
Shear-enhanced compaction and strain localization: Inelastic

deformation and constitutive modeling of four porous sandstones

Patrick Baud,1 Veronika Vajdova,2,3 and Teng-fong Wong2

Received 11 October 2005; revised 21 May 2006; accepted 17 August 2006; published 7 December 2006.

[1] We studied the mechanics of compactant failure in four sandstones associated with a
broad range of failure modes in the brittle-ductile transition. While Berea and
Bentheim sandstones can fail by compaction localization, homogeneous cataclastic flow
dominates failure modes in Adamswiller and Darley Dale sandstones at high effective
pressures. We acquired new experimental data to complement previous studies, focusing
on the strain hardening behavior in samples under drained conditions. The initial yield
stresses were identified as the critical stresses at the onset of shear-enhanced compaction,
subsequent yield stresses were considered to depend on hardening given by plastic
volumetric strain. The yield stresses were described by elliptical yield caps in the stress
space, and we compared the cap evolution with two constitutive models: the critical state
model and the cap model. Bentheim sandstone showed the best agreement with both
models to relatively large strains. Darley Dale sandstone showed the best agreement with
the associated flow rule as prescribed by the normality condition, which is implicitly
assumed in both constitutive models. Shear-enhanced compaction in Bentheim and Berea
sandstones was appreciably more than that predicted for an associative flow rule, with
the implication that a nonassociative model is necessary for capturing the inelastic and
failure behavior of these sandstones over a broad range of effective pressures. With
reference to the nonassociative model formulated by Rudnicki and Rice, bifurcation
analysis would predict the transition of failure mode from shear band to compaction band
and ultimately to cataclastic flow, in qualitative agreement with the experimental
observations.
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1. Introduction

[2] In response to an applied stress field or pore pressure
change, the pore space of a rock may dilate or compact.
Such porosity change arises from the interplay of several
micromechanical processes, including microcracking, grain
crushing and pore collapse. Rock mechanics studies have
demonstrated that in the brittle-ductile transition dilatant
and compactant failures are associated with several distinct
failure modes. The mode of dilatant failure can be either
axial splitting or shear faulting, which arises from the
nucleation, propagation and coalescence of stress-induced
cracks [Paterson and Wong, 2005]. In contrast, compactant
failure typically occurs in porous rocks under relatively high
confinement, with a failure mode conventionally described
as homogeneous cataclastic flow [Handin et al., 1963;
Menéndez et al., 1996].

[3] In a previous study, Wong et al. [1997] investigated
this transition from brittle faulting to cataclastic flow in six
sandstones with porosities ranging from 15% to 35%. By
systematically characterizing the inelastic behavior and
acoustic emission activity associated with these two failure
modes, they showed that the failure envelopes for the brittle
strength and compactive yield stress are sensitively depen-
dent on microstructural parameters such as porosity and
grain size. The comprehensive database provides a useful
framework for the analysis of the two end-members of
dilatant and compactive failure, and it has motivated the
formulation of several constitutive models [e.g., Issen,
2002; Ricard and Bercovici, 2003; Hamiel et al., 2004;
Grueschow and Rudnicki, 2005] which attempt to capture
the key mechanical attributes and failure modes.
[4] Nevertheless there are at least two fundamental issues

on the mechanics of compactant failure that were not
adequately addressed in this previous study. First, while
their data on initial yield stresses of porous sandstones are in
qualitative agreement with constitutive models such as the
critical state [Schofield and Wroth, 1968] and cap [DiMaggio
and Sandler, 1971] models, Wong et al. [1997] did not
compare their data quantitatively with specific predictions
of such models on the strain hardening behavior and
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evolution of subsequent yield surfaces. Such a comparison
is important since the development of physically realistic
constitutive models for inelastic compaction and failure in
porous rocks is critical to many geological and geotech-
nical applications that depend on the ability to predict the
development of porosity loss, dewatering and pore pres-
sure excess in tectonic settings such as accretionary prisms
and fault zones [Byrne et al., 1993; Byerlee, 1990; Sibson,
1994], as well as the occurrence and extent of subsidence
and well failure in reservoirs and aquifers [Nagel, 2001;
Fredrich and Fossum, 2002].
[5] Second, by focusing on homogeneous cataclastic flow

as the dominant end-member for compactant failure the
assumption is implicitly made that strain localization would
not develop while a porous rock undergoes compaction.
However, recent geologic [Mollema and Antonellini, 1996;
Sternlof et al., 2004] and laboratory [Olsson and Holcomb,
2000; DiGiovanni et al., 2000] studies in porous sandstones
have documented the pervasive occurrence of localized
failure during compaction. Such localized compactant fail-
ure is often associated with stress states in the transitional
regime between brittle faulting and cataclastic flow [Klein et
al., 2001], manifested by structures showing a broad spec-
trum of geometric complexity and distinct acoustic emission
activity [Baud et al., 2004]. Significant reduction of per-
meability has also been observed in samples undergoing
compaction localization [Holcomb and Olsson, 2003;
Vajdova et al., 2004a]. Since strain localization as a failure
mode can significantly influence the stress field, strain
partitioning and fluid transport in many tectonic settings,
it is of fundamental importance to have a physical
understanding of such compaction localization phenomena
and their relation to the constitutive behavior.
[6] This study was undertaken to investigate a number of

questions related to these two issues. To what extent are the
mechanical data in agreement with constitutive model
predictions on the evolution of yield stresses with strain
hardening? What are the mechanical attributes that promote
the development of strain localization in the transitional
regime between the end-members of compactive cataclastic
flow and brittle faulting? Theoretical analysis of strain
localization shows that its onset is sensitive to whether the
normality condition applies and the inelastic behavior can
be described by an associated flow rule [Issen and Rudnicki,
2000]. It is often assumed in constitutive models that
cataclastic flow can be described as associative, and indeed
the mechanical data seem to indicate that the normality
condition applies [Wong et al., 1997; Wong and Baud,
1999]. Does normality also apply to the constitutive behav-
ior associated with compaction localization in the transi-
tional regime?
[7] Four sandstones, Adamswiller, Bentheim, Berea and

Darley Dale, were selected because of the broad range of
failure modes observed in these rocks in relation to the

brittle-ductile transition [Baud et al., 2004]. While mechan-
ical data for Darley Dale, Adamswiller and Berea sand-
stones in the cataclastic flow regime are available from
previous studies, we conducted here additional experiments
focusing on the transitional regime. Among the four, com-
paction localization in Bentheim sandstone was observed to
develop over the broadest range of pressure. Previous
studies [Wong et al., 2001; Baud et al., 2004] on the
Bentheim sandstone were conducted mostly on nominally
dry samples. Here we present a comprehensive series of
experiments on saturated Bentheim sandstone samples, and
collectively the data provide useful insights into the devel-
opment of cataclastic flow and compaction localization in
water-saturated sandstones.

