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The physical integrity of a sub-volcanic basement is crucial in controlling the stability of a volcanic edifice. For
many volcanoes, this basement can comprise thick sequences of carbonates that are prone to significant
thermally-induced alteration. These debilitating thermal reactions, facilitated by heat from proximal magma
storage volumes, promote the weakening of the rock mass and likely therefore encourage edifice instability.
Such instability can result in slow, gravitational spreading and episodic to continuous slippage of unstable
flanks, and may also facilitate catastrophic flank collapse. Understanding the propensity of a particular
sub-volcanic basement to such instability requires a detailed understanding of the influence of high tempera-
tures on the chemical, physical, and mechanical properties of the rocks involved. The juxtaposition of a thick
carbonate substratum and magmatic heat sources makes Mt. Etna volcano an ideal candidate for our study.
We investigated experimentally the effect of temperature on two carbonate rocks that have been chosen to rep-
resent the deep, heterogeneous sedimentary substratum under Mt. Etna volcano. This study has demonstrated
that thermal-stressing resulted in a progressive and significant change in the physical properties of the two
rocks. Porosity, wet (i.e., water-saturated) dynamic Poisson's ratio and wet Vp/Vs ratio all increased, whilst
P- and S-wave velocities, bulk sample density, dynamic and static Young's modulus, dry Vp/Vs ratio, and dry
dynamic Poisson's ratio all decreased. At temperatures of 800 °C, the carbonate in these rocks completely
dissociated, resulting in a total mass loss of about 45% and the release of about 44 wt.% of CO2. Uniaxial defor-
mation experiments showed that high in-situ temperatures (>500 °C) significantly reduced the strength of the
carbonates and altered their deformation behaviour. Above 500 °C the rocks deformed in a ductile manner and
the output of acoustic emissions was greatly reduced. We speculate that thermally-induced weakening and the
ductile behaviour of the carbonate substratum could be a key factor in explaining the large-scale deformation
observed at Mt. Etna volcano. Our findings are consistent with several field observations at Mt. Etna volcano
and can quantitatively support the interpretation of (1) the irregularly low seismic velocity zones present with-
in the sub-volcanic sedimentary basement, (2) the anomalously high CO2 degassing observed, (3) the anoma-
lously high Vp/Vs ratios and the rapidmigration of fluids, and (4) the increasing instability of volcanic edifices in
the lifespan of a magmatic system. We speculate that carbonate sub-volcanic basement may emerge as one of
the decisive fundamentals in controlling volcanic stability.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The stability of a volcanic edifice is a significant element of risk
assessment (McGuire, 1996). Volcanoes, built from successive erup-
tions, effusive or explosive, can be depicted as pseudo-stable piles of
rocks. In contrast to non-volcanic mountains, which form by very
slow uplift, volcanoes are built rapidly and heterogeneously, both in

time and space. One clear consequence is their high propensity for
mass wasting. Volcanic edifice instability need not “merely” result
in the slow, gravitational spreading and episodic to continuous slip-
page of unstable flanks, but can also encourage instantaneous and
devastating flank collapse (Siebert, 1992). Field surveys worldwide
have shown that the collapse of volcanic flanks is common, if not
ubiquitous in the prolonged lifetime of a volcano (Davidson and De
Silva, 2000). The consequences of such events can be enormous,
both in humanitarian and in economic terms. The integrity of the
sub-volcanic basement (the foundation on which the pseudo-stable
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volcanic pile rests) must be of paramount importance in volcano sta-
bility. Previous studies have indeed highlighted the importance of the
sub-volcanic basement in edifice stability (McGuire, 1996; Van Wyk
De Vries and Borgia, 1996, 1997; Szakács and Krézsek, 2006). Unfor-
tunately (in terms of stability), as is the case for many high-risk, ac-
tive volcanoes, when the sub-volcanic basement is comprised of
thick carbonate sequences it is prone to thermally-induced reactions.
Heat, provided by magmatic activity (e.g., see Bonaccorso et al.,
2010), can result in detrimental mineralogical, chemical, and textural
modifications to carbonate rock, leaving it intensely altered, frac-
tured, and thus weakened (e.g., Homand-Etienne and Troalen, 1984;
Samtani et al., 2002; Chen et al., 2009; Mao et al., 2009). The presence
of large, sub-volcanic carbonate sedimentary successions within volca-
nic systems is common. Sub-volcanic carbonate basements seen at
high-risk volcanoes worldwide: Mt. Etna volcano (e.g. Lentini, 1982;
Grasso and Lentini, 1982; Pedley and Grasso, 1992), Mt. Vesuvius
(Bruno et al., 1998; Iacono-Marziano et al., 2009), the Colli Albani volca-
nic district (Chiodini and Frondini, 2001; Iacono-Marziano et al., 2007;
Freda et al., 2008; Gaeta et al., 2009; Mollo et al., 2010a) and the
Campi Flegrei volcanic district (D'Antonio, 2011) in Italy, Popocatépetl
volcano (Goff et al., 2001) and the Colima volcanic complex (Norini
et al., 2010), both Mexico, Yellowstone volcanic system, USA (Werner
and Brantley, 2003) and Merapi, Indonesia (Chadwick et al., 2007;
Deegan et al., 2010; Troll et al., 2012). It becomes clear therefore,
that an important element of volcano stability must focus on the
understanding of the potential thermally-induced weakening of rock
representative of the carbonate successions present under active
volcanoes.

In this study, we used Mt. Etna (Italy), the largest volcanic edifice
in Europe (40 km wide and standing 3.3 km above sea level), as a
case study. Mt. Etna volcano represents an ideal candidate for our
study. Firstly, Mt. Etna is one of the most intensively monitored volca-
noes on Earth. Over the last 20 years, new technological develop-
ments and denser monitoring networks at Mt. Etna have provided
one of the highest quality volcanological, geophysical, and geochem-
ical datasets available for any volcano in the world (Bonaccorso,
2004; Acocella and Puglisi, 2012). Studies have shown that there is
a continuous large-scale ESE seaward sliding of the eastern flank of
Mt. Etna (e.g., Borgia et al., 1992, 2000a,b; Bonforte and Puglisi,
2003; Rust et al., 2005; Bonforte and Puglisi, 2006; Palano et al.,
2008, 2009), with an average rate, calculated from geodetic data col-
lected at the Pernicana fault since 1997, of about 2.8 cm/year (Azzaro
et al., 2001; Palano et al., 2009). A large décollement surface, poten-
tially dictating this large-scale deformation by driving gravity-
driven edifice spreading, has been inferred to exist either at a depth
of about 5 km (e.g., Froger et al., 2001; Lundgren et al., 2004; Neri
et al., 2004) or at a depth between 1.5 and 3 km (e.g., Bonforte and
Puglisi, 2003; Palano et al., 2008).

Secondly, the thin (about 1.5 km thick) basaltic cover atMt. Etna vol-
cano rests upon a vast sub-volcanic sedimentary basement, comprising
of a mélange of marly clays, marly limestones and quartz-arenitic
rocks (about 2 km thick, see Catalano et al., 2004) from the Maghrebi-
an–Appennine Chain, that overly a thick Mesozoic to Mid-Pleistocene
carbonate succession of limestone and dolomite, referred to as the
Hyblean Plateau, or Iblean Plateau (Lentini, 1982; Grasso and Lentini,
1982; Pedley and Grasso, 1992). The Hyblean Plateau is inferred to
start at about a depth of 5 km underneath the volcanic edifice (Tibaldi
and Groppelli, 2002; Behncke and Neri, 2003; Lundgren et al., 2004;
Andronico et al., 2005) and has an average thickness of about 10 km
(see Yellin-Dror et al., 1997 and references therein). Importantly, large,
long-lived magma bodies are known to be present at depths corre-
sponding to the Hyblean Plateau, as inferred by P-wave inversion to-
mography (Chiarabba et al., 2000), thermo-mechanical numerical
modelling (Del Negro et al., 2009; Bonaccorso et al., 2010), and
b-value mapping (Murru et al., 1999). However, the involvement of
the Hyblean Plateau with the magmatic plumbing system at Mt. Etna

volcano does not end there, as newheat sources, in the form of eccentric
reservoirs or peripheral dykes that have fed recent flank eruptions are
also inferred to populate these depth intervals (Acocella and Neri,
2003; Behncke and Neri, 2003; Andronico et al., 2005; Bonforte et al.,
2009; Carbone et al., 2009), potentially exposing fresh, unaltered car-
bonate rock to high temperatures. Volcanic activity at the flanks of Mt.
Etna during the 2001 eruptions (Acocella and Neri, 2003; Behncke and
Neri, 2003) was considered to involve the emplacement of a shallow
dyke (Bonaccorso et al., 2002; Patanè et al., 2002) at about 3.5 km
depth; however, structural and seismic evidence exclude a shallow con-
nection between the summit and the peripheral magmatic systems
(Acocella and Neri, 2003). Since the connection between the summit
and the peripheral magmatic systems is considered to be at deeper
crustal levels (Acocella and Neri, 2003; Carbone et al., 2009), the periph-
eral dykes are likely to have traversed through rocks of the Hyblean Pla-
teau previously unexposed to high temperatures. This was supported by
the fact that, not only was the magma erupted at the flank chemically
distinct from that from the summit, but it also contained abundant sed-
imentary (mostly calcarenites and sandstones) inclusions (Behncke and
Neri, 2003). It was therefore postulated that a new eccentric reservoir,
located within the Hyblean Plateau, fed these new flank eruptions (see
Fig. 8 in Behncke and Neri, 2003). The 2002–2003 flank eruptions at
Mt. Etna volcano were characterised by continuous explosive activity
and intermittent lava extrusion, involving the opening of fissures on
the north-eastern and southern flanks (Andronico et al., 2005). The
magma erupted from the southern fissure during 2002–2003 was
found to be similar in composition to that erupted in 2001, and also
contained sedimentary xenoliths. It is believed that the 2002–2003
eruptions were fed by the same eccentric reservoir exploited in 2001
(Andronico et al., 2005), albeit the magma travelled to the surface
using a new route. Although the lithology of themajority of the erupted
xenoliths (in 2001 and 2002–2003)matchedmore closely with the sed-
iments of the Maghrebian–Appennine Chain, we contend that such
renewed activity at depth could have exposed fresh, unaltered carbon-
ate rock of the Hyblean Plataeu to high temperatures. More recently,
there was activity renewed at Mt. Etna between 2008 and 2009 (see
Alparone et al., 2012 and references therein). However, evidence
suggests that, although a new dyking mechanism may be responsible,
it would be too shallow to create any new pathways through the
Hyblean Plateau (Aloisi et al., 2009).

