Chang et al. 2006; Baud et al. 2013),
including volcanic rocks (e.g. Al-Harthi et al. 1999; Heap
et al. 2014). Initial porosity has also been shown to impact
the rheomechanical behaviour of magma (Kendrick et al.
2013). However, less is known as to the influence of vesicle
size. This is largely a result of the significant challenge repre-
sented by extracting the influence of vesicle diameter on
brittle strength for a natural suite of volcanic rocks or bubble
size for a suite of vesiculated magma in the laboratory. Not
only would sampling a suite of rocks with a wide range of
vesicle size prove difficult but also one must minimise other
differences that could lead to strength variations, such as
crystal content, crystal size, the strength of the glass phase,
the presence/absence of microlites and vesicle and/or crystal
preferred orientation, amongst many others. While synthetic
magma can be fabricated through high-pressure and high-
temperature laboratory experiments (e.g. Martel et al. 2001;
Caricchi et al. 2011; Laumonier et al. 2011; Pistone et al.
2012), accurately controlling the vesicle diameter during
depressurisation remains a challenge. To compound matters,
one must accurately measure the vesicle size, a nontrivial task.
Measurements can be made, for example, through optical and
scanning electron microscopy (destructive), mercury injection
(destructive and provides the vesicle throat diameter, not the
vesicle diameter) and X-ray or neutron computed tomography
(needs to be at a resolution higher than the smallest vesicle
size; it can therefore be very expensive to scan large samples).
Of the few studies that exist, an increase in pore size (for a
given porosity) has been shown to decrease the compressive
strength of porous ceramics (Liu 1997). Vasseur et al. (2013)
highlighted a potentially important role for vesicle size in

reducing the compressive strength of porous lava, using a
combination of high-temperature uniaxial experiments on
sintered glass samples and micromechanical modelling.
However, we note that a numerical study, using a bonded
particle model, found that an increase in pore size from 0.5
to 2.5 mm served to increase compressive strength (Fakhimi
and Gharahbagh 2011).

In an attempt to better understand the influence of porosity
and vesicle diameter on the brittle strength of volcanic rocks
and magma, we have performed micromechanical and sto-
chastic modelling in which we systematically varied the po-
rosity and vesicle diameter. While our focus is the brittle
strength of volcanic rocks (i.e. edifice rocks, dome rocks that
are highly crystallised and/or are at or below the glass transi-
tion temperature of their melt phase) and brittle magma (i.e.
magma deforming at a strain rate that exceeds the structural
relaxation timescale of its melt phase, see Dingwell and Webb
1990; Dingwell 1996), we note that the modelled output of
this paper could be applied to any porous, brittle material. The
brittle strength of volcanic rocks is of prime importance for
edifice stability (Voight 2000); catastrophic flank collapse
could ensue if the stability of the edifice is compromised
during a period of unrest (e.g. Reid et al. 2010). Faulting
within the edifice (and/or at the outermost edge of the
conduit where magma can behave in a brittle manner due to
the higher strain rates, see Gonnermann and Manga 2003)
could facilitate outgassing (e.g. Laumonier et al. 2011;
Lavallée et al. 2013; Kendrick et al. 2013) and impact eruption
characteristics (effusive or explosive, see Mueller et al. 2008).
Further, an enhanced understanding of the brittle failure of
porous magma may aid our comprehension of explosive mag-
matic fragmentation (Zhang 1999; Martel et al. 2001; Spieler
et al. 2004).

Description of the models

Micromechanical modelling: Sammis and Ashby’s
pore-emanating crack model

Micromechanical modelling can provide useful insights in the
mechanics of uniaxial compressive failure in brittle materials
(Wong and Baud 2012). The pore-emanating crack model,
based on fracture mechanics and beam theory, of Sammis and
Ashby (1986) describes a two-dimensional elastic medium
populated by circular vesicles (that act as stress concentrators
for the initiation of extensile cracks) of uniform radius r. As
the applied stress (σ) acting on the elastic medium increases,
microcracks emanate from the circular vesicles parallel to the
direction of the applied stress (in the tensile zones at the north
and south poles of the vesicle, as described by fracture me-
chanics theory) when the stress at the tip of a small microcrack
on the vesicle surface reaches a critical value (KIC, the critical
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stress intensity factor). The formedmicrocracks propagate to a
distance l in the direction of the maximum principal stress.
Once the microcracks are long enough, they can interact, thus
increasing the local tensile stress intensity (described by an
extension of beam theory for closely spaced cracks).
Eventually, they coalesce and conspire to induce the macro-
scopic failure of the elastic medium (Fig. 1). In the case of
uniaxial compression, Zhu et al. (2010) derived an analytical
approximation of the pore-emanating crack model to estimate
uniaxial compressive strength (UCS) as a function of the bulk
sample porosity (ϕ ):

σUCS ¼ 1:325

ϕ0:414

KICffiffiffiffiffi
πr

p ð1Þ

Here, the model was run for vesicle diameters of 0.1, 0.2,
0.3, 0.5, 1.0 and 2.0mm and porosity values of 2, 5, 10, 15, 20,
25, 30, 35 and 40 %. In all cases, we have taken KIC as
1.0 MPa m0.5 (we note that changing KIC will just shift the
values of UCS and will not change the shape of the curves). A
KIC of 1.0 MPa m0.5 is similar to that measured for defect-free
borosilicate glass (about 0.7MPam0.5;Wiederhorn 1969). The
pore-emanating crack model of Sammis and Ashby (1986) has
been previously deployed to understand the mechanics of
porous materials, including sandstone (e.g. Baud et al. 2013),
limestone (e.g. Zhu et al. 2010), volcanic rocks (e.g. Zhu et al.
2011; Heap et al. 2014) and porous glass (Vasseur et al. 2013).