2. Mechanical Deformation and Failure Mode

[8] Petrophysical descriptions of the four sandstones are
compiled in Table 1. While their average grains sizes are
comparable, the porosities of the four range from 13% to
23% and there are significant contrasts in the modal
compositions. The Darley Dale and Berea sandstone sam-
ples were cored from the same blocks used by Baud et al.
[2000a, 2004]. Bentheim sandstone samples were from a
new block considered to be similar to that previously
studied by Baud et al. [2004] and Vajdova et al. [2004a].
These samples were cored perpendicular to the bedding in
the three sandstones. In contrast the Adamswiller sandstone
samples were cored parallel to the bedding, from the same
block studied by Wong et al. [1997].
[9] In this paper we will use the convention that the

compressive stresses and compactive strains (i.e., shorten-
ing and porosity decrease) are considered to be positive. We
will denote the maximum and minimum (compressive)
principal stresses by s1 and s3, respectively. The pore
pressure will be denoted by Pp, and the difference Pc �
Pp between the confining pressure (Pc = s2 = s3) and pore
pressure will be referred to as the ‘‘effective pressure’’ Peff.
The effective mean stress (s1 + 2s3)/3 � Pp will be denoted
by P and the differential stress s1 � s3 by Q.

2.1. Experimental Procedure

[10] The samples were ground to a cylindrical shape with
diameter of 18.4 mm and length 38.1 mm. They were
jacketed with polyolefine tubing, saturated with distilled
water and deformed under fully drained conditions at a
fixed pore pressure of 10 MPa. Kerosene was used as the
confining medium. Both confining pressure and pore pres-
sure were monitored by strain gage pressure transducers to
accuracies of 0.5 and 0.125 MPa, respectively. Adjustment
of a pressure generator kept the pore pressure constant, and
the pore volume change was recorded by monitoring the
piston displacement of the pressure generator with a dis-
placement transducer (DCDT). The porosity change was

Table 1. Petrophysical Description of the Four Sandstones Investigated in This Study

Sandstone Porosity,% Grain Radius, mm Composition Reference

Darley Dale 13 0.17 quartz: 66%, feldspar 21%, mica 3%, clay �6% Wong et al. [1997]
Berea 21 0.13 quartz: 75%, feldspar 10%, carbonate 5%, clay �10% Zhang et al. [1990a]
Adamswiller 22.6 0.09 quartz: 71%, feldspar 9%, oxides and mica 5%, clay �11% Wong et al. [1997]
Bentheim 22.8 0.105 quartz: 95%, 3% kaolinite, 2% orthoclase Klein et al. [2001]
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calculated from the ratio of the pore volume change to the
initial bulk volume of the sample. The axial load was
measured with an external load cell with an accuracy of
1 kN. The displacement was measured outside the pressure
vessel with a DCDT mounted between the moving piston
and the fixed upper platen. The uncertainty of the axial
displacement measurement was 10 mm. The machine stiff-
ness was 238 kN/mm.

[11] The sandstone samples were deformed in the con-
ventional triaxial configuration at a nominal axial strain rate
of 1.3 � 10�5 s�1 at room temperature and under confining
pressures ranging from 40 to 350 MPa, following the
methodology of Wong et al. [1997]. To record acoustic
emission (AE) activity during triaxial experiments, we used
a piezoelectric transducer mounted on the spacer attached to
the jacketed sample. The AE signals were conditioned by a
preamplifier (gain 40dB, frequency response 1.5 kHz to
5 MHz). To distinguish AE events from electric noise, a
discriminator was used to check the amplitude and oscilla-
tional characteristics of the incoming signal. (See Zhang et
al. [1990b] for details.)

2.2. Bentheim Sandstone: Mechanical Data, AE
Activity, and Failure Mode

[12] We will first present our new data on saturated
Bentheim sandstone samples, comparing them with previ-
ous data on nominally dry samples [Wong et al., 2001; Baud
et al., 2004]. The porosity reduction of Bentheim sandstone
under hydrostatic loading is presented in Figure 1a. Typi-
cally the hydrostat of a porous sandstone shows (1) an
initial nonlinear stage at low effective pressure, corre-
sponding to the closure of crack porosity (inferred to be
�0.4% for Bentheim sandstone); (2) an approximately
linear poroelastic stage; and (3) a third stage showing
significant deviation from poroelasticity, corresponding to
the onset of grain crushing and pore collapse [Zhang et al.,
1990a]. The effective pressure at the transition from the
second to third stage is denoted by P*, which corresponds
to an inflection point in the hydrostat and an upsurge in AE
activity. The critical effective pressure P* for saturated
Bentheim sandstone was observed to be 420 MPa, and
taking into consideration its porosity (f) and grain radius
(R) this value follows the trend for P* / (fR)�3/2 as
deduced by Zhang et al. [1990a] and Wong et al. [1997].
In stage 3 grain crushing and pore collapse resulted in a
dramatic porosity decrease of �3% while the effective
pressure increased by a relatively small increment from
452 MPa to 477 MPa.
[13] Figure 1b shows the axial stress-strain curve for a

sample deformed at 250 MPa of effective pressure. After

Figure 1. Mechanical data for saturated Bentheim sand-
stone. (a). Effective pressure and cumulative count of
acoustic emission (AE) as functions of porosity reduction in
a hydrostatic experiment. Arrow indicates the critical
pressure P* for the onset of pore collapse. Dashed linear
regression line denotes the linear part of the hydrostat used
for the calculation of pore compressibility. (b) Differential
stress and acoustic emission rate as functions of axial strain
in a triaxial experiment at effective pressure of 250 MPa.
The range of axial strain at which microstructural observa-
tions indicate the development of discrete compaction bands
is marked on the figure. (c) Effective mean stress as a
function of porosity reduction for triaxial compression
experiments at effective pressures indicated by numbers (in
MPa) next to each curve. For reference the hydrostatic data
are shown as the dashed line. Arrows mark critical stress
states C* and C*0 for selected experiments and the critical
pressure P* for the hydrostatic experiment.
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attaining an initial peak the differential stress remained
relatively flat and only after an axial strain of �5% had
accumulated was strain hardening appreciable. However, it
should be noted that the differential stress was not exactly
constant on the plateau, but instead was punctuated by
episodic stress drops accompanied by upsurges in AE
activity. According to our microstructural analysis the
failure mode associated with such a plateau typically
involves the development of discrete compaction bands.
These are relatively narrow tabular structures (with widths
comparable to the grain size) oriented subperpendicular to
s1 [Baud et al., 2004]. The number of compaction bands
increases linearly with cumulative axial strain [Vajdova et
al., 2004a], and when most of the sample volume was
covered with such discrete bands, the stiffer rock started to
harden and the AE activity decayed slowly and continuously