The geochemical signature of magma-carbonate interaction can
sometimes be seenwithin volcanic products, and is known as “carbon-
ate assimilation” (e.g., Wenzel et al., 2002; Barnes et al., 2005; Gaeta et
al., 2006; Piochi et al., 2006; Chadwick et al., 2007; Freda et al., 2008;
Deegan et al., 2010; Mollo et al., 2010a). Recent petrological studies
have documented in detail that magma contamination is marked by
the overgrowth of Ca-rich phases (mainly calcic clinopyroxene) on
primary minerals (essentially olivine); as a result, the magma be-
comes progressively depleted in silica and enriched in alkalis. This re-
sults in the release of CO2 and Ca-rich fluids (Ague, 2003) that are
strongly controlled by the development of permeability within the
rocks (Balashov and Yardley, 1998; Buick and Cartwright, 2000). Re-
cently, Gaeta et al. (2009) and Mollo et al. (2010a) have provided
new insights into the large-scale, magma-carbonate interaction pro-
cesses occurring inmagma chambers duringmagmatic contamination
and differentiation. Mollo et al. (2010a) proposed that carbonate as-
similation is a three-phase (solid, melt, and fluid) process whose
main products are: diopside-CaTs clinopyroxene solid solution,
silica-undersaturated CaO-Al2O3-rich melt, and C–O–H fluid phase.
Whereas Gaeta et al. (2009) showed that magmatic skarns formed at
the magma-carbonate interface act as a source of CaO-Al2O3-rich sili-
cate melt and that the assimilation of this melt is the process respon-
sible for magma contamination, rather than the ingestion of carbonate
wall-rocks. However, whereas some evidence for the proximity of the
carbonate basement to the magma sources at Mt. Etna have been
provided in the form of: (1) variably-altered carbonate xenoliths,
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considered to be derived from the limestones and dolomites from the
Monte Judica formation and the Hyblean Foreland Units, foundwithin
lavas erupted in 1892, 1986, and within the persistent activity of 1989
at Bocca Nuova (Michaud, 1995); (2) abundant sedimentary xenoliths
found in lavas of the July–August 2001 eruption (Behncke and Neri,
2003) and the magma erupted from the southern fissure during
2002–2003 (Andronico et al., 2005); and (3) geological and structural
evidence (Grasso and Lentini, 1982; Lentini, 1982), as well as the geo-
physical evidence outlined above, petrological data excludes the
ingestion and assimilation of carbonate materials in magmas at
Mt. Etna volcano. The lavas expelled from Mt. Etna volcano in the last
300 ka were of alkaline affinity and range from hawaiite to benmoreite
in composition (Tanguy et al., 1997). Plagioclase, clinopyroxene,
olivine, and titanomagnetite are common minerals for the majority of
historical and pre-historical products. Several experimental studies
have demonstrated that the liquid line of descent of Etnean magmas
is related to the crystallization of these mineral phases under both
equilibrium and disequilibrium conditions (Métrich and Rutherford,
1998; Del Gaudio et al., 2010; Mollo et al., 2010b, 2011b). However, in
a recent study, it has been suggested that the carbon isotope variations
in degassed volcanic CO2 at Mt. Etna could be due to carbonate assimi-
lation (Chiodini et al., 2011). While the petrological implications of
magma-carbonate interaction processes is not the goal of this study,
when mantle-derived melts interact with the crust, a “non-eruptible”
magmatic zone (i.e., a solidification front close to the carbonate
wall-rocks) may form between the large magmatic bodies and the
host rock (Marsh, 1995). Under such circumstances, it is still unclear
to what extent crustal materials may affect the original composition
of magmas (c.f., Mollo et al., 2010c); this case likely applies to low-
temperature (b1100 °C) trachybasaltic liquids that are erupted from
Mt. Etna volcano (c.f. Mollo et al., 2011b), as these crystallize readily.
It must be noted that, although our study reports such changes under
ambient pressure conditions (i.e., without confinement), it has been
demonstrated that, atmagmatic temperatures and pressures, carbonate

inevitably dissociates in an "open" systemwhere the products of decar-
bonation are free to escape (Freda et al., 2008;Mollo et al., 2010a, 2012).

The irrevocable fact remains that the carbonate rocks present
under Mt. Etna will be exposed to high temperatures as a result of
their proximity to large, long-lived magmatic bodies (Murru et al.,
1999; Chiarabba et al., 2000; Bonaccorso et al., 2010), and lateral
growth of the reservoir via eccentric dyking and ponding (Carrigan
et al., 1992; Acocella and Neri, 2003; Behncke and Neri, 2003;
Andronico et al., 2005; Bonforte et al., 2009; Carbone et al., 2009),
as well as circulating hot fluids (Siniscalchi et al., 2010): “proximity
without intimacy”. Indeed, accelerated flank movements are com-
monly observed to follow magmatic events within the sedimentary
substratum (Walter et al., 2005), highlighting the intimate link be-
tween basement deformation and flank instability. Fig. 1 shows a
schematic of Mt. Etna volcano (redrawn from Tibaldi and Groppelli,
2002) that illustrates the juxtaposition of the deep carbonate substra-
tum and the magmatic heat sources.

Recent experimental work has focussed on quantifying the evolu-
tion of the physical andmechanical properties of Etnean surficial basal-
tic rocks under both mechanical and thermal stresses (Balme et al.,
2004; Rocchi et al., 2004; Vinciguerra et al., 2005; Stanchits et al.,
2006; Benson et al., 2007, 2008; Heap et al., 2009; Fortin et al., 2010;
Heap et al., 2011). However, the relative importance of the
sub-volcanic sedimentary basement is reinforced by the fact that recon-
structions of the morphology of Mt. Etna volcano reveal only about
373 km3 of the bulk total volume of about 1400 km3 is comprised of
volcanic rocks (Catalano et al., 2004 and references therein). The
remaining 1027 km3 is composed of sediments of the Maghrebian–
Appennine Chain and the carbonate successions of the Hyblean Plateau
(Catalano et al., 2004). Mollo et al. (2011a) experimentally investigated
the physical and mechanical properties of a marly limestone from the
Maghrebian–Appennine Chain (from the Sicilide Unit). The rock was
chosen to represent these shallow sediments and is composed of 75%
calcite, 15% quartz, and 10% kaolinite, and contains a porosity of 2.5%.

Fig. 1. Schematic of Mt. Etna volcano (redrawn from Tibaldi and Groppelli, 2002) highlighting the positions of the heat sources in relation to the Hyblean Plateau.
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They found that their marly limestone was severely weakened upon
exposure to 760 °C, a result of devolatilization reactions (i.e., clay
dehydroxylation and calcite decarbonation). In contrast, complementa-
ry experiments on basaltic rocks did not display any thermally-induced
weakening (Mollo et al., 2011a). Mollo et al. (2012) recently extended
this study by performing decarbonation experiments within a “closed”
system (i.e., buffered by CO2 to inhibit decarbonation). Their experi-
ments showed that, even when decarbonation is halted, rock physical
properties still degrade due to thermal microcracking. They concluded
that (1) due to the porous and permeable nature of a volcanic edifice,
a “closed” system may be unrealistic; further, the thermal microcracks
that would form in the absence of decarbonation may also provide
routes for the escape of CO2 and, (2) as a result, the generation of CO2

via decarbonation is unlikely to hinder its impact on volcano instability
(Mollo et al., 2012).

To complement the data of Mollo et al. (2011a, 2012), we have
conducted a detailed study of the influence of high temperature (up
to 800 °C) on the physical (e.g., porosity, ultrasonic wave velocities,
and elastic moduli), chemical (e.g., compositional changes), and
mechanical properties of two carbonate rocks containing a high
(>95 wt.%) carbonate content (one of 100 wt.% calcite and the other
78 wt.% calcite and 22 wt.% dolomite), specifically chosen to span the
heterogeneity within the limestone and dolomite lithological succes-
sions of the Hyblean Plateau underneath Mt. Etna volcano. The maxi-
mum experimental temperature of 800 °C represents our predicted
(based on standard heat conduction theory, see Carslaw and Jaeger,
1986; see also Carrigan et al., 1992; Bonaccorso et al., 2010) upper
boundary for the carbonates of the Hyblean Plateau. In practice, this
may only represent the volume at the margins of magmatic bodies
and dykes (although this volume may be significant). However, our
data aim to provide a complete range for the expected temperature-
induced changes for the carbonates comprising the Hyblean Plateau.
Below we introduce the investigated materials and explain the experi-
mental techniques. Next, we present the extent of the chemical, phys-
ical, and mechanical property changes with thermal-stressing for both
carbonates. We flank these data by providing microstructural observa-
tions before and after thermal-stressing and a CO2 budget for carbonate
basement decarbonation at Mt. Etna. Finally, we discuss the results in
terms of their implications for the stability and the interpretation of
geophysical anomalies/observations at Mt. Etna volcano.

