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ABSTRACT
Tuff has been extensively used as a building material in volcani-

cally and tectonically active areas over many centuries, despite its 
inherent low strength. A common and unfortunate secondary hazard 
accompanying both major volcanic eruptions and tectonic earthquakes 
is the initiation of catastrophic fi res. Here we report new experimental 
results on the infl uence of high temperatures on the strength of three 
tuffs that are commonly used for building in the Neapolitan region of 
Italy. Our results show that a reduction in strength was only observed 
for one tuff; the other two were unaffected by high temperatures. The 
cause of this strength discrepancy was found to be a product of the 
initial mineralogical composition, or more specifi cally, the presence of 
thermally unstable zeolites within the initial rock matrix. The implica-
tions of these data are that, in the event of fi re, only the stability of 
buildings or structures built from tuff containing thermally unstable 
zeolites will be reduced. Unfortunately, this includes the most wide-
spread dimension stone in Neapolitan architecture. We recommend 
that this knowledge should be considered during fi re hazard mitigation 
in the Neapolitan area and that other tuffs used in construction world-
wide should be tested in a similar way to assess their fi re resistance.

INTRODUCTION
Tuff is a very weak geomaterial (Schultz and Li, 1995; Hall et al., 

2006; Tuccimei et al., 2010; Zhu et al., 2011). It has nevertheless been 
extensively used as a building material in volcanically and tectonically 
active areas (e.g., in Naples and Rome, Italy) due to the combination 
of local availability and its easy workability. Given its widespread use, 
we examined the high-temperature stability of tuff in the event of fi re; 
catastrophic fi re (especially in urban areas) is also a common secondary 
hazard accompanying major volcanic eruptions and tectonic earthquakes. 
Here we report new experimental results on the infl uence of high tempera-
tures on the strength of three tuffs from the Campanian region of Italy.

MATERIALS AND METHODS
We performed uniaxial compressive and indirect tensile strength 

tests on thermally stressed samples of Neapolitan Yellow Tuff (NYT), 
gray Campanian Ignimbrite (welded gray ignimbrite, WGI), and Piperno 
Tuff (PT). The tuffs were formed during large explosive eruptions from 
the Campi Flegrei caldera (Orsi et al., 1996; de Gennaro and Langella, 
1996; de Gennaro et al., 2000), located a few kilometers west of the city of 
Naples, and have all been used in construction throughout the Neapolitan 
area (see Morra et al., 2010, and references therein). Our sample materials 
were collected from open quarries (that supply material for construction) 
within the Campanian area.

Prior to experimentation, the “as-received” materials (i.e., samples that 
have undergone no heating) were characterized using optical microscopy 
(carried out using a Leica DM2500 microscope; see GSA Data Repository1) 

and X-ray diffraction (XRD) (carried out using a Stoe Kristallofl ex dif-
fractometer; see the Data Repository). NYT, a trachytic pyroclastic 
deposit characterized by both pyrogenic and authigenic phases (de Genn-
aro et al., 2000), was found to contain phenocrysts of sanidine, plagio-
clase, clinopyroxene, biotite, and minor amounts of titaniferous magnetite 
and apatite within a matrix of lapilli and glass shard ash (Fig. 1A). The 
glass shards frequently contain microscopic vesicles, as well as nano-
scopic crystals. Xenoliths of fi ne-grained gabbro (altered and near pris-
tine) were also found. XRD pattern analysis confi rmed the presence of the 
above-mentioned crystals and also indicated the presence of segelerite and 
three zeolites, phillipsite, chabazite, and analcime (Fig. 2A). The presence 
of these zeolites in NYT has been reported in previous studies, and their 
mean content can exceed 50 wt% (de Gennaro et al., 1990, 2000). The 
WGI, feldspathized by authigenic mineralization processes, is made up 
of reversely graded black scoriae embedded in an ashy matrix with subor-
dinate lithics and crystals (Cappelletti et al., 2003). The WGI was found 
to contain hypidiomorphic phenocrysts of alkali feldspars with minor 
amounts of clinopyroxene, as well as microlites of alkali feldspar, tita-
niferous magnetite, and apatite, giving the matrix a trachytic appearance 
(Fig. 1E). The matrix comprises well-sorted glass shards with occasional 
accretionary ash clots and porous lapilli fragments (Fig. 1F). PT is charac-
terized by a eutaxitic texture with black fl attened scoriae set in a light gray 
matrix (Calcaterra et al., 2000), and was found to contain hypidiomorphic 
phenocrysts of alkali feldspars with minor amounts of clinopyroxene. The 
microlites are not well developed and tend to be fragments of alkali feld-
spar. Titaniferous magnetite and apatite are present as accessory minerals. 
The matrix comprises well-sorted glass shards surrounding porous lapilli 
fragments (Fig. 1H). NYT, WGI, and PT contain average porosities of 
44%, 49%, and 48%, respectively (measured using an AccuPyc II 1340 
helium pycnometer).