(Figure 1b). The inelastic behavior and failure mode
observed in our saturated samples are qualitatively similar
to those of nominally dry samples reported by Wong et al.
[2001] and Baud et al. [2004]. Our observations indicate
that localized failure developed by discrete compaction
bands at the very broad range of effective pressures
between 120 and 350 MPa. The failure mode switched
to high-angle shear bands at effective pressures between
50 and 90 MPa (Table 2).
[14] Figure 1c compiles our new mechanical data for

saturated Bentheim sandstone at effective pressures between
50 and 350 MPa. In this pressure range, dilatancy was not
observed and to underscore the influence of nonhydrostatic
loading on the inelastic yield behavior we plot here the
effective mean stress as a function of porosity change. The
nonhydrostatic and hydrostatic loadings are coupled in our

Table 2. Mechanical Data of the Samples Investigated in This Study

Effective
Pressure

s3 � Pp, MPa

C* C*0

Comments

Effective
Mean stress P,

MPa

Differential
Stress Q,
MPa

Effective
Mean stress P,

MPa

Differential
Stress Q,
MPa

Darley Dale
80 164 251 - - high-angle shear bands
90 178 264 - - high-angle shear bands
95 186 269 - - high-angle shear bands
100 188 269 - - homogeneous cataclastic flow
110 200 270 homogeneous cataclastic flow
150 242 274 272 363 homogeneous cataclastic flow
180 267 260 317 408 homogeneous cataclastic flow
200 285 253 417 530 homogeneous cataclastic flow
240 315 222 - - homogeneous cataclastic flow
300 357 171 - - homogeneous cataclastic flow
P* 380 0 - -

Berea
40 98 172 - - high-angle shear bands
50 111 182 - - high-angle shear bands
60 120 179 - - high-angle shear bands
75 137 184 - - high-angle shear bands
90 154 190 - - high-angle shear bands
100 165 195 - - diffuse compaction bands
150 214 191 - - discrete and diffuse compaction bands
200 260 178 - - homogeneous cataclastic flow
250 301 151 - - homogeneous cataclastic flow
300 341 122 - - homogeneous cataclastic flow
P* 400 0 - -

Adamswiller
40 77 115 - - high-angle shear bands
60 101 123 - - -
100 138 114 - - -
150 176 78 - - -
175 193 54 - - -
P* 190 0 - - -

Bentheim
50 111 181 - - high-angle shear bands (45�)
70 138 203 - - high-angle shear bands (50�)
90 165 224 - - discrete compaction bands + high

angle shear bands
120 195 225 208 263 discrete compaction bands
150 227 228 263 337 discrete compaction bands
180 253 216 370 477 discrete compaction bands
210 280 210 435 553 discrete compaction bands
250 314 193 - - discrete compaction bands
300 358 170 - - discrete compaction bands
350 394 129 - - discrete compaction bands
P* 420 0 - -
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conventional triaxial experiments. If the axial stress
increases by an increment Ds1 while the confining and
pore pressures are maintained constant, not only does the
differential stress Q increase by the amount Ds1 but the
effective mean stress P would also increase by Ds1/3. For
elastic deformation the porosity change is solely controlled
by the hydrostatic stresses and independent of the differen-
tial stress, and therefore the triaxial data (solid curves) in
Figure 1c should coincide with the hydrostat (dashed
curve). Any deviation from the hydrostat would imply that
the porosity change in a triaxial compression experiment
depends on not only the effective mean stress, but also the
deviatoric stresses due to inelastic deformation. In all the
experiments shown in Figure 1c the triaxial curve for a

given effective pressure coincided with the hydrostat up to
a critical stress state (indicated by C*), beyond which there
was an accelerated decrease in porosity in comparison to
the hydrostat. At stress levels beyond C* the deviatoric
stress field provided an inelastic contribution to the com-
pactive strain, and this phenomenon of ‘‘shear-enhanced
compaction’’ [Wong et al., 1997] is attributed to the
inception of grain crushing and pore collapse in the
sandstone [Menéndez et al., 1996; Wu et al., 2000].
[15] The critical stress state C* for the onset of shear-

enhanced compaction also marks the initial yield stress,
which decreases with increasing effective pressure (Table 2).
For the experiments at effective pressures between 90 MPa
and 350 MPa, the stress levels initially stayed relatively
constant beyond the initial yield point C*, and as noted
above these stress ‘‘plateaus’’ were punctuated by episodic
stress drops manifested by upsurges in AE activity. After
the porosity had been reduced inelastically by 5% or so,
strain hardening was observed and further compaction
would require appreciable increase of stress. Ultimately
the sample attained the transitional point at which further
increase of differential stress would induce the pore space
to dilate rather than compact. Following Baud et al. [2000b],
this critical stress state is denoted by C*0 (Figure 1c). In
selected experiments we deformed the samples to sufficiently
high strain so that this transition from shear-enhanced
compaction to dilatancy could be observed. The C*0 data
from these tests are compiled in Table 2.