2. Material characterisation and experimental methodology

2.1. Experimental materials

The two carbonates chosen to span the heterogeneity within the
Hyblean Plateau below Mt. Etna volcano were: (1) Mt. Climiti lime-
stone (MCL), thick-bedded bio-calcarenites units in the Monti Climiti
Formation of the Sortino Group in Southeast Sicily (Italy) (Pedley,
1981; Grasso and Lentini, 1982) and, (2) Thala limestone (TL), a
micritic limestone from the Abiod limestones of Northwest Tunisia
(Burollet, 1991). Their “as-collected” (i.e., before any thermal-
stressing or deformation) chemical and physical properties are
summarised in Tables 1 and 2, respectively (the methods used to as-
certain these values are described below). Noteworthy differences
between the selected rock types include: (1) the presence versus ab-
sence of dolomite, (2) their connected porosity (TL=18.4% and
MCL=25.2%) and, (3) their unconfined compressive strengths (UCS).

2.2. Chemical analyses

2.2.1. “As-collected” chemical analysis
“As-collected” bulk rock compositions were analysed at the

Activation Laboratories Ltd (Ontario, Canada) using a Spectro CIROS
inductively coupled plasma-atomic emission spectrometer (ICP-AES).
For the ICP-AES analyses, the powdered samples were mixed with a

flux of lithium metaborate and lithium tetraborate, and then fused
in an induction furnace at a temperature of 1100 °C.

2.2.2. Methods to track thermally-induced chemical changes
Thermo-gravimetric (TG) and scanning differential calorimetry (DSC)

analyseswere carriedout using aNetzsch STA449C thermobalance appa-
ratus. Powdered samples (of approximately 40 mg)were heated in a stat-
ic air atmosphere in a platinum crucible (with lid) at a heating rate of
10 °C/min up to a temperature of 100 °C. The samples were then
maintained at 100 °C for 60 min to ensure that the samplewas complete-
ly dry of atmospheric moisture. Samples were then heated to a target
temperature of 1000 °C, again at 10 °C/min. The mass loss and heat
flow, monitored during heating, were used to track the temperatures at
which calcite and dolomite dissociate.

Themass-loss-on-calcination, calcimetry, and X-ray powder diffrac-
tion (XRPD) analyses were performed on powdered MCL and TL
samples that were either maintained at ambient temperature or
thermally-stressed to pre-determined temperatures of 200, 400, 500,
600, 650, and 800 °C. Mass-loss-on-calcination analysis was performed
in a Nabertherm LHT 04/18 chamber furnace at theHP-HT Laboratory of
the Istituto Nazionale di Geofisica e Vulcanologia (INGV, Rome, Italy).
For each thermal-stressing temperature, 5 g of powdered sample was
heated at a rate of 10 °C/min to a target temperature of 1200 °C. The
samples were then held at that temperature for duration of 12 hours,
to ensure complete decarbonation, and the loss of mass was measured.
Calcimetry analysis was performed using a Dietrich-Frühling calcimeter
at the Dipartimento di Scienze Geologiche of the University “Roma Tre”
in Rome. For each thermal-stressing temperature, 1 g of powdered

Table 1
The “as-collected” chemical properties of TL and MCL determined by ICP-AES. The de-
tection limit for the data is 0.01%. For the analyses, the powdered samples were mixed
with a flux of lithium metaborate and lithium tetraborate, and then fused in an induc-
tion furnace at a temperature of 1100 °C.

Thala limestone (TL) (wt.%) Mt. Climiti limestone (MCL) (wt.%)

SiO2 2.12 0.70
Al2O3 0.48 0.23
Fe2O3 0.18 0.18
MgO 3.56 0.44
CaO 49.88 54.49
Na2O 0.04 0.04
K2O 0.07 0.04
P2O5 0.05 0.05
Total 56.38 56.17

Table 2
The “as-collected” physical properties of TL and MCL. UCS and the ultrasonic wave ve-
locities were both measured at room temperature and at ambient pressure. The
connected porosities were measured using the triple weight water saturation
technique.

Thala limestone
(TL)

Mt. Climiti limestone
(MCL)

Connected porosity (%) 18.4 25.2
Bulk sample density (g.cm−3) 2.21 2.01
Calcite-dolomite ratio 78–22 100–0
Grain size (μm) 10–25 100–400
Dry UCS (MPa) 112 29
Dry P-wave velocity (km.s−1) 4.32 3.97
Wet P-wave velocity (km.s−1) 4.40 4.14
Dry S-wave velocity (km.s−1) 2.46 2.21
Wet S-wave velocity (km.s−1) 2.44 2.31
Dry Vp/Vs ratio 1.75 1.79
Wet Vp/Vs ratio 1.88 1.79
Dry dynamic Young's modulus (GPa) 33.74 25.12
Wet dynamic Young's modulus (GPa) 34.19 30.69
Dry dynamic Poisson's ratio 0.26 0.27
Wet dynamic Poisson's ratio 0.30 0.27
Static Young's modulus (GPa) 27.8 15.7
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sample was dissolved in 15 ml of 6 N hydrochloric acid (density=
1.12 g.cm−3) and the volume of CO2 released was measured.

XRPD analyses were performed using the Siemens D-5005 diffrac-
tometer at the DIGAT department, Università G. d'Annunzio of Chieti
(Italy). It operates in the vertical θ–2θ Bragg–Brentano configuration
and is equipped with a Ni-filtered CuKα radiation. All data were col-
lected in the 2θ range of 3° to 70°, with a step scan of 0.02° and a
counting time of 8 seconds per step. For each analysis, 10 mg of sam-
ple was powdered in alcohol and then mounted into the central hole
(10×10×0.5 mm) of a nominally zero-background Si-sample holder
(Li and Albe, 1993). The identification of crystalline phases for each
pattern was performed by comparison with crystal models reported
in the commercial Inorganic Crystal Structure Database (ICSD), thus
allowing a fit to the observed Bragg reflection (2θ positions and rela-
tive intensities). For each crystalline compound identified, the lattice
parameters, atomic positions, and space groups were then used for
the successive Le Bail and Rietveld refinements (Young, 1993; Le
Bail, 2005; Percharsky and Zavaliji, 2005), both implemented in the
EXPGUI-GSAS software package (Larson and von Dreele, 1997; Toby,
2001). For the former refinement method, the background was ini-
tially constrained manually and subsequently modelled by a polyno-
mial Chebyshev function using five to ten coefficients. Then, cell
parameters for each crystalline phase and a constrained sample dis-
placement parameter were refined. Bragg peak profiles were
modelled using the function refining both Lorentzian (Lx, Ly) and
Gaussian (GW) contributions (Finger et al., 1994). Each Le Bail refine-
ment was terminated when the observed XRPD spectra were ade-
quately reproduced. All these parameters were then kept fixed and
used in the following Rietveld refinement, where only the scale factor
was refined to obtain a Quantitative Phase Analysis (QPA).

2.3. Physical property analyses

2.3.1. “As-collected” physical property analysis
UCS experiments were performed on “dry” (used to describe sam-

ples that have been at 40 °C in a vacuum oven for at least 24 h, and
were deformed under “ambient humidity” conditions) cylindrical
samples, 20 mm in diameter and 40 mm in length, using the uniaxial
press at the Laboratoire de Déformation des Roches (LDR, Université
de Strasbourg, Fig. 2A). Samples were loaded at a constant strain
rate of 1.0×10−5 s−1 until failure. Axial strain was continuously
monitored during experimentation by means of an LVDT transducer.
The output of AE energy was monitored throughout via a piezoelec-
tric transducer (located within the bottom anvil) with a high
response band over the range 100 kHz–1 MHz. AE signals were
recorded by a Physical Acoustics USB AE Node at a sampling rate of
10 MHz. The signal threshold was set at 30 dB. After each experi-
ment, we computed the cumulative output of AE energy as a function
of strain or displacement, and the evolution of the analogue seismic
b-value. The seismic b-value is the negative slope of the log-linear
AE amplitude-frequency distribution (Gutenberg and Richter, 1955;
Gutenberg and Richter, 1956) here calculated using Aki's maximum
likelihood method (Aki, 1965) for every 200 AE hits at 100 hit inter-
vals. Since the b-value describes the amplitude-frequency distribu-
tion of AE hits during a deformation process, it has also been
interpreted as describing the size-frequency distribution of cracking
events in rock deformation (Main et al., 1989; Meredith et al.,
1990). In particular, a decrease in the b-value as the level of stress is
increased has been interpreted as a change from distributed,
small-scale cracking at low stress to more localized, larger-scale
cracking in the approach to failure at high stress (Meredith et al.,
1990; Sammonds et al., 1992; Smith et al., 2009).

Static Young's moduli were then calculated following the method
of Heap and Faulkner (2008). First, the stress–strain curves were
fitted with a third-order polynomial in order to ascertain the extent
of the linear elastic portion of each curve. The resultant equations

were then differentiated and the slopes of the stress–strain curves
(i.e., the Young's modulus) determined over their entire lengths
(Heap and Faulkner, 2008). The Young's modulus was taken from
the linear regions of such curves (i.e., those regions where the moduli
did not change). We note that this only represents one Young's
modulus in a deforming rock sample, since the elastic moduli will
be developing in an anisotropic manner.

Dry and “wet” (used to describe samples that have been vacuum
saturated with distilled water) ultrasonic wave velocity measure-
ments were measured on cylindrical samples (20 mm in diameter
and 40 mm in length) at the LDR (Université de Strasbourg) using
an Agilent Technologies DSO5012A digital storage oscilloscope, an

A

B

Fig. 2. A: Schematic diagram of the uniaxial press at the Laboratoire de Déformation
des Roches (IPGS, Strasbourg). B: Schematic diagram of the high temperature uniaxial
press at Ludwig–Maximilians University (LMU, Munich).
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Agilent Technologies 33210A, 10 MHz function/waveform generator,
and two broadband PZT piezoelectric transducer crystals (100 kHz to
1 MHz frequency) located at the top and bottom of the sample. All
measurements were collected under a force of 600 N to ensure a
good contact between the endcaps and the sample. Dynamic Young's
modulus and Poisson's ratio were then calculated from the resultant
elastic wave velocities using the following formulae:

Young0s modulus Edð Þ ¼ ρ Vs2 3Vp2
–4Vs2

� �� �.
Vp2

–Vs2
� �� �

ð1Þ

Poisson0s ratio vdð Þ ¼ Vp2
–2Vs2

� �
= 2 Vp2

–Vs2
� �� �

ð2Þ

Where ρ is the bulk sample density and Vp and Vs are the veloci-
ties of compressive and shear waves, respectively.