Stochastic modelling: rock failure and process analysis code
(RFPA)

Elastic damage mechanics models have previously been used
to study the process of damage accumulation and failure
evolution in materials (e.g. Lemaitre and Chaboche 1990).
Due to their flexibility, they have been used to simulate a wide
range of observations and aid in the understanding of

numerous geophysical and engineering problems. For exam-
ple, such models have been used to understand the progres-
sion of rock failure (Tang 1997; Wong et al. 2006), time-
dependent deformation (Amitrano and Helmstetter 2006; Xu
et al. 2012), coal and gas outbursts in underground collieries
(Xu et al. 2006), rockslides (Lacroix and Amitrano 2013),
crustal seismic cycles (Tang et al. 2003) and permeability
evolution during damage accumulation and failure (Xu and
Tang 2008), amongst others. We have implemented a time-
independent model so that our model output can be compared
with the wealth of existing experimental UCS data (where
materials are typically deformed at strain rates of 10−5 s−1, i.e.
too high to observe significant time-dependent effects). In this
study, we adopt the convention that compressive stresses and
strains are positive.

The two-dimensional numerical samples of this study—
40 mm in length and 20 mm in width—consist of 80,000
square elements with sides of 0.1 mm. The samples are all
assigned the samemacroscopic physical andmechanical prop-
erties (Table 1). These macroscopic properties are considered
representative of a sample with 0 % porosity, and, in the
absence of microscale heterogeneities, the numerical sample
would have a modelled UCS and Young’s modulus of
2,300 MPa and 100 GPa, respectively. However, natural sam-
ples are rarely uniform and contain defects (microcracks and
microlites, amongst others) on the microscale. To reflect ma-
terial heterogeneity on the microscale, each 0.1-mm square
element is assigned a value of strength (compressive and
tensile) and Young’s modulus using a Weibull probability
density function (Weibull 1951):

σ uð Þ ¼ m

u0

u

u0

� �m−1

exp −
u

u0

� �m� �
ð2Þ

where u is the scale parameter of an individual element, and u0
is the scale parameter of the average element. Weibull

Fig. 1 a Two-dimensional elastic
medium of Sammis and Ashby
(1986) populated by circular
voids of uniform radius r. b Pore-
emanated wing-cracks propagate
from the circular voids (to a
length l) upon the application of
an axial stress (one large enough
to overcomeKIC). c Eventually, as
axial stress increases, the wing-
cracks grow further, interact and
promote macroscopic failure
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distributions have previously been used in numerical model-
ling (Tang 1997; Xu et al. 2004; Wong et al. 2006; Xu and
Tang 2008; Xu et al. 2012) and have successfully captured the
process of brittle damage accumulation and failure evolution.
The shape parameter m (the homogeneity index) reflects the
degree of heterogeneity in the numerical sample. The value of
m describes the distribution of the physical and mechanical
properties of the elements about the mean. The distribution is
broad for low values of m (m<3), meaning that the properties
of the elements can be very different to that of the mean value;
this results in a very heterogeneous sample. The distribution is
tight for high values ofm (m>10), meaning that the properties
of the elements do not differ greatly from the mean value; this
results in a fairly homogenous sample (more information
about the m parameter is provided in Xu et al. (2012)). We
have chosen to letm=3 for all of our numerical simulations. A
numerical sample with 0 % porosity is shown in Fig. 2a. Each
0.1-mm element is assigned a greyscale value corresponding
to the strength of the element (darker colours have values of
strength lower than the mean, and vice versa). The modelled
output shows that the microscopic heterogeneity serves to
lower the UCS (to 553 MPa) of the numerical sample
(Fig. 2b). We highlight that the UCS of porosity-free borosil-
icate glass is about 600 MPa (Vasseur et al. 2013), serving to
validate our choice of macroscopic physical and mechanical
properties (Table 1) and shape parameter m.

We introduced porosity (2, 5, 10, 15, 20, 25, 30, 35 or
40 %) into our numerical samples in the form of circular
vesicles. For each value of porosity, we prepared samples that
contained vesicle diameters of 0.1, 0.3, 0.5 and 1.0 mm (a total
of 36 different combinations). Examples of the numerical
samples of porosity 2, 20 and 40 % are given as Fig. 3. To
investigate the influence of an inhomogeneous vesicle size
distribution on strength, we performed a second set of simu-
lations using numerical samples containing 2 and 40 % po-
rosity with an equal area of 0.1-mm vesicles and 0.3, 0.5 or
1.0-mm vesicles (examples of which are given in Online
Resource 1). Vesicles were placed in the samples at random
and without overlap. The simulations of this study consider a
simplistic system; the rocks or magma do not contain crystals
(i.e. the magma is two phase) or pre-existing microcracks
greater than 0.1 mm in length.