2.3. Adamswiller, Darley Dale, and Berea Sandstones

[16] Representative stress-strain curves for Adamswiller,
Darley Dale and Berea sandstones were presented by Wong
et al. [1997], Baud et al. [2000a], and Baud et al. [2004].
Additional experiments were performed in this study to
relatively large strains so the transitional points C*0 can be
determined. Curves for the effective stress as a function of
porosity change in selected experiments for the Darley Dale
and Berea sandstones are shown in Figure 2. The behavior
of Darley Dale sandstone is different from Bentheim sand-
stone in two aspects. First, appreciable strain hardening was
observed in Darley Dale sandstone without any plateaus in
the stress level beyond the onset of shear-enhanced com-
paction. Second, episodic stress drops were not observed in
Darley Dale sandstone during strain hardening (Figure 2a).
A synopsis of the failure modes is included in Table 2.
Microstructural observations show homogeneous cataclasis
in samples deformed at effective pressures over 95 MPa, as
described in detail by Wu et al. [2000]. Between 80 MPa
and 95 MPa, conjugate shears at high angle were observed
[Baud et al., 2004].
[17] The behavior of Berea sandstone is similar to that of

Bentheim sandstone in that beyond C* the stress levels
initially remained relatively constant. However, episodic
stress drops were not observed and in this respect its
behavior is similar to Darley Dale sandstone (Figure 2b).
At effective pressures between 50 and 90 MPa, high-angle
shear bands comparable to those in Darley Dale sandstone
were observed. Microstructural observations show that at
intermediate effective pressures (90–200 MPa) a diffuse
mosaic of compaction bands had developed in the samples
[Baud et al., 2004]. In samples failed at effective pressures
above 250 MPa Menéndez et al. [1996] observed homoge-

Figure 2. Effective mean stress versus porosity reduction
for triaxial compression experiments on (a) Darley Dale and
(b) Berea sandstone. The effective pressures are indicated
by numbers (in MPa) next to each curve. For reference the
hydrostatic data are shown as the dashed lines. Arrows mark
critical stress states P* for hydrostatic experiments and C*
and C*0 for selected triaxial experiments.
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neous cataclasis, but in light of recent observations of Baud
et al. [2004] it is possible that part of the damage in these
high-pressure samples may have been localized in diffuse
bands.
[18] For Adamswiller sandstone, we conducted only one

additional test at 175 MPa effective pressure to complement
existing data from Wong et al. [1997]. The failure mode of
this rock was not studied in detail. Overall the mechanical
data of Adamswiller and Darley Dale sandstone are quali-
tatively similar, with significant strain hardening observed
in both rocks at relatively high effective pressures. We did
not conduct detailed microstructural observations on failed
Adamswiller sandstone samples, but judging from exterior
features of the failed sample and the continuous accumula-
tion of AE recorded in all samples deformed beyond 40 MPa
of effective pressure, as well as microstructural observations
on sandstones of comparable porosity cored parallel to
bedding [Baud et al., 2004, 2005], we infer that the
dominant failure mode for this rock was homogenous
cataclastic flow.

3. Constitutive Models

[19] Plasticity theory provides a constitutive framework
for the analysis of inelastic yield and compaction in a
granular material such as soil [Chen, 1984; Desai and
Siriwardane, 1984; Davis and Selvadurai, 2002], porous
sandstone [Wong et al., 1997; Guéguen et al., 2004;
Grueschow and Rudnicki, 2005], diatomites [Fossum and
Fredrich, 2000], and carbonate rocks [Vajdova et al.,
2004b]. In particular, two classes of plasticity models are
often invoked: the critical state model [Schofield and Wroth,
1968] which has had a profound impact in soil mechanics,
and the cap model which was formulated by DiMaggio and
Sandler [1971] with both soil and porous rock in mind.
While many versions of the critical state model have been
proposed [Wood, 1990], we will here focus on one proposed
by Carroll [1991] for porous reservoir rocks. Carroll’s
[1991] critical state model and DiMaggio and Sandler’s
[1971] cap model have four common features. (1) They
both assume the plastic yield behavior of the compactant
rock is isotropic. (2) The yield function is assumed to be
independent of the third stress invariant. (3) The strain
hardening behavior is characterized by a yield function that
depends solely on the plastic volumetric strain. (4) Both
models assume the plastic flow to be associative satisfying
the normality condition. We will briefly review these
characteristics of the critical state and cap models before
comparing them with our mechanical data.

3.1. Elliptic Yield Caps in Plasticity Models

[20] The first step in developing a plasticity model is to
identify an appropriate yield function f in the stress (sij)
space. If the yield behavior is isotropic, then the yield
behavior can be described by a function dependent only
on the three stress invariants, and furthermore if the yield
behavior can be considered to be independent of the third
stress invariant, then f is a function of only the first and
second stress invariants,

I1 ¼ s11 � Pp

� �
þ s22 � Pp

� �
þ s33 � Pp

� �
ð1aÞ

J2 ¼ s11 � s22ð Þ2 þ s22 � s33ð Þ2 þ s33 � s11ð Þ2
h i
.
6þ s2

12 þ s2
23 þ s2

13 ð1bÞ

The constitutive models to be considered here all adopt a
yield function of the form

f sij

� �
¼ I1 � cð Þ2

a2
þ J2

b2
� 1 ¼ 0 ð2Þ

which corresponds to an ellipse centered at (c, 0) with major
and minor semiaxes of a and b. The three parameters for the
ellipse can be evaluated from conventional triaxial tests on
saturated samples by noting that under axisymmetric
loading the first stress invariant is related to the effective
mean stress P by I1 = 3P and the second invariant to the
differential stress Q by 3J2 = Q2. Accordingly the
constitutive model prescribes the triaxial compression data
on yield stress to fall on the ellipse with semiaxes A = a/3
and B =

ffiffiffi
3

p
b and center at (C = c/3, 0):

P � Cð Þ2

A2
þ Q2

B2
¼ 1 ð3aÞ

[21] The yield function f (and therefore the three param-
eters a, b and c) is assumed to depend only on the plastic
volumetric strain ev

p as the rock undergoes inelastic defor-
mation and work hardening. The initial yield stresses
corresponding to C* at the onset of shear-enhanced com-
paction map are expected to fall on the initial elliptical cap
for ev

p = 0. We will use Ao, Bo and Co to denote the semiaxes
and center of this initial cap.
[22] It should be noted that there are constitutive models

that adopt caps that are nonelliptical. Indeed in critical state
soil mechanics the yield function Q + MP(ln(P/Pcr � 1)
with two parameters M and Pcr was initially proposed for
Cam clay [Schofield and Wroth, 1968]. This yield surface
has a pointed vertex at the tip, but in subsequent models the
yield function for Cam clay is often prescribed to give
elliptic yield caps [Desai and Siriwardane, 1984; Wood,
1990; Guéguen et al., 2004]. Carroll [1991] initially con-
sidered a parabolic yield envelope, which he then general-
ized to a cap of the form (P � C)2/A2 + Q1+k/B2 = 1, which
gives an ellipse when k = 1. Our choice of an elliptical cap
is motivated by the extensive data of Wong et al. [1997] for
the initial yield stresses at the onset of shear-enhanced
compaction which are in good agreement with the ellipse

P=P*� gð Þ2

1� gð Þ2
þ Q=P*ð Þ2

d2
¼ 1 ð3bÞ

in terms of the stresses normalized by the critical pressure
P* for onset of pore collapse. Data for 7 sandstones with
porosities ranging from 14% to 35% were observed to fit
elliptic caps with g = co/(3P*) = Co/P* � 0.5 and d =
bo/(

ffiffiffi
3

p
P*) = Bo/P* ranging from 0.5 to 0.7 [Wong et al.,

1997].