2.3.2. Methods to track thermally-induced physical property changes
UCS experiments at high in-situ temperatures were performed on

the high-temperature uniaxial press at the Ludwig–Maximilians
University (LMU), in Munich (Fig. 2B, see also Hess et al., 2007 for de-
tails). Experiments were performed on dry, cylindrical samples cored
to a diameter of 25 mm and cut parallel to a length of 60 mm. During
experimentation, axial strain was measured using an LVDT embedded
within the servo-cylinder, and the output of AE was monitored
throughout using a PC1-2 based MISTRAS using the same type of
transducer described above, set at a signal threshold of 50 dB. Con-
stant strain rate (1.5×10−5 s−1) experiments were then performed
on samples of both TL and MCL at temperatures of 500, 600, 650,
and 800 °C. These temperatures were specifically chosen to investi-
gate (1) the change in strength of the carbonates at approximately
the initiation temperature for decarbonation (650 °C) and at a tem-
perature were the rock should be greatly affected by decarbonation
reactions (800 °C), as indicated by our TGA data (see Section 3.1.2),
(2) the brittle–ductile transition (i.e., the switch in behaviour from
the sample losing its ability to resist load during strain accumulation,
to the rock sustaining strain without losing its ability to resist load,
see Rutter, 1986) and, (3) the seismic–aseismic transition (monitored
using AE as a proxy).

P-wave velocities were measured at high in-situ temperatures
using a servo-controlled, uniaxial press equipped with a high-
temperature (1200 °C) ceramic fibre furnace at the HP-HT Laboratory
(INGV, Rome, Italy). Experiments were performed on dry, cylindrical
samples cored to a diameter of 25 mm and cut parallel to a length of
60 mm. Measurements were made on samples at in-situ furnace tem-
peratures of 200, 400, 500, 600, 650, and 800 °C. Samples were first
loaded to 1 MPa axial load to ensure a good contact between the sam-
ple and the pistons, and then heated at a constant heating rate of
10 °C/min to their target temperature. Ultrasonic wave velocities
were then measured with a Tektronix DPO4032 digital oscilloscope,
using a high voltage (1000 V) pulse generator and two broadband
PZT piezoelectric transducer crystals (100 kHz to 1 MHz frequency)
located at the top and bottom of the sample. Since S-wave velocities
could not be measured at in-situ temperatures in our apparatus, in
this study we only show in-situ measurements for P-wave velocities.

P- and S-wave velocities were also measured at ambient tempera-
ture on dry and wet, thermally-stressed samples (i.e., samples that
were heated, cooled, and then measured at ambient temperatures)
at the LDR (Université de Strasbourg), using the same method de-
scribed above (see Section 2.3.1). For these measurements, samples
(20 mm in diameter and 40 mm in length) were either maintained
at ambient temperature or thermally-stressed to pre-determined
temperatures of 100, 200, 400, 500, 600, 650, 700, and 800 °C at a
constant heating and cooling rate of 1 °C/min. Dynamic Young's
modulus and Poisson's ratio were then calculated for each
thermal-stressing temperature from the resultant elastic wave veloc-
ities using Eqs. (1) and (2). Prior to and following thermal-stressing,

the connected porosity for each sample was measured using the triple
weight (Archimedes) water saturation technique. The total porosity
change was also measured for each sample using a helium pycnome-
ter (AccuPyc II 1340 helium pycnometer). In addition, since MCL is es-
sentially 100 wt.% calcite, we were also able to calculate the total
porosity of MCL using the bulk sample densities, and assuming the
density of calcite to be 2.71 g.cm−3 (see Guéguen and Palciauskas,
1994).

Constant strain rate UCS experiments were performed on dry,
thermally-stressed samples (the same temperatures listed above) at
room temperature using the uniaxial press at the LDR (Université
de Strasbourg, Fig. 2A). Samples were loaded at a constant strain
rate of 1.0×10−5 s−1 until failure. Axial strain was continuously
monitored during experimentation by means of an LVDT transducer.
The output of AE energy was monitored throughout via a piezoelec-
tric transducer located within the bottom anvil (set at the same
settings as described for the above room temperature UCS experi-
ments, see Section 2.3.1) and recorded using a Physical Acoustics
USB AE Node. Static Young's moduli were then calculated from the re-
sultant stress–strain curves using the method outlined above (see
Section 2.3.1).

Finally, microstructural observations on both “as-collected”
samples of MCL and TL and those thermally-stressed to 800 °C (at
1 °C/min) were performed using the JEOL-JSM6500F Field Emission
Gun – Scanning Electron Microscope (FE-SEM) located at the HP-HT
Laboratory in Rome (INGV).

3. Results

3.1. Results of chemical analyses

3.1.1. “As-collected” chemical composition
“As-collected” chemical compositions for both TL and MCL, mea-

sured by ICP-AES, can be found in Table 1. Importantly, the chemical
analysis of the carbonates showed that TL contained 22 wt.% of dolo-
mite and 78 wt.% of calcite and that MCL contained 100 wt.% of
calcite.

3.1.2. Thermal decomposition of carbonate
TG (solid lines) and DSC (dashed lines) curves for MCL and TL are

presented in Fig. 3. The curves show that a major mass loss took place
in the temperature range of 680–882 °C and 560–905 °C for MCL
(Fig. 3A) and TL (Fig. 3B), respectively. The measured mass loss in
these ranges corresponds to the CO2 released during the thermal de-
composition of carbonates (i.e., just calcite in the case of MCL and
both calcite and dolomite in the case of TL). A minor mass loss was
also detected for the two samples in the temperature range
100–120 °C and is most likely attributable to the chemically bound
water present in carbonate material (see also Gunasekaren and
Anbalagan, 2007), this can be most easily seen as an endothermic
peak in the DSC curves (note: samples were kept at 100 °C for
60 min prior to heating). The total measured percentage of mass
loss was 44 and 45 wt.% for MCL and TL, respectively.

The onset of thermal decomposition of calcite and dolomite can be
best observed in the DSC curves. For MCL, the curves show that the
calcite started to decompose at temperatures above 680 °C, showing
a strong endothermic peak at 860 °C (Fig. 3A). The calcite dissociated
according to the following reaction (see also Samtani et al., 2002):

CaCO3 sð Þ→CaO sð Þ þ CO2 gð Þ ð3Þ

The thermal decomposition of the calcite therefore produced lime,
a CaO solid phase, plus a CO2 gas phase. However, TL consists of both
calcite (78 wt.%) and dolomite (22 wt.%) and, in this case, the de-
crease in mass initiated at a lower temperature of 560 °C. In case of
TL, three endothermic peaks were observed: two endothermic

47M.J. Heap et al. / Journal of Volcanology and Geothermal Research 250 (2013) 42–60



Author's personal copy

peaks at 775 °C and 810 °C (see the inset in Fig. 3B), seen within the
temperature ranges of 756–786 °C and 793–826 °C, respectively, and
a third, larger peak at 886 °C. The first two peaks are due to the disso-
ciation of the 22 wt.% of dolomite present in TL. Two peaks were ob-
served since dolomite thermal dissociation is a two-stage
decomposition process involving the following reactions (McIntosh
et al., 1990; Maitra et al., 2005):

CaMg CO3ð Þ2 sð Þ→CaCO3 sð Þ þMgO sð Þ þ CO2 gð Þ ð4Þ

The solid calcite products of reaction (4) are then broken down as
per reaction (3). Therefore, the complete thermal decomposition of
dolomite can be rewritten to:

CaMg CO3ð Þ2 sð Þ→MgO sð Þ þ CaO sð Þ þ 2CO2 gð Þ ð5Þ

The thermal decomposition of the dolomite therefore produced
periclase, a MgO solid phase, a lime solid phase, plus a CO2 gas
phase. In Fig. 3B, the lower temperature peak at 775 °C represents
the formation of CaCO3+MgO according to reaction (4) and the
higher peak at 810 °C represents the decomposition of newly-
formed calcite following reaction (3). The complete thermal decom-
position of dolomite only occurs when its rhombohedral crystal lat-
tice is converted to the cubic lattice of CaO+MgO oxides. The
thermal ranges of dolomite decomposition from this study strictly
agree with those measured by previous authors (Li and Messing,
1983; McClauley and Johnson, 1991; Kök and Smykatz-Kloss, 2001;
Gunasekaren and Anbalagan, 2007). The third peak at 886 °C in the
DSC curve represents the decomposition of 78 wt.% of calcite

(Fig. 3B) according to reaction (3). The largest of the three endother-
mic peaks is associated with the decomposition of calcite, in agree-
ment with the higher wt.% of calcite in TL with respect to dolomite.
It is worth emphasising that the thermal decomposition of dolomite
occurred at a lower temperature range than for calcite. This has
been previously attributed to the lower strength of the Mg\O
bonds in structure of dolomite with respect to the Ca\O bonds in cal-
cite (see Samtani et al., 2002; Gunasekaren and Anbalagan, 2007).