The numerical samples were uniaxially (σ1>0MPa; σ2 and
σ3=0 MPa) loaded in 0.002-mm increments until sample
failure. Following each uniaxial loading increment, the stress
acting upon each element was calculated using the following
relation:

σ1 ¼ E0 1−Dð Þε1 ð3Þ

where D is the isotropic damage variable, σ1 is the axial
stress, ε1 is the axial strain, and E0 is the Young’s modulus of
an undamaged element. If the stress acting on a particular
element met one of the two strength criteria (see below), the

Table 1 The physical and mechanical properties used in the rock failure
and process analysis code (RFPA) stochastic modelling

Homogeneity index 3

Mean uniaxial compressive strength (MPa) 2,300

Mean Young’s modulus (GPa) 100

Poisson’s ratio 0.25

Ratio of compressive to tensile strength 10

Frictional angle (degrees) 30

Fig. 2 a Numerical sample, 20 mm in width and 40 mm in length,
containing 0 % porosity. The upper and lower ‘pistons’ are represented
in dark grey. The lower piston remains fixed during the simulations, and
the upper piston incrementally moves down to apply strain to the sample.
The direction of loading, σ1, is parallel to the long axis of the sample. b
The uniaxial stress–strain curve, together with the AE activity, for the
sample shown in a. The inset shows the final stress field snapshot of the
sample
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element was damaged and its Young’s modulus modified
according to the following elastic damage constitutive law
(Lemaitre and Chaboche 1990):

E ¼ E0 1−Dð Þ ð4Þ

where E0 is the Young’s modulus of the damaged element.
We note that, although Eq. 4 stipulates that the Young’s
modulus of an element is 0 GPa when D=1 (completely
damaged), the programme assigns a value of 1.0×10−5 GPa
to prevent the system of equations from being ill-posed. The
constitutive relations described by Eqs. 3 and 4 are therefore

Fig. 3 Examples of the
undeformed numerical samples
with homogeneous vesicle size
distributions used in this study
(we use numerical samples
containing porosity values of 2, 5,
10, 15, 20, 25, 30, 35 and 40 %).
Numerical samples containing a
2 % porosity, b 20% porosity and
c 40 % porosity (all with vesicle
diameters from 0.1 to 1.0 mm)
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highly dependent on damage parameter D. The following
constitutive law can describe the first of the two strength
criteria, the maximum tensile strain criterion:

D ¼ 1−
0 σtr

εE0
1

εtu
ε > εt0
≤ ε < εt0
ε < εtu

8<
: ð5Þ

where σtr is the residual uniaxial tensile strength, εtu is the
ultimate tensile strain of the element, and σtr=λσt0 (where λ is
the residual strength coefficient, and σt0 is the uniaxial tensile
strength at the elastic strain limit, εt0). For the second strength
criterion, theMohr–Coulomb criterion, the damage variableD
can be described as follows:

D ¼
0

1−
σcr

εE0

ε < εc0
ε ≥ εc0

(
ð6Þ

where σcr is the residual uniaxial compressive strength and
is defined as σcr=λσc0 (where λ is the residual strength coef-
ficient, and σc0 is the uniaxial compressive strength at the
elastic strain limit). During the loading of the numerical sam-
ple, the tensile strength criterion was more likely to be met
since the tensile strength was set as one tenth of the compres-
sive strength (Table 1; Jaeger et al. 2007). If no elements were
damaged in a particular loading increment, the numerical sam-
ple was simply subjected to the next 0.002-mm strain incre-
ment. However, if any elements were damaged, their Young’s
moduli were modified according to Eqs. 3 and 4, and the
distribution of stress within the sample was recalculated. This
process continued until no further elements were damaged. The
numerical sample was then subjected to the next 0.002-mm
strain increment. This procedure continued until macroscopic
sample failure. A flow chart showing the procedure is given as
Online Resource 2. We used the number of failed elements in
each strain step as a proxy for the acoustic emission (AE)
events—transient elastic waves generated by the rapid release
of strain energy released during microcracking—that are usu-
ally monitored during rock deformation experiments (Lockner
1993). We also therefore monitored the spatial and temporal
distribution of AE events during the deformation of the sample.

Results and discussion

Homogeneous vesicle size distribution

Micromechanical modelling

The results of the Sammis and Ashby (1986) pore-emanating
crack modelling show that porosity (Fig. 4a) and vesicle size
(Fig. 4b) play an important role in dictating brittle strength. An
increase in porosity and/or vesicle diameter always results in a

reduction in uniaxial compressive strength. The applied stress
is concentrated around the vesicle so that the groundmass at
the north and south poles of the vesicle are in tension. Vesicle-
emanating cracks form within these areas of stress concentra-
tion and grow parallel to the direction of the applied macro-
scopic stress. Cracks that were not neighbours when they were
short become neighbours as they grow longer, resulting in
crack interaction and further stress magnification. This even-
tually leads to macroscopic sample failure. It follows that the
higher the porosity, the higher the vesicle density (at a constant
vesicle size), and therefore, the crack length and the applied
macroscopic stress required for crack interaction are reduced.
The formulation of Sammis and Ashby (1986) for the stress
intensity factor (KI) at a vesicle-emanating crack tip shows
that the stress intensity will be higher when the vesicle diam-
eter is higher (see also Zhu et al. 2010). Since the crack
propagates when KI=KIC, the larger the vesicle, the lower
the stress required to propagate a crack, explaining the depen-
dence of UCS on the vesicle diameter (at a constant porosity).