3.2. Carroll’s Critical State Model

[23] The evolution of the yield envelop in Carroll’s
[1991] model as a function of plastic volumetric strain
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during work hardening is illustrated by the schematic
diagram in Figure 3a. The three parameters for the ellipse
are subjected to two constraints. (1) One of the semiaxis
remains constant so that A = Ao even if ev

p becomes greater
than zero. (2) The other two parameters are related to one
another, in that they are required to satisfy

B ¼ Bo þ m C � Coð Þ ð4aÞ

As illustrated in Figure 3a, this second condition imposes
the rather stringent constraint that the yield cap will always
evolve with its tip located at (C, B) moving along the

‘‘critical state line’’ with slope m (Figure 3a), or
equivalently, the coordinates (c, b) always fall on the line

b ¼ bo þ m=3*
ffiffiffi
3

p� �
c� coð Þ ð4bÞ

This second condition is the primary attribute that
characterizes a critical state model. Nevertheless, it should
also be emphasized that Carroll’s [1991] model is different
in one important aspect from models in critical state soil
mechanics which typically assume that the ellipse would
pass through the origin and therefore the equality C = A
holds at every stage of strain hardening. For a cohesive rock
undergoing strain hardening it is unlikely that the yield
envelope would pass through the origin.
[24] To compare the constitutive model prediction with

laboratory data, it was necessary to map out contours in
the stress space corresponding to specific values of plastic
volumetric strain. Since in a sandstone plastic deforma-
tion of the solid grains is negligible at room temperature
under the pressure conditions in our experiments, the
plastic porosity change DFp represents the bulk of the
plastic volumetric strain, and to a first approximation we
can take ev

p = DFp (with the convention that DFp is
positive for compaction). From a plot of the total porosity
change versus effective mean stress (Figures 1a, 1c,
and 2b) the plastic porosity change DFp at a given point
beyond C* was evaluated by subtracting from the total
porosity change DF the elastic porosity change which is
assumed to be given by the linear portion during initial
loading.
[25] The stress states attained at constant values of ev

p

(inferred from DFp) in triaxial compression experiments for
the 4 sandstones were compiled and plotted in Figure 4. To
compare with the model prediction, we first fitted the initial
yield stress data to an elliptic envelope, thus obtaining
values of Ao, Bo, and Co. We then fitted the subsequent
yield stresses for selected values of Dev

p > 0 to elliptic
envelopes, imposing the equality A = Ao. These ellipses are
shown in Figure 4, and the coordinates (C, B) so determined
for the elliptic envelopes are plotted in Figure 5. We can
then test the ‘‘critical state’’ constraint by checking whether
the coordinates (C, B) at the tip of the elliptic caps do indeed
lie on a straight line. For those data that fall on a linear trend
the critical state parameters m were evaluated by linear
regression and compiled in Table 3.
[26] The Bentheim sandstone data can be fitted with

ellipses (with constant Ao = 202 MPa) up to plastic volu-
metric strain of 0.05 (Figure 4a), while the Adamswiller
sandstone data can be fitted with ellipses (with Ao = 98 MPa)
up to plastic volumetric strain of 0.02 (Figure 4b). We
also include for the latter yield stress data forDev

p = 0.03, but
it can be seen that since the plastic volumetric strain from
0.02 to 0.03 was accompanied by a hardening rate that
was significantly higher for hydrostatic loading than
triaxial loading, the Adamswiller sandstone data at the
higher plastic strain cannot be reasonably fit with an
ellipse with constant Ao. For the Berea (Figure 4c) and
Darley Dale (Figure 4d) sandstones, the yield stress data
can be fitted by ellipses with constant Ao only at
relatively small plastic strains of Dev

p � 0.01 (Figure 4c)
and Dev

p � 0.0025 (Figure 4d), respectively. It should be

Figure 3. (a) Schematic diagram illustrating evolution of
the yield envelope in the effective mean stress–differential
stress space for Carroll’s [1991] critical state model. With
increasing plastic volumetric strain, the peak of the yield
surface with coordinates (C, B) traverses the critical state
line of slope m. The width 2Ao of the elliptical yield
surfaces remains constant. (b) Schematic diagram illustrat-
ing evolution of the yield envelope in the effective mean
stress–differential stress space for DiMaggio and Sandler’s
[1971] cap model. The aspect ratio B/A of the elliptical caps
remains constant with increasing plastic volumetric strain.
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noted that the data for Berea sandstone presented in
Figure 4c are the data from Wong et al. [1992] which
reached larger plastic volumetric strain.
[27] It can be seen in Figure 5 that the Adamswiller,

Bentheim, and Darley Dale sandstone data fall on the
predicted linear trends with ‘‘critical state’’ slopes of 0.54,
0.32, and 0.58, respectively. There seems to be a trend for
the slope m to increase with decreasing porosity. Since the
Berea sandstone data could be fitted with elliptic envelopes
over a very limited range, we did not attempt to fit them
with a critical state line.