3.1.3. Mineralogical changes during thermal-stressing
The mineralogical changes associated with increasing tempera-

ture were monitored by XRPD analysis of “as-collected” and
thermally-stressed samples of MCL and TL (Fig. 4). Results show
that, at 800 °C, calcite (labelled Cc on Fig. 4) and dolomite (Dm)
were completely dissociated according to reactions (3) and (5)
discussed above. The XRPD data also showed that portlandite (Pt),
Ca(OH)2, appeared in samples thermally-stressed to temperatures
above 600 °C (Fig. 4). Portlandite, a calcium hydroxide, forms by the
recombination of CaO with atmospheric water vapour by the reac-
tion:

CaOþH2O→Ca OHð Þ2 ð6Þ

The portlandite must have formed after the samples thermally-
stressed to 800 °C (and 650 °C in the case of MCL) had cooled,
when water became readily available in the atmosphere. The reaction
is exothermic and results in a considerable volume increase (Boynton,
1980). In fact, the dramatic sample volume increase, as a result of
portlandite formation, severely afflicted the samples. Some samples
disintegrated on touch, whilst others even “exploded” on the bench-
top. At 800 °C, lime (Li) and periclase (Pe) were also observed as
final solid products of calcite and dolomite dissociation. The amount
of CO2 released from the samples during the decarbonation process
is displayed in Fig. 3; the decreasing carbonate content is also
reported for comparison. The results are qualitatively similar to the
TG/DSC data of Fig. 3: changes start to occur at temperatures about
600 °C and progress rapidly as temperature is further increased.
Fig. 5 shows that, at 800 °C, the carbonate minerals were completely
dissociated, in agreement with the XRPD analysis, and that their dis-
sociation produced about 44 wt.% of CO2 in both MCL and TL. It is in-
teresting to note that, although the samples contained different
quantities of calcite and dolomite, their total wt.% of released CO2

were essentially identical, in accordance with the stoichiometry of
the mineral phases.

3.1.4. Microstructural observations
FE-SEM compositional photomicrographs of samples of MCL and

TL, for “as-collected” samples and samples thermally-stressed to
800 °C, are shown in Fig. 6. Both MCL and TL show clear mineralogi-
cal, textural, and structural differences due to the influence of high
temperature. At 800 °C, the porosity (in black) can be seen to be
greatly increased in both samples. In MCL, the pervasive thermal
microcracks within the lime crystals form a mosaic pattern (see
inset on Fig. 6D). The lime crystals also show heavily corroded crystal
edges (Fig. 6D). In TL, thermal microcracking is also prevalent in the
lime crystal grains, while the periclase shows a “sponge-like” texture,
significantly increasing intragranular microporosity (compare the in-
sets in Fig. 6A and B). Texturally, the dolomite appears to be more se-
verely affected by high temperatures than calcite, perhaps due to its
lower decarbonation temperature (Fig. 3B).

3.2. Results of physical property analyses

3.2.1. “As-collected” physical properties
Plots of stress, cumulative AE energy, and b-value against strain

for each of the room temperature UCS tests are presented in Fig. 7A
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and D. We also show the frequency-amplitude plots (for the entire
experiment, Fig. 7B and E) and zoomed-in plots showing the
b-value evolution at failure in more detail (Fig. 7C and F). The two
rocks displayed a very different behaviour in response to the applied
stress. Firstly, TL (peak stress of 112 MPa) was much stronger than
MCL (peak stress of 29 MPa). TL was very brittle in the sense that it
only showed a small degree of strain-hardening behaviour and, there-
fore, failure was characterised by a large stress drop, a substantial
output of AE energy, and very low b-values. Meanwhile, MCL
displayed a large degree of post-peak strain-softening or “roll-over”
and, consequently, failure was slow and sluggish, characterised by
much less AE energy and higher b-values than for TL. However, both
samples failed by axial splitting (Fig. 7A and D), although the failure
of TL was much more explosive. In both cases, macroscopic sample
failure occurred at the peak in the output of AE and at the b-value
minima (immediately following failure there was a small recovery
in b-value). Our frequency-amplitude plots (Fig. 7B and E) show
that deformation in TL was mainly accommodated by few, but high
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amplitude events (hence the low b-value, Fig. 7F), and that MCL was
mainly accommodated by many low amplitude events (hence the
high b-value, Fig. 7C). We note that the interpretation of our AE's
and frequency-amplitude plots is conducted purely to explain the de-
formation style of our samples and, although they represent an anal-
ogy to seismicity, direct comparisons are ill-advised.

“As-collected” dry and wet ultrasonic wave velocities, dry and wet
dynamic Young's modulus and Poisson's ratio, dry and wet Vp/Vs ra-
tios, and dry static Young's modulus are given in Table 2. The data
show that (1) both P- and S-wave velocities are higher in TL than
MCL; (2) both static and dynamic Young's modulus are higher in TL
than MCL; (3) the wet and dry Vp/Vs ratio and Poisson's ratio are
very similar for both rocks; (4) wet velocities are only very slightly
higher than dry velocities in both rocks; (5) wet dynamic Young's
modulus is higher than the dry dynamic Young's modulus in both
rocks; and (6) dynamic Young's modulus is higher than the static
Young's modulus in both rocks.

3.2.2. Deformation at high in-situ temperatures
The stress–strain curves for the UCS tests at high in-situ tempera-

tures of 500, 600, 650, and 800 °C are presented in Fig. 8A (for MCL)
and Fig. 8C (for TL), together with the room temperature measure-
ments of Fig. 7. The data show that the deformation behaviour of
the two rocks changed from brittle (i.e., the ability of the rock to resist
load decreases with permanent strain) at room temperature to duc-
tile (i.e., the rock can accommodate permanent strain without losing
the ability to resist load, see Rutter, 1986) at temperatures above
500 °C. For tests above 500 °C, deformation was arrested at 5% axial
strain, during which time the samples did not fail (e.g., by axial
splitting, see Fig. 7) but were “flowing” in response to the applied
constant strain rate.

The data show that, in both cases, strength was greatly reduced at
temperatures exceeding 500 °C. The strength of TL suffered a greater
reduction than MCL. For example, for TL, strength was reduced from

112 MPa at room temperature, to 75 MPa at 650 °C (a decrease
of 33% from room temperature), and down to 23 MPa at 800 °C
(a decrease of 79% from room temperature). For MCL, strength was
reduced from 29 MPa at room temperature, to 19 MPa at 650 °C
(a decrease of 34% from room temperature), and down to 14 MPa at
800 °C (a decrease of 52% from room temperature). The cumulative
AE energy output for each of the high-temperature tests is given in
Fig. 8B (for MCL) and Fig. 8D (for TL). The data show that AE energy
output during deformation at temperatures higher than 500 °C was
greatly reduced. At the end of the experiments, the stress was slowly
reduced to zero, and the sample was cooled back to room tempera-
ture. To confirm that decarbonation had taken place in our experi-
mental samples, we measured the mass of each and plotted the data
(as open circles) on Fig. 3 (only for 600, 650, and 800 °C, since the
sample at 500 °C failed by axial splitting). The data are in excellent
agreement with our TG data (Fig. 3).

3.2.3. Room temperature UCS experiments on thermally-stressed samples
The stress–strain curves for the UCS experiments performed at

room temperature on samples thermally-stressed to 100, 200, 400,
500, 600, 650, and 700 °C (note: samples from thermal-stressing
temperatures of 700 and 800 °C for MCL, and from the thermal-
stressing temperature of 800 °C of TL, could not be tested due to
their disintegration at high temperature; a result of portlandite for-
mation, see explanation above) are presented in Fig. 9A (for MCL)
and Fig. 9C (for TL), together with the experiments at room tempera-
ture from Fig. 7. The data shows that there was no systematic varia-
tion of strength with thermal-stressing temperature for TL (up to
700 °C, Fig. 9C). Although, the four highest temperatures (500, 600,
650, and 700 °C) all failed at higher strains (about 0.9% strain com-
pared to 0.6% for the temperatures below 500 °C). The MCL showed
a similar trend: the experiments for the samples thermally-stressed
to 500, 600, and 650 °C failed at 0.6% strain; below 500 °C the sam-
ples all failed at about 0.3% strain. However, for MCL, the three
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B D

Fig. 6. FE-SEM compositional photomicrographs of samples of TL and MCL, on “as-collected” samples, (A) and (C), and samples thermally-stressed to 800 °C, (B) and (D). Cc, calcite;
Dm, dolomite; Li, lime; Pe, periclase. Scale bars are 50 μm. Insets in (A) and (B) are designed to highlight the difference between the intact dolomite grains and the periclase grains
after exposure to high temperatures. Inset in (D) highlights the thermal microcracking within the lime crystals of MCL.
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highest temperatures (500, 600, and 650 °C) also showed a reduction
in strength when compared to the experiments below 500 °C. Below
500 °C the strength varied between 27 and 34 MPa. The strength was
reduced to 22 MPa at both 500 and 600 °C, and to 18 MPa at 650 °C.
All of the experiments, for both rock types, showed brittle behaviour
and the samples failed by axial splitting. The output of AE for each of
the experiments is given in Fig. 9B (for MCL) and Fig. 9D (for TL). In
general, the output of AE was modest until macroscopic sample fail-
ure. The output of AE was not reduced at high thermal-stressing tem-
peratures as they were for high in-situ temperatures (Fig. 8).

3.2.4. Physical property changes during thermal stressing
Exposure to high temperatures also resulted in severe changes to

the physical properties of the carbonates (Fig. 10). Fig. 10A and B
show that their porosities increased slightly up to 500 °C, and then
strongly up to the maximum temperature of 800 °C. Over the entire

temperature range, the total porosity of TL increased by 19 percentage
points and MCL increased by 13 percentage points (Fig. 10B). Fig. 10C
shows that the bulk sample density remained constant up to about
500 °C (about 2.2 and 2.0 g.cm−3 for TL and MCL, respectively).
Above 500 °C the density dropped rapidly and at 800 °C the bulk sam-
ple density was 1.4 and 1.1 g.cm−3 for TL and MCL, respectively.