The model highlights that the reduction in brittle strength
as porosity or vesicle size increases is nonlinear (previously
resolved in experimental studies, e.g. Zhu et al. 2010; Baud
et al. 2014); the largest reductions are observed at low porosity
(Fig. 4a) and small vesicle diameters (Fig. 4b). In detail, the
reduction in UCS with increasing porosity is vesicle size
dependent. This can be best observed by plotting the rate of
UCS reduction against porosity (Fig. 5a). For example, if one
were to consider a reduction rate of 2 MPa per 0.1 % porosity
increase as the transition between a high and low rate of
strength reduction, the porosity of this transition is reduced
as vesicle size increases (6.7, 5.3, 4.6, 3.8, 3.0 and 2.4 % for
vesicle diameters of 0.1, 0.2, 0.3, 0.5, 1.0 and 2.0, respective-
ly). In other words, below these values, small changes in
porosity can produce large changes in strength, and vice versa.
The reduction in UCSwith increasing vesicle size, however, is
only dependent on porosity up to a porosity of about 15 %.
Above a porosity of 15 %, the UCS versus vesicle diameter
curves all follow approximately the same path (Fig. 4b); the
10, 5 and 2 % porosity curves are progressively offset from
these curves (Fig. 4b). The transition to a strength reduction
rate of 2 MPa per 0.01-mm diameter increase occurs at vesicle
diameters of 0.57, 0.44, 0.37, 0.33, 0.30, 0.29, 0.27, 0.26 and
0.25 mm for porosity values of 2, 5, 10, 15, 20, 25, 30, 35 and
40 %, respectively (Fig. 5b). In other words, above a porosity
of 15 %, an increase in vesicle diameter reduces the strength
by a similar magnitude regardless of the porosity (up to 40%).
Taken together, we can conclude that vesicle diameter can
play an important role in dictating brittle strength at low
porosity (as porosity increases, strength is reduced at a higher
rate when the vesicle diameter is larger) but is largely incon-
sequential above 15 % porosity. Vesicle clustering and stress
lobe interaction are implicit at high porosity, regardless of the
vesicle diameter.
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Stochastic modelling

The RFPA stochastic model provides simulated stress–strain
curves, an example of one such curve is shown in Fig. 6 (in
this case, 2 % porosity and a vesicle diameter of 1 mm). The
cumulative AE counts are also shown in Fig. 6. We notice that
the stress–strain curve (see Hoek and Bieniawski 1965; Brace
et al. 1966; Scholz 1968a) and associated AE activity (see
Scholz 1968b) closely matches those typically seen in uniaxial
compression experiments in the laboratory. The stress–strain
response is first very nearly linear (there is no concave portion
typically associated with microcrack closure; our samples do
not contain pre-existing microcracks) and represents elastic or
recoverable strain accumulation. Beyond a certain stress,
about 200 MPa in this case, the curve departs from linearity.
This represents the accumulation of permanent damage, the

onset of which is contemporaneous with the start of the AE
activity (or the failing of elements in the model). The numer-
ical sample eventually fails, marked by a drop in the stress and

Fig. 4 The results of the Sammis and Ashby (1986) pore-emanating
crack modelling. a Uniaxial compressive strength against total porosity
(up to 40 %) for vesicle diameters of 0.1, 0.2, 0.3, 0.5, 1.0 and 2.0 mm. b
Uniaxial compressive strength against vesicle diameter (up to 2.0 mm) for
porosity values of 2, 5, 10, 15, 20, 25, 30, 35 and 40 %

0

Fig. 5 The results of the Sammis and Ashby (1986) pore-emanating
crack modelling. a Rate of uniaxial compressive strength reduction per
0.1 % porosity increase against total porosity (up to 40 %) for vesicle
diameters of 0.1, 0.2, 0.3, 0.5, 1.0 and 2.0 mm. b Rate of uniaxial
compressive strength reduction per 0.01-mm vesicle diameter increase
against vesicle diameter (up to 2.0 mm) for porosity values of 2, 5, 10, 15,
20, 25, 30, 35 and 40 %

Fig. 6 Uniaxial stress–strain curve, together with the AE activity, for a
numerical sample with a homogeneous vesicle size distribution contain-
ing 2 % porosity and a vesicle diameter of 1.0 mm. The letters next to the
stress–strain curve correspond to the stress field and AE snapshots shown
in Fig. 7 and Online Resource 3, respectively
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a burst of AE activity. In this case, failure occurred at about
356 MPa and after about 0.5 % axial strain. The RFPA model
also permits the visualisation of the temporal and spatial
evolution of the stress field (Fig. 7) and the AE activity
(Online Resource 3). In the stress field snapshots, the
greyscale represents the magnitude of the stress: darker col-
ours represent low stresses, and vice versa. Any black areas
represent completely damaged elements (D=1). In the AE
activity snapshots, each circle represents an AE event. The
size of the circle relates to the magnitude of the released
energy (larger circles are higher energy events, see Xu et al.