Experimental samples comprised cylindrical cores 25 mm in diam-
eter by 75 mm long (resulting in a length:diameter ratio of 3:1) for uni-
axial compressive strength tests, and discs 40 mm in diameter by 20 mm 
thick for indirect tensile strength tests (within the thickness-diameter 
ratio suggested by the International Society for Rock Mechanics [ISRM, 
1978]). Prior to strength testing, samples were either (1) held at ambient 
temperature, or (2) thermally stressed to predetermined temperatures of 
100, 200, 300, 500, or 750 °C. Thermal stressing was achieved by heating 
the sample to the target temperature at a rate of 1 °C/min without load, 
holding the temperature constant for 60 min, and then cooling at the same 
rate. Strength tests were then performed on all samples using special test-
ing jigs mounted in a servo-controlled uniaxial load frame. In our uni-
axial compression tests, core samples were loaded at a constant strain rate 
of 1.0 × 10–5 s–1 until failure. Indirect tensile tests were conducted using 
the Brazil-disc technique (ISRM, 1978), in which discs are loaded dia-
metrically in compression to produce a maximum tensile stress at their 
center. Indirect tensile strengths were then calculated using standard rock 
mechanics relationships (ISRM, 1978).

RESULTS AND DISCUSSION
Results demonstrate that, whereas the strength of NYT decreased 

with thermal stressing, the strengths of WGI and PT remained unaffected 
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(Figs. 3A and 3B). The compressive strength and indirect tensile strength 
of NYT were reduced by 80% (from 3.4 to 0.7 MPa) and 90% (from 1 to 
0.1 MPa), respectively. The gradual degradation of strength with thermal 
stressing in NYT is also illustrated in the stress-strain curves of Figure 3C.

To investigate the cause of this discrepancy in strength reduction, we 
fi rst performed thermogravimetric analysis (carried out using a Netzsch 
STA 449 C thermobalance apparatus; see the Data Repository) on all three 
samples (Fig. 3D). Thermogravimetric analysis permits us to evaluate the 
amount of hydrated minerals contained within the three tuffs. Figure 3D 
shows that, at 1000 °C, NYT had lost 18% of its initial mass, whereas 
WGI and PT had only lost ~2%. It follows that the more mass lost during 
heating, the more hydrated minerals contained within the material (see 
also de Gennaro and Colella, 1989). The nature of these hydrated minerals 
was further investigated using a combination of XRD and optical micros-
copy on samples thermally stressed to 1000 °C, to be compared with our 
observations of the as-received materials. Thermally stressing the NYT to 
1000 °C resulted in the disintegration of the matrix, revealed by the pres-
ence of distributed and nonpreferentially oriented 1–100-µm-wide micro-
cracks (Fig. 1B). The cores of lapilli were sometimes strongly affected and 
act as a point of nucleation for the propagation of microcracks (Fig. 1C). 
Some areas show the presence of foamed glass as much as 1 mm wide 
(Fig. 1D). The crystals of biotite appear relatively more oxidized (see the 
diminished XRD peak of Fig. 2A), whereas those of feldspar, pyroxenes, 
and apatite remain unaffected. Phillipsite, chabazite, analcime, and sege-
lerite, which were originally present in the matrix, are no longer visible 
on the XRD patterns (Fig. 2A). Zeolites are micro-porous minerals with 
an open framework structure capable of storing both exchangeable cat-
ions and water molecules. As a consequence, they are prone to changes in 
temperature (and/or water vapor pressure). Detailed studies on the thermal 
decomposition of the zeolites in NYT have highlighted that analcime irre-
versibly loses water and chabazite and phillipsite undergo a partial revers-
ible dehydration at 240 °C; phillipsite breaks down during dehydration 
and chabazite undergoes reversible hydration at 350 °C; and at 900 °C, 

the structure of the zeolites will be so damaged that no further water mol-
ecules can be stored (de Gennaro and Colella, 1989). Our thermogravi-
metric analysis (Fig. 3D) corroborates these observations: NYT had lost 
16.5% of its mass by 350 °C (total mass lost at 1000 °C was 18%). Ther-
mally stressing both WGI and PT to 1000 °C did not produce any changes 
to the matrix, glass, or the crystals (Figs. 1G and 1I) and XRD pattern 
analysis did not reveal any mineralogical changes (Figs. 2B and 2C).

We therefore conclude that the thermal liability of the zeolites in 
NYT, particularly phillipsite and chabazite (see also de Gennaro et al., 
1983, 1984), can explain the strength discrepancy between the three 
tuffs. Phillipsite and chabazite represent the “cement” that promoted the 
lithifi cation of the originally incoherent pozzolanic material (de Genn-
aro et al., 2000) and consequently, upon its loss, the structural integrity 
of NYT deteriorates signifi cantly (see Figs. 1B and 1C). The WGI and 
PT, both of which do not contain zeolites, are therefore unaffected by 
thermal stressing.

The implications of these data are that, in the event of fi re, the stabil-
ity of buildings or structures built from WGI and PT will not be jeopar-
dized. Unfortunately, the most widespread dimension stone in Neapolitan 
architecture, NYT, will deteriorate considerably. One of the most infa-
mous fi res in a building constructed from NYT is that of the Church of 
Santa Chiara, Naples (built between A.D. 1310 and 1340), in 1943. The 
fi re, initiated after an air raid attack during the Second World War acci-
dently hit the church, roared for 10 days and almost destroyed the church 
entirely. Restoration work on the church, back to its original Gothic style, 
was completed in 1953.

Current worldwide zeolitized tuff consumption as a dimension 
stone is at ~3 × 106 t/yr (Colella et al., 2001). This widespread utilization 
demands extra consideration during fi re hazard mitigation. We recom-
mend that the results of our study should be considered during fi re hazard 
mitigation in the Neapolitan area (including any original material incorpo-
rated into restorations after fi res), and that other tuffs used in construction 
worldwide should be tested in a similar way to assess their fi re resistance.
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