3.3. DiMaggio-Sandler Cap Model

[28] The evolution of the yield cap in DiMaggio and
Sandler’s [1971] model as a function of plastic volumetric
strain is illustrated by the schematic diagram in Figure 3b.
In contrast to Carroll’s [1991] model, the parameters of the
ellipse have more degrees of freedom since only one

constraint is imposed here: the aspect ratio of the cap
remains constant, so that

B=A ¼ Bo=Ao ¼ Ro ð5Þ

as the rock undergoes work hardening. To compare our data
with this cap model, we fitted the initial and subsequent
yield stresses for selected values of ev

p > 0 to elliptic caps
without imposing any constraints (Figure 6). If indeed the
yield behavior was as predicted by DiMaggio-Sandler cap
model, then the value of R for each sandstone should remain
the same as it strain hardens. The aspect ratios R = B/A so
determined for the yield caps are plotted in Figure 7. The
cap model parameters for these four sandstones are also
compiled in Table 3.
[29] Yield stress data for the Bentheim sandstone can be

fitted reasonably well with elliptic caps up to plastic
volumetric strain of 0.06 (Figure 6a). For Adamswiller
sandstone we show in Figure 6b elliptic caps up to Dev

p =

Figure 4. Comparison between Carroll’s [1991] critical state model and experimental data on the initial
yield stress C* and evolution of the yield stress as a function of plastic volumetric strain for (a) Bentheim,
(b) Adamswiller, (c) Berea, and (d) Darley Dale sandstones. Geometric parameters for the elliptical
envelopes are compiled in Table 3.
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0.05, but it should be noted that the fits are somewhat
marginal for Dev

p = 0.04 and 0.05. For Berea sandstone
(Figure 6c) the elliptic caps were acceptable given the
significant scatter in the data [from Wong et al., 1992],
while the fit to the Darley Dale sandstone data (Figure 6d) is
very good.
[30] It can be seen from Figures 7a and 7c that in

agreement with the DiMaggio and Sandler model the aspect
ratios of the caps for both Bentheim and Berea sandstone
were approximately constant, with arithmetic means of 1.16
and 1.08, respectively (Table 3). In contrast the aspect ratios
of Adamswiller (Figure 7c) and Darley Dale (Figure 7d)
sandstones decreased rapidly with increasing plastic strain,
implying that the DiMaggio and Sandler cap model is not
applicable.

3.4. Normality Condition and Associated Flow Rule

[31] Other than the yield stresses a constitutive model
should also specify how plastic flow develops after the rock
has yielded. In plasticity theory the conventional approach
is to assume that the inelastic deformation follows Drucker’s
[1951] postulate of material stability, and accordingly a flow
rule can be associated with the yield function by

Depij ¼
@f

@sij

Dl ð6Þ

where Deij
p denotes the plastic increment of the strain

tensor and Dl is a positive scalar. Since equation (6)
implies that the plastic strain tensor will be oriented
perpendicular to the yield surface, it is also called the
‘‘normality condition’’ [Desai and Siriwardane, 1984;
Davis and Selvadurai, 2002]. While such an associated
flow rule specifies all six components of the strain tensor,
we have independent measurements of only two strain
components for the axisymmetric configuration of a
conventional triaxial test. Since our primary data are in
terms of the axial strain and porosity change, we will
focus on the constitutive modeling of these two strains
for comparison with laboratory results.

Figure 5. Coordinates for the peaks of the yield envelopes
(in Figures 4a, 4b, and 4d) (shown by solid symbols) and
the critical stresses C*0 for the transition from compactancy
to dilatancy (shown by open symbols). The critical state
lines can be inferred from these experimental data using two
different approaches. (1) Linear fits to the solid symbols
represent the critical state lines according to Carroll’s
[1991] model. (2) If the normality condition applies, then
C*0 should also represent the critical state. That the lines
inferred using different approaches for a sandstone do not
coincide is attributed to nonassociative behavior. The lines
were obtained by linear regression.

Table 3. Critical State and Cap Model Parameters for the Four

Sandstones Investigated in This Study

Plastic
Volumetric
Strain, % B, MPa C, MPa B/A

Darley Dale: Critical State (A0 = 180 MPa; m = 0.58)
0 275 210 1.53
0.1 316 271 1.76
0.25 345 330 1.92

Darley Dale: Cap Model
0 277 228 1.82
0.1 316 271 1.75
0.25 340 308 1.52
0.5 371 377 1.3

Berea: Cap model
0 198 190 1.04
1 213 205 1.04
3.5 290 250 1.16

Adamswiller: Critical State (A0 = 98 MPa; m = 0.54)
0 120 100 1.22
1 135 125 1.38
2 140 138 1.43
3 145 160 1.48

Adamswiller: Cap Model
0 125 109 1.51
1 136 125 1.33
2 137 135 1.3
3 140 143 1.15
4 158 176 1.14
5 177 212 1.02

Bentheim: Critical State (A0 = 202 MPa; m = 0.32)
0 227 218 1.12
1 241 246 1.19
2 235 250 1.16
3 241 255 1.19
4 245 285 1.21
5 265 330 1.31

Bentheim: Cap Model
0 227 218 1.13
1 241 246 1.15
2 237 241 1.11
3 239 243 1.11
4 248 273 1.16
5 268 316 1.22
6 295 348 1.22
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[32] The ratio between the volumetric and axial compo-
nents of the plastic strain can be derived by substituting the
yield function (2) into the normality condition (6):

Depii
Dep11

¼ 18b2 I1 � cð Þ
a2 2s11 � s22 � s33ð Þ þ 6b2 I1 � cð Þ ð7aÞ

For a conventional triaxial test if we denote the volumetric
component by Dev

p = Deii
p and axial component by Dep =

De11
p , then the above ratio reduces to

Depv
Dep

¼ 3

3A2=B2ð Þ Q= P � Cð Þð Þ þ 1
ð7bÞ

Two important consequences of the normality condition can
be noted from equation (7b). First, it predicts that the
volume contracts (or expands) for effective mean stress P
greater (or less) than C. In other words a transition in

deformation mode from compactancy to dilatancy occurs at
the tip of the yield envelope located at (C, B). At this
transition point the porous material is considered to be at the
‘‘critical state’’. However, it should be noted that some of
our data points for compactive yield stress (Figure 6)
actually fall on the side of the ellipse P < C, thus
contradicting the normality prediction that at relatively low
mean stresses the sample would yield by dilatancy and not
compactancy. Second, under hydrostatic loading (Q = 0) the
increment of plastic volumetric strain is three times the
increment of axial strain, which of course applies only if
the behavior is isotropic. Wong and Baud [1999] presented
strain data for hydrostatic compaction of nominally dry
samples of Berea and Darley Dale sandstones that agree
with this prediction.
[33] To test the normality condition on experimental data,

we first note as before that the plastic component of
volumetric strain is dominated by porosity change, and
hence the ratio Dev