2012 for more details), and the colour relates to the type of
event (red for tensile cracks and white for compressive shear
cracks). Any black circles represent AE events from a previ-
ous calculation step. The stress snapshot at 0.4 % strain
(Fig. 7a) shows how the presence of vesicles locally amplifies
the stress within the groundmass adjacent to the vesicle. At
0.4 % strain, and as a result of these stress concentration lobes,
microcracks are initiated from or near to the vesicle walls (i.e.
the weakest elements within the area of stress concentration
fail). These failed elements augment the stress on their
neighbouring elements and allow microcracks to develop.

Fig. 7 Stress field snapshots
showing the progression of
sample failure for the numerical
sample with a homogeneous
vesicle size distribution
(containing 2 % porosity and a
vesicle diameter of 1.0 mm)
shown in Fig. 6
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As strain accumulates in the sample, these microcracks grow
and coalesce with other vesicle-emanating microcracks and
nearby vesicles. This is most evident in the centre of the
sample shown in Fig. 7 where the stress fields of neighbouring
vesicles within a vesicle cluster can interact (stress field over-
lap and interaction further amplify the stress). Eventually, the
coalescence of vesicle-emanating microcracks conspires to
fail the sample. The AE locations paint a similar story
(Online Resource 3). We note that the vast majority of the
microcracks are initiated in tension (as typically observed
during the failure of rock in compression, see Stanchits et al.
(2006)). While we show this numerical sample as an example
(it best demonstrates the failure process due to the low poros-
ity and large vesicle diameter), we note that all the simulated
samples (regardless of porosity and vesicle size) failed under
the same circumstances: the coalescence of vesicle-emanating
microcracks.

The model output shows that , s imi lar to the
micromechanical modelling, porosity and vesicle size play
an important role in dictating rock strength (Fig. 8; Table 2).
In detail, an increase in porosity and vesicle diameter reduces
brittle strength. The model output is qualitatively similar to
those of the micromechanical modelling (Fig. 5). The pres-
ence of vesicles locally amplifies the stress within the ground-
mass (Jaeger et al. 2007; Sammis and Ashby 1986) and
promotes the nucleation of vesicle-emanating microcracks
that grow, coalesce and eventually lead to macroscopic sample
failure (Fig. 7). As porosity increases, not only do the samples
contain more void space (meaning that macroscopic failure
requires the failure of fewer elements; see Online Resource 4
and Table 2) but also the likelihood of vesicle clustering and
stress field overlap and interaction increases. Stress field in-
teraction further magnifies the stress and promotes microcrack
initiation and growth and ultimately sample failure, at lower
applied stresses. Vesicles with a larger diameter magnify the
stress of a larger area (perturbations in the stress field can be
considered negligible at distances greater than ten times the
diameter; Jaeger et al. 2007). This may imply that, at constant
porosity, larger vesicles create more stress field overlap than
smaller vesicles or that the fewer, larger stress concentration
lobes of the larger vesicles increase the likelihood that weaker
elements are found within the area of stress concentration.
However, the model also shows that, at constant porosity,
failure requires the failure of fewer elements when the vesicle
diameter is larger (Online Resource 4 and Table 2); larger
vesicles permit a shorter route through the groundmass for the
macroscopic shear fracture.

The modelled output of Fig. 8b shows, similar to the
micromechanical modelling of Fig. 5b, that the curves for
the samples containing porosity values lower than 15 % are
increasingly offset from those above 15 %. As explained
above, the model output suggests that, below a porosity of
15 %, vesicle diameter plays an important role in dictating

brittle strength. The stress fields of neighbouring vesicles can
easily interact above a porosity of 15 %, regardless of their
diameter, due to their proximity at high porosity.

The number of AEs (Online Resource 4) and the axial
strain (Online Resource 5) required for brittle failure also
decrease as porosity and vesicle diameter increase (see also
Table 2). The number of AEs required for brittle failure falls
from about 11,500 hits (2 % porosity and 0.1-mm vesicles) to
about 1,500 hits (40 % porosity and 1.0-mm vesicles). Axial
strains of about 0.75 % are required for failure at low porosity
values and small vesicle diameters, whereas, for high poros-
ity values and large vesicle diameters, strain at failure can be
as low as 0.3 %. We also highlight that the curves for the
number of AEs (Online Resource 4) and the axial strain
(Online Resource 5) required for failure are very similar for
samples containing a porosity of 15 % or higher, regardless
of the vesicle diameter. It follows that samples with the same
strength should fail at similar strains and numbers of AEs.

An increase in porosity also serves to dramatically reduce
Young’s modulus, from just below 80 GPa at 2 % to as low as

Fig. 8 The results of the rock failure and process analysis (RFPA) code
stochastic modelling for samples with a homogeneous vesicle size distri-
bution. a Uniaxial compressive strength against total porosity (up to
40 %) for vesicle diameters of 0.1, 0.3, 0.5 and 1.0 mm. b Uniaxial
compressive strength against vesicle diameter (up to 1.0 mm) for porosity
values of 2, 5, 10, 15, 20, 25, 30, 35 and 40 %. The strength of a sample
containing 0 % is represented by the red stars
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about 20 GPa at 40 % (Online Resource 6 and Table 2). We
note that the Young’s modulus–porosity curves follow the
same path at vesicle diameters of 0.3 mm and above, suggest-
ing that an increase in vesicle diameter above 0.3 mm (at
constant porosity) does not influence the Young’s modulus.