The measured ultrasonic wave velocities for both dry and wet TL
and MCL with increasing thermal-stressing temperature, together
with the evolving Vp/Vs ratio, are given in Fig. 10D–H. For both TL
and MCL, dry P- and S-wave velocities only demonstrated minor
change up to 400 °C, but then decreased significantly up to the
maximum temperature of 800 °C. Over the entire temperature
range, dry P-wave velocities decreased by 54% and 67% and dry
S-wave velocities by 44% and 60% for TL and MCL, respectively. The
in-situ P-wave velocities display a similar trend (Fig. 10E), although
the thermally-stressed values for MCL were slightly lower than the
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in-situ values. The dry Vp/Vs ratio remained roughly the same (about
1.7) until 700 °C when it decreased to about 1.6; it further decreased
to about 1.5 at 800 °C (Fig. 10F). The wet ultrasonic measurements
(note that the wet measurements could only be made for samples
thermally-stressed up to 600 °C, beyond this temperature the water
saturation method damaged the samples) were approximately the
same as the dry measurements up to about 400 °C. Above 400 °C
they started to decrease, but the rate of decrease was less than for
the dry measurements. The wet Vp/Vs ratio remained at about 1.8
until 400 °C; above 400 °C it began to increase.

For both TL and MCL, dry dynamic Young's modulus and Poisson's
ratio decreased as a function of thermal-stressing temperature
(Fig. 10J). Dry dynamic Young's modulus decreased from 33.7 to
5.5 GPa (total decrease of 84%) and from 25.1 to 2.0 GPa (decrease
of 92%) for a temperature increase from room temperature to
800 °C in TL and MCL, respectively (Fig. 10J). Within the same tem-
perature interval, the dry dynamic Poisson's ratio decreased from
0.26 to 0.06 (total decrease of 76%) and from 0.27 to 0.13 (decrease
of 51%) for TL and MCL, respectively. As to be expected, the evolution
of dynamic elastic moduli with thermal-stressing temperature mir-
rored those for the ultrasonic wave velocities: the rate of change
was low up to 400 °C, and then accelerated up to 800 °C. However,
while the evolution of Young's modulus with thermal-stressing tem-
perature for the wet measurements was similar to the dry measure-
ments, the wet Poisson's ratio did not change significantly with
increasing thermal-stressing temperature (Fig. 10I).

The evolution of the static Young's modulus with increasing
thermal-stressing temperature, as calculated from the elastic portion
of the stress–strain curves (see Section 3.2.3), is presented in Fig. 10K.

Firstly, we note that the static Young's modulus was lower than
the dynamic Young's modulus (see Fig. 10J). Dynamic and static
moduli generally differ due to their large differences in frequency
(e.g., Simmons and Brace, 1965; Cheng and Johnston, 1981; Eissa
and Kazi, 1989; Ciccotti et al., 2000; Ciccotti and Mulargia, 2004). In
the case of MCL, the evolution of the static Young's modulus with in-
creasing thermal stressing temperature was very similar to that of the
dynamic values (little change up to 400 °C, followed by more signifi-
cant changes). Although the evolution of static Young's modulus in TL
was more clouded, there was still an overall decreasing trend. Over
the entire temperature range, the static Young's modulus decreased
by 42% and 76% for TL and MCL, respectively. We note that the data
of Fig. 10k show only one value of Young's modulus in a material
where it will be developing in an anisotropic manner, whereas ther-
mal cracking usually produces an isotropically distributed crack net-
work (e.g., David et al., 1999).

4. Discussion

Our study has illustrated that the chemical, mineralogical, and
physical properties of two carbonates, chosen to span the heteroge-
neity seen within the Hyblean Plateau under Mt. Etna volcano, drasti-
cally changed upon exposure to high temperatures. We will now
discuss our results in terms of (1) the hypothesised décollement at
Mt. Etna volcano, (2) provide implications for the use of seismic
wave velocities and elastic moduli during volcano monitoring, (3)
present our CO2 budget for the decarbonation of the carbonate base-
ment and, (4) explore the importance of dolomite content within
sub-volcanic carbonate successions.
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4.1. Implications for décollements and flank instability at Mt. Etna

Flank deformation is often caused by slip along a décollement
within or underneath a volcanic edifice. Although it has never been
explicitly proven, décollement sliding surfaces have been inferred
by many authors to exist under the eastern flank of Mt. Etna volcano,
and have been blamed for large-scale gravity-driven deformation. To
emphasise, geodetic data collected from the Pernicana Fault show
that the eastern flank of the volcano is sliding towards the Ionion
Sea at an average rate of about 2.8 cm/year (between April 1997
and February 1999, see Azzaro et al., 2001; Palano et al., 2008,
2009). Active spreading and sliding at Mt. Etna volcano, monitored
by interferometric synthetic aperture radar (INSAR), has provided
evidence for a deep décollement zone at about 5 km depth (approxi-
mately at the intersection between the sediments of the Maghrebian–
Appennine Chain and the Hyblean Plateau) in the form of an anticli-
nal ridge, believed to be the surface expression of a deep décollement
(Borgia et al., 2000a,b; Froger et al., 2001; Lundgren et al., 2004). This
theory has been supported by field evidence (Borgia et al., 1992;
Tibaldi and Groppelli, 2002). Additional evidence was provided by
the clustering of seismic activity below the eastern flank, at a depth
of about 4 km (Acocella et al., 2003; Neri et al., 2004). It must be
noted that some authors have suggested that movement occurs
along another décollement, located at a depth of between 1.5 and
3 km (Bonforte and Puglisi, 2003; Palano et al., 2008).

Our experimental data has shown that rock chosen to represent
the deep Hyblean Plateau becomes considerably weaker at high
in-situ temperatures (for instance, at 800 °C a strength reduction of
79% and 52% was observed for TL and MCL, respectively), and does
not fail by shear faulting or axial splitting, but “flows” in a ductile

manner (i.e., without localisation). We speculate that the observed
thermally-induced weakening and distributed ductile deformation
are the result of intracrystalline plasticity (see detailed studies on cal-
citic rocks by Rutter, 1974; Schmidt et al., 1980), although it is diffi-
cult to interpret the interplay between decarbonation [which still
progressed (see the open circles on Fig. 3), meaning that MCL was
composed entirely of lime and TL of lime and periclase] and
intracrystalline plasticity without further, more detailed analyses.
Lime and periclase are weaker than calcite and dolomite; for instance,
periclase layers acted as high-strain shear zones in torsion experi-
ments on dolomite marble (Delle Piane et al., 2007).

The ductile deformation of the carbonates of the Hyblean Plateau
could explain the large-scale deformation and flank movement mea-
sured at Mt. Etna volcano (e.g., reported in Azzaro et al., 2001; Palano
et al., 2008, 2009), rather than slip on an inferred localised décollement
surface (Fig. 1). Recent edifice-stability modelling has demonstrated
that large-edifice collapse and the generation of catastrophic debris av-
alanches at stratovolcanoes can be attributed to the magma supply
rate, but only if the basement conditions are stable over long periods
(Zernack et al., 2012).While this may be appropriate for numerous vol-
canoes, including their case study (Mount Taranaki, New Zealand)
where the Tertiary basement rocks are inferred to be stronger than
the overlying volcanics, it may not be true for volcanoes with a dynam-
ic and unstable carbonate basement. Mt. Etna could also be at risk to
large-scale deformation due to the preferential weakening of the
Hyblean Plateau with respect to the sediments of the Maghrebian–
Appennine Chain. This is a product of the fact that (1) the rocks of
the Maghrebian–Appennine Chain will suffer, on the whole, less by
the way of thermal weakening; for instance, quartz-arenitic rocks will
not undergo decarbonation and intracrystalline plasticity in calcite
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can be achieved at relatively moderate temperatures and pressures
[largely attributed to the low shear stresses required to initiate me-
chanical twinning and dislocation slip in calcite (Turner et al., 1954;
Griggs et al., 1960)] and, (2) the important heat sources are located
within the Hyblean Plateau. Thus preferential weakening will generate
a greater rheological contrast between the two layers. Previously, it has
been demonstrated experimentally that spreading induced by volcanic
loading is strongly dependent on whether (1) there is a weak layer in
the substratum, that is (2) overlain by a relatively thin brittle layer
(Merle and Borgia, 1996). This is indeed the scenario at Mt. Etna volca-
no. Complimentary experiments have also highlighted that the distri-
bution and alteration of a weak substratum can become a major

factor in shaping volcano architecture (Walter and Troll, 2003). A sim-
ilar process is thought to be occurring at Mt. Vesuvius, where sliding is
thought to be taking place at the contact of the volcanic material and
the underlying carbonatic basement, driving gravitational sliding and
subsidence (Lanari et al., 2002). Our data also show that, at tempera-
tures above 500 °C, the ductile deformation of the carbonates proceeds
with a significantly reduced output of AE's (a proxy for seismicity). This
switch from microcracking to intracrystalline plasticity (only inferred
in our case) could be the reason for the discrepancy between (1) the
shallow and very energetic seismic swarms associated with flank slip
and the more limited seismic activity in the deep basement (Allard
et al., 2006) and, (2) the seismicity expected from the numerical
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modelling of dyke stresses and observed seismicity data (e.g., Roman
and Cashman, 2006).