p/Dep � DFp/Dep. Accordingly the

Figure 6. Comparison between DiMaggio and Sandler’s [1971] cap model and experimental data on
the initial yield stress C* and evolution of the yield stress as a function of plastic volumetric strain for
(a) Bentheim, (b) Adamswiller, (c) Berea, and (d) Darley Dale sandstones. Geometric parameters for the
elliptical envelopes are compiled in Table 3.
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model prediction (7b) for Dev
p/Dep can be compared with

the ‘‘inelastic compaction factor’’ DFp/Dep, which we can
infer from our laboratory data following the methodology
described in detail by Wong et al. [1997]. From the slope of
the curve for the porosity change as a function of axial strain
the ratio between incremental change of the porosity F and
axial strain e can be evaluated. After appropriately subtract-
ing from the total strains the elastic parts, the ratio DFp/Dep

was then evaluated.
[34] In Figure 8 we plot the inelastic compaction factor

DFp/Dep as a function of effective pressures for selected
values of plastic volumetric strain. For comparison we also
show theoretical predictions according to (7b) for the flow
rules associated with the elliptic yield caps shown in Figure 6.
Because of significant scatter in the Berea sandstone data,
we only evaluated the compaction factors for its initial yield
data. With the exception of one data point (corresponding to
the initial yield stress of Darley Dale sandstone at an
effective pressure of 300 MPa) all our measurements fall

in the range of 0 < DFp/Dep < 1, with the implication that
0 < dev

p < de1
p. Since dev

p = de1
p + 2de3

p in a conventional
triaxial experiment, our data require that inelastic yield in
these sandstones to be accompanied by an overall reduction
in volume that involves the interplay of axial shortening
(de1

p > 0) and lateral expansion (de2
p = de3

p < 0). More
specifically if we follow Deshpande and Fleck [2000] to
define the ‘‘plastic Poisson’s ratio’’ by np = �de3

p/de1
p, then

basically all our data fall in the range 0.5 > np > 0.
[35] Among the four Darley Dale (Figure 8d) sandstone

shows the best agreement with the prediction of the asso-
ciated flow rule. In contrast the shear-enhanced compaction
observed in both Bentheim (Figure 8a) and Berea sand-
stones (Figure 8c) was appreciably more than what is
predicted for associative behavior, especially at relatively
low mean stresses. In these two sandstones the lateral
expansion of a yielded sample (and therefore the plastic
Poisson’s ratio 0.5 > np > 0) was generally less than that
prescribed by the normality condition. The behavior of

Figure 7. Aspect ratio of the elliptical yield caps (shown in Figure 6) as a function of plastic volumetric
strain for (a) Bentheim, (b) Adamswiller, (c) Berea, and (d) Darley Dale sandstones. According to the
DiMaggio and Sandler’s [1971] cap model the aspect ratio should remain constant.
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Adamswiller sandstone (Figure 8b) was most complicated,
with inelastic compaction that was lower than predicted at
relatively high mean stresses and higher at low mean
stresses. This comparison indicates that it is necessary to
introduce a constitutive model that does not hinge on the
normality assumption if one were to realistically model the
inelastic deformation of these sandstones over a broad range
of effective pressure.

3.5. Nonassociated Flow Rule and Localization
Analysis

[36] A nonassociative model necessarily involves a plas-
tic potential function and additional constitutive parameters.
As an example we will focus on a nonassociative model
originally formulated by Rudnicki and Rice [1975] for
analyzing the onset of shear localization in a dilatant
frictional material. In this isotropic hardening model three

constitutive parameters (in addition to two elastic moduli)
were used for characterizing the inelastic and failure behav-
ior: an internal friction parameter m, a dilatancy factor b,
and a hardening modulus h. The flow law is associative
only if b = m.
[37] As elaborated by Wong et al. [1997], the constitutive

parameters can be extracted from triaxial compression
experiment data in the following manner. If we assume that
Dev

p � DFp, then the dilatancy factor b in Rudnicki and
Rice’s [1975] model is related to the inelastic compaction
factor by

b ¼ �
ffiffiffi
3

p DFp=Dep

3�DFp=Depð Þ : ð8aÞ

The parameter b can therefore be derived from the DFp/
Dep values evaluated from laboratory data as discussed

Figure 8. Comparison of experimental data with prediction of the normality condition in (a) Bentheim,
(b) Adamswiller, (c) Berea, and (d) Darley Dale sandstones. The inelastic compaction factor at the onset
of shear-enhanced compaction C* and increasing plastic volumetric strain as a function of the effective
pressure at which a triaxial compression experiment was conducted. Solid lines represent the theoretical
predictions for associative behavior according to equation (7b).
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above. The difference in sign convention between the
dilatancy and compaction factors should be noted: if DFp/
Dep < 0, then b > 0. As for the ‘‘friction’’ parameter m it can
be evaluated as

p
3/3 times the local slope of the yield

envelope in the P-Q space, or explicitly in terms of the
parameters for an elliptic cap as

m ¼ �B2 P � Cð Þffiffiffi
3

p
A2Q

: ð8bÞ

We used values of P and Q directly from our laboratory
data, and the elliptic cap parameters A, B and C were for the
ellipses that fit the yield stresses shown in Figure 6. The
hardening modulus h is defined e.g., by Paterson and Wong
[2005] in their equation A2.20c. Its value is positive for
strain hardening and negative for strain softening [Wong et
al., 1997]. Using equations (8a) and (8b) we evaluated m
and b in the Rudnicki and Rice model from our initial yield
data at the onset of shear-enhanced compaction, which are
plotted in Figures 9a–9d with the failure mode indicated.
[38] Negative values of b are associated with samples that

yield by shear-enhanced compaction and fail by the devel-
opment of one of three modes typical of this regime: high-
angle shear bands, compaction bands, or homogeneous
cataclastic flow [Wong et al., 2001; Baud et al., 2004]. A
‘‘compaction band’’ is defined to be a localized structure
subperpendicular to s1, whereas a ‘‘high-angle shear band’’
is a localized structure that subtends a relatively high angle
(say 45–80�) to s1. A localized structure that extends
laterally over only a few (say � 3) grains is referred to as
a ‘‘discrete band’’, whereas a structure that extends laterally
over many grains is called a ‘‘diffuse band’’. Darley Dale is
the only sandstone with approximately equal values of b
and m (Figure 9d), in agreement with the earlier observation
that its behavior satisfies the normality condition. On the
other hand the nonassociative behavior in the other three
sandstones results in m 6¼ b (Figures 9a–9c). In the
compactive yield regime, with increasing effective mean
stress the value of m typically decreases from a slightly
positive value through zero (at the tip of the cap) to
negative.
[39] For reference we also include in Figures 9a–9d data