Inhomogeneous vesicle size distribution

We performed a series of pilot simulations, using the RFPA
stochastic model, in which we populated the sample with
vesicles of two different diameters. The motivation behind
these simulations was to see whether the strength of the
sample containing two vesicle size populations would be
closer to that of the smallest vesicle diameter (i.e. 0.1 mm)
or the largest vesicle diameter (0.3, 0.5 or 1.0 mm). The results
are shown as Fig. 9. The blue bars represent the small-
diameter end-member (0.1 mm), the green bars represent the
large-diameter end-member (0.3, 0.5 or 1.0 mm), and the red
bars represent an equal (in area) mixture of the two end-
members. The histograms of Fig. 9 show that the strengths
of the samples containing an inhomogeneous vesicle size
distribution (the red bars) are much closer to the strengths of
the large-vesicle-diameter end-members (the green bars).
Therefore, the large vesicles are dictating the strength of the
sample. To illustrate why this is the case, one only needs to
look at the snapshots showing the progression of damage
accumulation in the samples. Two examples are presented as
Fig. 10. Figure 10 shows that the 0.1-mm vesicles, although
equal in area to the larger vesicles (and therefore greater in
number), only influence the stress in their immediately adja-
cent elements, limiting stress field interaction. By contrast, the
larger vesicles have a much broader impact and influence the
stress on many elements, increasing the probability of stress
field interaction (see, for example, the first snapshot of
Fig. 10a). As strain accumulates in the samples, the vesicle-
emanating microcracks grow from the large vesicles; eventu-
ally, their growth and coalesce result in macroscopic sample
failure. We note that, since an inhomogeneous vesicle size

Table 2 Model output summary for all of the RFPA simulations per-
formed in this study

Total
porosity
(%)

Vesicle
diameter
(mm)

Peak
stress
(MPa)

Strain at
failure
(%)

Young’s
modulus
(GPa)

Acoustic
emissions
required
for failure

0 N/A 553.5 0.7375 80.8 10,018

2 0.1 543.2 0.7500 78.6 11,576

2 0.3 426.9 0.6000 76.0 8,568

2 0.3 382.5 0.5500 75.7 6,697

2 0.5 358.2 0.5000 75.7 6,936

2 1.0 355.6 0.5000 76.0 7,032

2 0.1; 0.3 484.5 0.6750 77.2 9,854

2 0.1; 0.5 433.5 0.6000 77.1 8,462

2 0.1; 1.0 374.0 0.5125 76.9 7,783

5 0.1 482.3 0.6750 76.2 8,332

5 0.3 333.3 0.5250 69.3 6,939

5 0.3 303.5 0.4750 69.1 3,827

5 0.5 291.2 0.4625 69.0 6,870

5 1.0 229.8 0.4125 68.2 5,783

10 0.1 427.1 0.6500 71.3 11,000

10 0.3 229.9 0.4375 59.3 5,639

10 0.3 235.5 0.4375 58.9 4,854

10 0.5 200.1 0.3875 58.1 4,470

10 1.0 186.2 0.4375 58.8 4,441

15 0.1 330.5 0.6125 66.2 6,947

15 0.3 182.2 0.3750 50.0 5,788

15 0.3 168.6 0.3750 50.0 3,326

15 0.5 149.1 0.3375 50.4 2,555

15 1.0 103.4 0.3000 48.5 2,958

20 0.1 333.9 0.5750 63.3 5,124

20 0.3 134.9 0.3750 42.0 2,846

20 0.3 140.0 0.3875 41.9 3,933

20 0.5 117.4 0.3125 42.2 2,375

20 1.0 71.6 0.3000 39.7 2,489

25 0.1 287.0 0.5125 59.6 5,649

25 0.3 109.9 0.3625 34.9 2,180

25 0.3 112.3 0.4000 35.2 3,144

25 0.5 86.2 0.2875 34.5 1,808

25 1.0 75.8 0.3250 34.3 2,545

30 0.1 281.0 0.5375 56.4 5,451

30 0.3 84.8 0.4000 28.5 3,427

30 0.3 89.4 0.3875 29.0 3,340

30 0.5 80.6 0.3500 29.0 2,968

30 1.0 55.6 0.2625 27.0 1,912

35 0.1 277.5 0.5250 56.6 5,567

35 0.3 74.8 0.3625 23.8 2,816

35 0.3 71.6 0.3875 23.5 2,328

35 0.5 60.6 0.3125 23.7 1,740

35 1.0 42.3 0.2500 22.2 1,654

40 0.1 219.3 0.4750 50.7 6,174

Table 2 (continued)

Total
porosity
(%)

Vesicle
diameter
(mm)

Peak
stress
(MPa)

Strain at
failure
(%)

Young’s
modulus
(GPa)

Acoustic
emissions
required
for failure

40 0.3 54.3 0.3375 18.7 1,311

40 0.3 60.9 0.4125 18.8 2,841

40 0.5 46.5 0.3125 19.0 1,394

40 1.0 35.0 0.2375 17.9 1,313

40 0.1; 0.3 92.3 0.3625 29.2 3,044

40 0.1; 0.5 77.9 0.3000 29.9 1,982

40 0.1; 1.0 54.8 0.2500 27.3 1,460
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distribution is a more realistic scenario in nature, future efforts
should be focused in this direction.