The authors are certainly aware that the rocks of the Hyblean Pla-
teau are situated at a depth of 5 km (equating to confining pressures
of about 70–80 MPa), and althoughwe have performed uniaxial exper-
iments at ambient pressure, we contend that (1) the reductions in
strength are commensurate with those seen solely as a result of in-
creasing temperature (or at least a first-order approximation) under
triaxial conditions and, (2) an increase in pressure will only act to re-
duce the temperature required for ductility and “flow”. Let us first con-
sider the effect of confining pressure on the reductions of strength seen
in limestone at elevated temperatures. As an example, Solnhofen lime-
stone (99.9 wt.% calcite) has been shown to weaken with temperature
under triaxial stress conditions (Xiao et al., 2003). Under an effective
pressure of 50 MPa, the strength was reduced from 360 MPa at room
temperature, to 351 MPa at 50 °C (reduction of 2.5% when compared
to room temperature), 330 MPa at 100 °C (reduction of 6%), and
306 MPa at 200 °C (reduction of 7.3%). These reductions in triaxial
strength, if extrapolated to higher temperatures (and especially at
temperatures above the decarbonation temperature), are certainly in
agreement with our uniaxial strength reductions (although the
absolute values will, of course, be different). Let us now consider the
effect of confining pressure on the brittle–ductile transition. Although
our uniaxial data suggest that ductile behaviour is achieved at temper-
atures greater than 500 °C (Fig. 8) it is likely that, due to the contribut-
ing influence of the high effective pressures at 5 km (about
70–80 MPa), ductility would be achieved at much lower temperatures.
In the case of low porosity carbonates, ductility can be achieved at
room temperature at effective pressures above 100 MPa (Baud et al.,
2000). For higher porosity carbonates (like the ones of our study),
the transition will occur at lower pressures (Evans et al., 1990). It is
therefore possible that much of the Hyblean Plateau could deform in
a ductile manner in response to stress, even far from the heat sources.
Therefore, although our room temperature deformation experiments
on thermally-stressed samples (that all deformed in a brittle manner,
i.e., localised damage and the output of AE's) are certainly interesting
(Fig. 9), it is likely that much of the Hyblean Plateau will not be brittle.
High temperature triaxial experiments are now needed to map out the
brittle–ductile transition under the relevant pressure and temperature
conditions. Further, there are a couple of extra ideas to consider. First,
high porosity limestones are also prone to inelastic compaction (grain
crushing and pore collapse), termed P*, at elevated pressures (Baud
et al., 2009). Baud et al. (2009) showed that, for Majella limestone
(30% porosity) and Saint-Maximin limestone (37% porosity), P* was
about 26.5 MPa and 13 MPa (both pressures represent depths above
that of the Hyblean Plateau) for wet conditions, respectively. Second,
our experiments were performed under dry conditions (rock at depth
is likely to contain a fluid phase); it has been previously shown that
the presence of water can also influence the strength and ductility
through physico-chemical processes at grain boundaries and via the
law of effective stress (Rutter, 1972).

4.2. Implications on the use of seismic velocities in monitoring at Mt. Etna

A dense seismic network, run by Istituto Nazionale di Geofisica e
Vulcanologia, Sezione di Catania (INGV-CT), is constantly monitoring
seismic events at Mt. Etna volcano. Tomographic inversions of P- and
S-wave arrival times of volcano-tectonic earthquakes have been com-
puted using a variety of techniques (see Chiarabba et al., 2004 for a
review). Low ultrasonic wave velocity zones (or a high Vp/Vs ratio)
are commonly interpreted as fractured or damaged zones (a higher
Vp/Vs ratio suggests that there is a higher crack density in saturated
rock, see O'Connell and Budiansky, 1974) or are interpreted as the re-
sult of the presence of fluids (e.g., Zhang et al., 2009), while high ul-
trasonic wave velocity zones (or a low Vp/Vs ratio) are commonly
interpreted as intrusions or magma bodies (e.g., see Laigle et al.,

2000; Patanè et al., 2002; Aloisi et al., 2002; Patanè et al., 2006).
This technique has therefore been used to monitor magmamovement
preceding volcanic eruptions (e.g., Patanè et al., 2006).

Our experimental data demonstrate that ultrasonic wave velocities
decreased with increasing temperature for both carbonates. Over the
entire temperature range (from room temperature to 800 °C), dry
P-wave velocities decreased by 54% and 67% and dry S-wave velocities
by 44% and 60% for TL and MCL, respectively. The wet measurements
did not differ greatly from the dry measurements, although the rate
of the velocity decrease above 400 °C was reduced. Ultrasonic wave ve-
locities are very sensitive to microcracks (see O'Connell and Budiansky,
1974; Toksöz et al., 1976), therefore the difference between dry and
wet P-waves velocity measurements is usually large for pervasively
microcracked materials (since P-waves travel faster through water
than air). However, in the case of limestones, due to the nature of
their formation, the porosity is made up of mostly pores and conse-
quently dry and wet velocities are generally very similar. The fact
that the rate of velocity decrease was retarded upon water saturation
in our measurements suggests that the observed decrease was the
result of thermal microcracking (see Toksöz et al., 1976); indeed, we
see many more microcracks in the thermally-stressed samples (see
Fig. 6). Thermal microcracking has been previously observed to occur
in carbonates at similar temperatures (Homand-Etienne and Troalen,
1984; Fredrich and Wong, 1986). The changes observed for the lime-
stones investigated in this study were greater than those observed for
the marly limestone studied by Mollo et al. (2011a). Over roughly the
same temperature range, the P-wave velocity of the two limestones
containing a very high total (>95 wt.%) carbonate content (TL and
MCL) decreased by twice that of the marly limestone (comprising
only 75 wt.% calcite), found within the melange of marly clays, marly
limestones and quartz-arenitic rocks that overly the Hyblean Plateau.
This is likely to be due to the fact that, since decarbonation plays
such a key role in the demise of the ultrasonic wave velocities, the
more carbonate present in the rock, the greater their capacity for re-
duction. Our dry Vp/Vs ratio data show that initially the Vp/Vs ratio
was about 1.7, but was reduced to about 1.6 at 700 °C, and then further
to 1.5 at 800 °C. The wet Vp/Vs ratio remained at about 1.8 until
400 °C; above 400 °C it began to increase. A decrease in the dry Vp/
Vs ratio and an increase in the wet Vp/Vs ratio with increasing crack
damage has been observed previously (Nur and Simmons, 1969;
O'Connell and Budiansky, 1974; Wang et al., 2012).

The well-known anomalously low P-wave velocity zone at Mt.
Etna (see Aloisi et al., 2002) has been estimated at a depth between
3 and 4 km, and is therefore located on the cusp of the Hyblean
Plateau, within the mélange of marly clays, marly limestones, and
quartz-arenitic rocks. Devolitisation reactions have been recently
proposed as a potential cause of the low velocity zones present in
the Maghrebian–Appennine Chain (Mollo et al., 2011a). Although
smaller low velocity zones are located at depths corresponding to
the Hyblean Plateau (Aloisi et al., 2002), it is likely that, in general,
due to their deeper location, the carbonates of the Hyblean Plateau
have undergone some degree of pore collapse after their initital de-
carbonation, resulting in a re-increase of their elastic wave velocities.

Perhaps the Vp/Vs ratio holds the greatest potential for volcanic
subsurface interpretation. Our data suggest that the extensive
microcracking and porosity increase associated with decarbonation
serve to increase the Vp/Vs ratio, assuming that the rock is saturat-
ed. We suggest that the anomalously high Vp/Vs ratios seen by
Aloisi et al. (2002) and Patanè et al. (2006) could be explained by
the rapid migration of magmatic gas/fluids from an intruion zone
into recently calcinated, intensely fractured carbonate rocks. How-
ever, we note that in a scenario where dry, fractured zones could
be expected, the Vp/Vs interpretation of the subsurface should be
handled with extreme care. Further, a recent study by Wang et al.
(2012) suggested that crack anisotropy should also be considered
in Vp/Vs analyses.
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4.3. Implications on the use of elastic moduli in volcano monitoring at
Mt. Etna

Our experimental data showed that dynamic and static Young'smod-
ulus, and dry dynamic Poisson's ratio decreased, whilst wet dynamic
Poisson's ratio increased with increasing thermal-stressing temperature
for both carbonates. The knowledge of elastic moduli, and by howmuch
they can change in response to thermal and mechanical stresses, is im-
portant for many facets of volcano monitoring and stability studies,
such as (1) ground deformation modelling (e.g., see Manconi et al.,
2007; 2010), (2) the calibration of damage mechanics criteria (Voight,
1989; Kilburn, 2003; Kilburn and Sammonds, 2005), (3) the application
of simple failure criteria (such as that of Hoek and Brown, 1997; e.g.,
Apuani et al., 2005), (4) the understanding of dyke propagation and ar-
rest (Gudmundsson, 2009, 2011), (5) the determination of accurate
universal-scaling laws for fault displacement (Gudmundsson, 2004)
and, (6) the determination of stress rotation (Faulkner et al., 2006;
Heap et al., 2010).

Previous experimental work (e.g., Heap et al., 2010) designed to
help constrain these physical properties, reported the evolution of
static elastic moduli with increasing stress-induced cyclic uniaxial
damage for three rock types (granite, basalt, and sandstone). In gen-
eral, for all three rock types, static Young's modulus decreased by
10–30% and Poisson's ratio increased by up to a couple of hundred
percent (Heap et al., 2010; see also Eberhardt et al., 1999; Lau and
Chandler, 2004). Mechanical stresses have also been shown to reduce
dynamic Young's modulus by a similar percentage (e.g., Ayling et al.,
1995). Changes in dynamic (Alm et al., 1985; Petrakova et al.,
submitted for publication) and static (Heard and Page, 1982;
Homand-Etienne and Houpert, 1989; Heap et al., 2009; Petrakova et
al., submitted for publication) elastic moduli in response to thermal
stressing showed that, whereas granites showed a deterioration in
elastic moduli (e.g., Young's modulus was decreased by between
50-70%), extrusive igneous rocks (basalt and andesite) were unaffect-
ed. In the case of the extrusive igneous rocks, the unaltered elastic
moduli were interpreted to be a consequence of their pre-existing
pervasive thermal microcrack network (perhaps linked to the notion
of the Kaiser “temperature memory” effect, see Yong and Wang,
1980; Zuberek et al., 1999; Choi et al., 2005) and their thermally sta-
ble mineral assemblages (Heap et al., 2009; Petrakova et al.,
submitted for publication).