Volcanological significance

Volcanic rocks

The residual porosity and diameter of the preserved vesicles,
and their diameter size distribution, in volcanic rock depend
on the attributes of the magma from which they form (e.g.
melt viscosity and magma volatile content and type;
Gonnermann and Manga 2012 and references therein) and
its eruptive history (e.g. decompression rate; Gondé et al.
2011; Gonnermann and Manga 2012 and references therein).
Experimental studies on volcanic rocks have shown that
strength decreases as the porosity increases (e.g. Al-Harthi
et al. 1999; Heap et al. 2014). Our modelled output agrees
with this observation and also offers insight into the role of
vesicle size on brittle strength.

Viewed simplistically, conditions that favour the formation
of rocks with high porosity and/or large vesicle diameters (e.g.
explosive volcanoes) will deposit volcanic strata with a low
brittle strength, and vice versa (e.g. effusive volcanoes).
Explosive volcanoes that persistently erupt high-porosity vol-
canic rocks with large vesicle diameters may therefore erect
structurally unstable edifices that could be susceptible to
devastating flank collapse (e.g. Voight and Elsworth 2000).
However, volcanoes typically switch between explosive
(high-porosity products) and effusive (low-porosity
products) activity, and can have rapidly evolving ascent rates
and outgassing efficiency, and are therefore more likely to
construct an edifice comprising layers of rock containing
very different porosity values and vesicle diameters. Our
modelling has shown that porosity and vesicle diameter
can severely doctor the strength (Fig. 4) and Young’s
modulus (Online Resource 6). Stratovolcanoes, construct-
ed from alternating layers of rock with different Young’s
moduli and strengths (as depicted in Fig. 11), will pro-
mote the arrest or deflection of propagating dykes and
fractures thereby increasing the strain energy required for
large-scale failure (e.g. Gudmundsson 2009, 2012). A
summary diagram, showing the evolution of strength,
Young’s modulus, strain at failure and acoustic emissions
required for brittle failure in lava strata containing vari-
able porosity/vesicle sizes, is given as Fig. 11.

Magma

If melts are deformed at strain rates in excess of the inverse of
their relaxation timescale, then the melt phase will behave as a
solid (Dingwell and Webb 1990; Dingwell 1996). For exam-
ple, the fragmentation of silicic melts has been observed
experimentally during rapid decompression (e.g. Martel
et al. 2000). The purely brittle response of melt is exemplified
by the similarity between fragmentation data obtained at 25
and 850 °C (e.g. Mueller et al. 2008). Numerical modelling
has shown that the shear strain rate within the conduit in-
creases from the centre to the margin; shear strain rates also
increase with increasing ascent distance, expanding the brittle
field at the conduit margins (e.g., Gonnermann and Manga
2003; Fig. 12). The model of Gonnermann and Manga (2003)
demonstrated that the melt near the conduit would eventually
be subjected to shear strain rates that exceed their structural
relaxation timescale. We reiterate that our modelling can only
be applied to the magma within these narrow zones; the
magma in the centre of the conduit will deform viscously.
Further, our modelling only considers two-phase brittle mag-
ma (i.e. melt and vesicles) in which the vesicles do not contain
an overpressure. It is likely that the transition to a brittle
response will be met at lower bulk strain rates in the presence
of crystals (e.g. Lavallée et al. 2007; Cordonnier et al. 2012;
Kendrick et al. 2013) or bubble overpressures.

Fig. 9 The results of the RFPA numerical modelling for the samples with
an inhomogeneous vesicle size distribution. a Histogram showing the
modelled uniaxial compressive strengths for samples with a homoge-
neous vesicle size distribution with porosity of 2 % and vesicle sizes of
0.1 mm (blue bars) and 0.3, 0.5 or 1.0 mm (green bars) and samples with
an inhomogeneous vesicle size distribution with porosity of 2 % and an
equal area of 0.1-mm vesicles and 0.3, 0.5 or 1.0-mm vesicles (red bars,
labelled ‘M’). b The same as in a but for samples containing porosity of
40 %
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Since the volatiles contained within the magma are less
soluble as themagma depressurises on its way to the surface, it
is likely therefore that vesicle size, porosity or both vesicle
size and porosity will increase as distance to the surface
decreases (e.g. Gonnermann and Manga 2012). We have
depicted two scenarios in Fig. 12: one in which the vesicle
size increases with height in the conduit (Fig. 12a) and another
in which porosity increases with height in the conduit
(Fig. 12b). These end-member scenarios, represented as car-
toons, show the areas of the conduit likely to experience brittle
deformation (dark grey) and those areas likely to deform
viscously (light grey), governed by the inhomogeneous distri-
bution of strain rate within the conduit (illustrated by the graph
between the cartoons, Gonnermann and Manga 2003). The
brittle strength curves for increasing vesicle size and porosity,
taken from the micromechanical modelling (Fig. 4), are
shown next to the appropriate cartoon. The modelled output

suggests that, for a constant porosity (Fig. 12a) or vesicle size
(Fig. 12b), the brittle strength at the conduit margins will
decrease significantly as distance to the surface decreases.
We also note that our stochastic modelling suggests that the
strain (Online Resource 5) and acoustic emission hits (Online
Resource 4) required for brittle failure will decrease as dis-
tance to the surface decreases. In nature, a much more likely
scenario is that vesicle size and porosity both increase as
distance to the surface decreases (i.e. a scenario between these
two end-members). We have represented this scenario as a
dashed red line on each graph. We note that the red line
follows the same trajectory as the UCS-total porosity data
for porous magma presented in Vasseur et al. (2013). Our
modelled output illustrates, depending on the attributes of
the magma, how brittle strength can deviate from this
idealised curve. For instance, for a given volume of volatiles,
if the bubbles can coalesce with a greater ease (perhaps their

Fig. 10 Stress field snapshots
showing the progression of
sample failure for two numerical
samples with inhomogeneous
vesicle size distributions, one
containing 2 % porosity and
vesicle diameters of 0.1 and
1.0 mm (a) and one containing
2 % porosity and vesicle
diameters of 0.1 and 0.5 mm (b)

Fig. 11 Summary diagram
showing the evolution of brittle
strength, Young’s modulus, strain
at failure and acoustic emissions
required for brittle failure in lava
strata containing variable
porosity/vesicle sizes
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movement is not restricted by a high crystal content, or the
viscosity is low and allows for efficient bubble migration and
coalescence), then the magma will have a considerably lower
brittle strength. This huge reduction in strength can occur in
low-porositymagma far from the surface (Fig. 12b). Similarly,
magma containing high volatile contents, or magma that is
unable to efficiently outgas, can have high porosity values and
therefore low brittle strengths. Strong magma requires low
porosity values and small vesicle diameters.

The brittle failure of magma at the conduit boundary is
likely to increase its permeability (e.g. Laumonier et al.
2011; Kolzenburg et al. 2014; Lavallée et al. 2013;
Kendrick et al. 2013). The ease at which volatiles can
escape through the side of the conduit into the host rock
(Jaupart 1998), or along conduit faults to the surface
(Lavallée et al. 2013), can promote or diffuse explosivity
(e.g. Mueller et al. 2008). Therefore, magma with large
vesicles and/or high porosities (that have low brittle

Fig. 12 Cartoons of magma
conduits showing scenarios in
which vesicle diameter increases
(a) and porosity increases (b) as
distance to the surface decreases.
The cartoons show the areas
expected to behave in a viscous
(light grey) and a brittle (dark
grey) manner (Gonnermann and
Manga 2003). Brittle strength
curves (from the
micromechanical modelling of
Fig. 4) are provided for each
cartoon (see text for details)
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strengths as a result), may aid outgassing and reduce erup-
tion explosivity, and vice versa.

Concluding remarks and perspectives

This contribution presents the results of modelling designed to
shed light on the influence of porosity and vesicle size on the
brittle strength of volcanic rocks and magma. We find that
porosity and vesicle size play an important role in governing
brittle strength. An increase in porosity and/or vesicle diame-
ter results in a reduction of uniaxial compressive strength.
Vesicles generate tensile stress concentration lobes within
the groundmass. Microcracks preferentially nucleate within
these zones and propagate towards the direction of the mac-
roscopic applied stress. Eventually, vesicle-emanating
microcracks interact, coalesce and promote macroscopic fail-
ure. Vesicle clustering (allowing stress concentration lobes of
neighbouring vesicles to overlap) and an increase in the ease
of microcrack interaction reduce the strength at higher poros-
ity (at a constant vesicle size). Larger vesicles lower the
macroscopic applied stress required to propagate vesicle-
emanating microcracks, explaining the reduction in strength
at higher vesicle diameters (at constant porosity). The models
demonstrate that the reduction in strength as porosity or ves-
icle size increases is nonlinear (a trend previously resolved
through experimentation); the largest reductions are observed
at low porosity and small vesicle diameters. In detail, vesicle
diameter can play an important role in dictating strength at low
porosity but is largely inconsequential above 15 % porosity.
Regardless of the vesicle diameter, vesicle clustering and
stress field overlap are unavoidable at high porosity.
Samples containing a bimodal vesicle size distribution are
closer to the strength of the largest vesicle size end-member;
indeed, vesicle-emanating microcracks first nucleate from the
largest vesicles.

The implications of these results are that highly porous lava
and magma with high vesicle diameters will have low brittle
strengths. Persistently explosive (high-porosity products) and
effusive (low-porosity products) volcanoesmay construct weak
and strong edifices, respectively. Weak edifice-forming lava
may leave the edifice more susceptible to large-scale failure.
However, stratovolcanoes built from successive explosive and
effusive eruptions may be strong as alternating weak and strong
layers may promote fracture and dyke arrest. Magma contain-
ing high porosity values and large vesicle diameters may suffer
brittle fracture more readily at the conduit boundary where it
can behave in a brittle manner. This could increase permeabil-
ity, facilitate outgassing and reduce the eruption explosivity.

We highlight that the variety in the microstructure of vol-
canic rocks and magma is extremely wide. We have not, in
this contribution, considered a complete description. For in-
stance, we have not considered crystals, bubble overpressures

or variations in vesicle shape. Our modelling approach does,
however, offer valuable insights and a basis for future studies
using these models, largely unused in volcanology at present.
Forthcoming efforts will focus on the influence of bubble
overpressure and crystal content.
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