Our data show that the Young's modulus of two carbonates de-
creased more in response to thermal-stressing (the dynamic Young's
modulus in this study decreased by 84% and 92% and the static
Young's modulus by 42% and 76% over the entire temperature range
(room temperature to 800 °C for TL and MCL, respectively) than a va-
riety of other crustal rocks (granite, basalt, sandstone, and andesite)
in response to either thermal or mechanical stressing. Over the
same range in temperature, the dry dynamic Poisson's ratio de-
creased by 76% and 51% for TL and MCL, respectively. Whereas the
Poisson's ratio of rock is expected to decrease with increasing crack
density (see O'Connell and Budiansky, 1974), recent uniaxial
cyclic-stressing experiments have shown it to increase dramatically
with increasing damage (Heap et al., 2010). This discrepancy is likely
the result of preferential axial microcrack development during uniax-
ial compression; samples thermally-stressed under ambient pressure
conditions have been shown to develop an isotropic microcrack net-
work (e.g., David et al., 1999; Menéndez et al., 1999).

We can conclude that (1) mineralogical changes (and in particular
decarbonation) and phase transitions give raise to the most signifi-
cant changes in the elastic moduli of rocks: e.g., decarbonation (in
the case of carbonates, this study), the α–β quartz transition (in gran-
ites and sandstones, see Glover et al., 1995), and the loss of water
from zeolites (in pyroclastic deposits, see Heap et al., 2012). In the ab-
sence of chemical alteration, and when the rocks already contain an
extensive thermal microcrack network [the case for the basalt of

Heap et al. (2009) and the andesite of Petrakova et al., submitted
for publication], no changes were observed. (2) Care must be taken
when, for example, selecting elastic parameters to model ground
deformation and, where necessary, multi-layer elastic half-space
models should be utilised (Manconi et al., 2010). Moreover, dynamic
and static moduli generally differ due to their large differences in fre-
quency (e.g., Simmons and Brace, 1965; Cheng and Johnston, 1981;
Eissa and Kazi, 1989; Ciccotti et al., 2000; Ciccotti and Mulargia,
2004). Recently, Manconi et al. (2010) suggested that static elastic
moduli are more appropriate in finite-element ground deformation
modelling than dynamic elastic moduli. (3) While the reduction in
strength due to decarbonation may allow dykes to propagate within
the carbonates of the Hyblean Plateau more easily (dyke-induced me-
chanical and thermally generated pore fluid pressures can severely
affect flank stability, see Elsworth and Voight, 1996), the increase in
the elastic mismatch between these decarbonated sediments and
the layers above could also facilitate dyke arrest (Gudmundsson,
2011).

4.4. The CO2 paradox at Mt. Etna

It is well known that CO2 is exsolved and released by ascending
magma, due to its abundance and low solubility in silicate melts
(Stolper andHolloway, 1988; Pan et al., 1991; Papale, 1999). For this rea-
son, CO2 degassing has been used as an indicator of the pre-eruptive as-
cent of magma (e.g., Giammanco et al., 1998; Bruno et al., 2001; Gerlach
et al., 2002; Aiuppa et al., 2006) and as a proxy for the magma volume
present. However, at Mt. Etna volcano, these estimates usually grossly
overestimate the volume of magma (e.g., see D'Alessandro et al., 1997).
D'Alessandro et al. (1997) report that calculations over the period
1971–1995 resulted in a volume of magma approximately twenty
times greater than the erupted volume. In the case of Mt. Etna it appears
clear that a significant contribution must come from a “non-magmatic
source”. This discrepancy has been postulated to be due to an anoma-
lously shallow asthenosphere that permits the continuous escape of
CO2 (D'Alessandro et al., 1997) or from the decarbonation of the sedi-
mentary substratum at Mt. Etna (e.g. see Allard et al., 1991; Frezzotti
et al., 2009; Chiodini et al., 2011). In these scenarios, the contribution
of decarbonation to the CO2 budget at Mt. Etna volcano remains
overlooked. We are now in a position, using our new experimentally-
obtained decarbonation onset temperatures (Fig. 3) and recent
thermo-mechanical numerical modelling data (Del Negro et al., 2009;
Bonaccorso et al., 2010), to provide the first estimate for Mt. Etna
volcano.

The volume of the affected aureole (V) can be calculated via the
length of the inner and outer, long and short axes (ai, ao, bi, bo, respec-
tively), using the ellipsoidal (as per the calculations of Bonaccorso
et al., 2010) relationship:

V ¼ 4=3π ao−aið Þ2 bo−bið Þ ð7Þ

The volume estimate using a reaction initiation temperature of
560 °C for TL (Fig. 1b), corresponds to an aureole with the dimensions
ai=1.2 km, ao=2.7 km, bi=3.1 km, and bo=4.0 km, and yields a
volume of 8.5 km3. In contrast, in our computation of an aureole
using a reaction initiation temperature of 680 °C for MCL, we obtain
dimensions of ai=1.2 km, ao=2.0 km, bi=3.1 km, and bo=3.4 km
and estimate that approximately 3.5 km3 of carbonate is at risk to de-
carbonation. Using densities of 2.21 and 2.01 Mt/km3 for TL and MCL
(Table 2), respectively, we estimate their respective masses in the au-
reole to be 18.8 and 7.0 Mt. In our chemical analysis, we note that
each limestone yields approximately 44 wt.% of CO2 upon complete
decarbonation (Fig. 5 and Table 1). We also assume on "open" system
(i.e., that the products of decarbonation are free to escape) as
suggested by Mollo et al. (2012). Thus, we estimate that decarbon-
ation of the carbonates would have liberated as much as 8.3 and
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3.1 Mt of CO2, respectively — a substantial amount of CO2. Between
1977 and 1984 the summit plume at Mt. Etna volcano was releasing
about 35 kt of CO2 per day (Allard et al., 1991), resulting in a yearly
output of about 13 Mt. More recent measurements (2004–2005)
have yielded lower emanation rates of about 9 kt per day or 3.3 Mt
per year (Aiuppa et al., 2006).

Although this highlights that sub-volcanic decarbonation should
not be dismissed when considering the CO2 budget at Mt. Etna, it
could be argued that the carbonate surrounding the long-lived mag-
matic body used in the calculation has long since decarbonated. How-
ever, as explained above, magmatic activity at Mt. Etna is constantly
evolving and recent flank eruptions were sourced from new reser-
voirs and new pathways emplaced within the carbonatic basement
(Acocella and Neri, 2003; Behncke and Neri, 2003; Andronico et al.,
2005; Bonforte et al., 2009; Carbone et al., 2009); therefore new
volumes of carbonate rock may well be readily available for
decarbonation.

4.5. An important role for dolomite within a sub-volcanic sedimentary
substratum?

In general, the physical properties of TL suffered more than MCL
when exposed to magmatic temperatures. This may be explained by
a lower initial porosity, resulting in a greater relative deterioration
(despite the fact that mass loss from decarbonation was almost iden-
tical). This raises the question of the importance of dolomite content
within the sedimentary basements of active volcanoes. We have seen
that dolomite (1) dissociates at lower temperatures than calcite and
(Fig. 3), (2) is more readily altered than calcite after exposure to
800 °C (Fig. 6). Previously, an increase in dolomite content has been
shown to have a strengthening influence on carbonate rock at room
temperature (see Kennedy and Cleven, 2011). The room temperature
data of this study corroborate with this hypothesis; our study has
shown TL to be much stronger than MCL (TL had a UCS of 112 MPa,
compared to 29 MPa for MCL, see Fig. 7). Although, the difference in
UCS is likely to reflect the significant difference in porosity (TL=
18.4%, and MCL=25.2%) and/or grain size (TL=10–25 μm, and
MCL=100–400 μm). Here, combining these observations, we can
conclude that, whereas the presence of dolomite at low temperatures
may act to strengthen the substratum, it will make it more prone to
weakening during decarbonation at high temperatures. A similar con-
clusion was drawn from large strain torsion experiments on
calcite-dolomite composite rocks (Delle Piane et al., 2008).

5. Conclusions

1. We have shown, for two different carbonates, chosen to represent
the vast heterogeneity seen within the Hyblean Plateau under Mt.
Etna volcano, that high temperatures will strongly influence their
chemical, physical, and mechanical properties, particularly after
decarbonation.

2. A major mass loss, associated with decarbonation, took place in the
temperature range of 680–882 °C and 560–905 °C for MCL and TL,
respectively. In total, for both carbonates, their mass decreased by
about 45 wt.% and they released about 44 wt.% of CO2. XRPD
analysis confirmed the loss of calcite and dolomite at high
temperatures.

3. These debilitating chemical changes had a dramatic influence on
the physical properties of the two investigated carbonates. Porosi-
ty, wet dynamic Poisson's ratio, and wet Vp/Vs ratio all increased,
whilst P- and S-wave velocities, bulk sample density, dynamic
and static Young's modulus, dry Vp/Vs ratio, and dry dynamic
Poisson's ratio all decreased.

4. The strength of the carbonates was dramatically reduced at high
in-situ temperatures. At and above 500 °C, the samples did not
fail, but “flowed” aseismically in a ductile manner. We suggest

that thermally-induced weakening of the Hyblean Plateau could
therefore encourage the large-scale deformation measured at Mt.
Etna volcano.

5. We suggest that the changes in physical properties observed after
exposure to high temperatures can help explain (1) low seismic
velocity zones present within the sub-volcanic basement at Mt.
Etna, (2) the anomalously high Vp/Vs ratios and the rapid migra-
tion of fluids, both observed at Mt. Etna and, (3) the increasing in-
stability of volcanic edifices in the lifespan of a magmatic system.

6. The data also suggest that care must be taken when selecting elas-
tic parameters (1) to model ground deformation in active geother-
mal and volcanic regions, (2) for the calibration of damage
mechanics criteria and, (3) when applying simple failure criteria
to studies of volcano flank stability.

7. We also provide the first CO2 budget for the decarbonation of the
sedimentary substratum at Mt. Etna, using recent thermo-
mechanical numerical models and our experimental data. We esti-
mate that decarbonation could have liberated as much as 8.3 Mt of
CO2. We highlight that sub-volcanic decarbonation should not be
dismissed when considering the CO2 budget at Mt. Etna.
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