for samples that failed by dilatant faulting with development
of shear bands. Following the procedure outlined by Wong
et al. [1997], we evaluated the parameters b and m at the
peak stresses using the mechanical data for Darley Dale and
Berea sandstones presented by Baud et al. [2000a, 2000b],
for Adamswiller sandstone by Wong et al. [1997], and for
saturated Bentheim sandstone (at effective pressures of 10,
20 and 30 MPa) acquired in this study. In the dilatant
faulting regime the value of b is positive. It typically
decreases with increasing effective mean stress, while the
value of m remains relatively constant corresponding to a
Coulomb failure envelope with an almost constant coeffi-
cient of internal friction.
[40] The data summarized in Figures 9a–9d show that as

a porous sandstone undergoes the brittle-ductile transition,
the failure mode evolves from shear band to compaction
band to homogeneous cataclastic flow as the constitutive
parameters b and m decrease with increasing effective
pressure. Bifurcation analyses [Rudnicki and Rice, 1975;

Olsson, 1999; Issen and Rudnicki, 2000] specify the critical
conditions for the onset of strain localization, thus providing
a theoretical framework for understanding how this transi-
tion in failure mode arises from constitutive behavior. If we
focus on Rudnicki and Rice’s [1975] nonassociative model,
then the critical conditions under which dilation, shear or
compaction bands would develop are available from Issen
and Rudnicki’s [2000] analysis. Figure 9e summarizes their
results for axisymmetric compression by mapping out the
failure mode as a function of the constitutive parameters b
and m. If Poisson’s ratio is denoted by n (for elastic
materials), then shear bands are predicted to develop for

ffiffiffi
3

p
� mþ b �

ffiffiffi
3

p
2� nð Þ= 1þ nð Þ ð9aÞ

In contrast, dilation bands (subparallel to s1) would develop
if

mþ b >
ffiffiffi
3

p
2� nð Þ= 1þ nð Þ ð9bÞ

and compaction bands would develop if

mþ b < �
ffiffiffi
3

p
ð9cÞ

Hence the localization analysis predicts that the brittle-
ductile transition is associated with decreasing b and m, in
qualitative agreement with the laboratory observations.
[41] The bifurcation analysis also prescribes the critical

value of hardening modulus at the onset of strain localiza-
tion; whether the modulus is predicted to be positive or
negative is indicated in Figure 9e. For comparison we also
plotted the parameters b and m for all our samples that
developed compaction bands or high-angle shear bands
while undergoing shear-enhanced compaction with strain
hardening. It can be seen that most of these samples had b
and m values for which the bifurcation analysis predicts
shear band formation while the sample undergoes strain
softening. In Bentheim sandstone localized compactant
failure developed while a sample showed episodic stress
drops and strain softening (Figure 1), but the failure mode
was dominantly formation of discrete compaction bands and
not shear bands as predicted. In the other three sandstones
the failure mode was dominantly the formation of high-
angle shear bands, but typically they developed while the
sample showed strain hardening (Figure 2) and not soften-
ing as predicted. A similar conclusion on the basis of data
for dry Bentheim sandstone and preliminary data for wet
Berea and Darley Dale sandstones was also made by Wong
et al. [2001], who attributed this discrepancy between
experimental observations and localization analysis to the
inadequacy of the constitutive model to comprehensively
capture the partitioning of several damage mechanisms,
including the growth and coalescence of stress-induced
microcracks, collapse of pores and crushing of grains.

4. Summary and Discussion

[42] Under high confinement a porous rock deforms
inelastically by shear-enhanced compaction and strain hard-
ening and ultimately fails with a mode that is conventionally
described as homogeneous cataclastic flow, but recent
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studies have also documented the occurrence of other
possible failure modes such as compaction band formation.
To capture the inelastic and failure behaviors, a constitutive
model based on plasticity theory should first be validated by
laboratory data on the initial yield stresses and their evolu-

tion with strain hardening. When used in conjunction with
bifurcation analysis, the constitutive model should be able
to predict the failure mode and critical conditions for the
onset of instability.

Figure 9
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[43] In the past decade extensive studies have been made
on the initial yield stresses at the onset of shear-enhanced
compaction in porous sandstones [e.g., Wong et al., 1997;
Baud et al., 2000a, 2000b; Cuss et al., 2003] and sediments
[Chuhan et al., 2002; Chester et al., 2004]. The laboratory
data show that the critical stress C* for the onset of shear-
enhanced compaction decreases with increasing porosity
and grain size, and in terms of the effective mean stress and
differential stress the initial yield envelope maps out an
elliptic cap in the stress space. Such an elliptic cap has been
adopted to model the stress profile, tectonic evolution and
fluid flow in sedimentary formations [Fisher et al., 1999;
Casey and Butler, 2004; Karner et al., 2005; Bjorlykke et
al., 2005], borehole instability [Coelho et al., 2005], and
initiation of compaction localization due to geometric
heterogeneity [Tembe et al., 2006]. In this study we move
beyond the initial yield stage to consider the subsequent
evolution of the yield stresses after the onset of shear-
enhanced compaction. Our data for four saturated sand-
stones show that the subsequent yield stresses can also be
characterized by elliptic caps if we assume that the strain
hardening behavior depends solely on the plastic volumetric
strain. While our analysis is based on mechanical data from
triaxial compression tests under drained condition, it is of
interest to note that recent data of Tembe et al. [2005] from
undrained experiments on Adamswiller and Diemelstadt
sandstones also map out initial and subsequent yield caps
that are elliptic in shape.
[44] We compare our data with the predictions of two

plasticity models on the evolution of yield surfaces with
strain hardening. Carroll’s [1991] critical state model pre-
scribes one of the semiaxis of the elliptic cap to be constant
and the tip of the cap to move along the critical state line.
The yield caps of Adamswiller, Bentheim and Darley Dale
sandstones agree with this critical state model up to plastic
volumetric strains of 0.02, 0.05 and 0.0025, respectively.
DiMaggio and Sandler’s [1971] cap model prescribes the
aspect ratio of the yield caps to be fixed, and the observed
yield caps of Bentheim and Berea sandstones agree with this
cap model up to plastic volumetric strains of 0.06 and
0.035, respectively. It should be noted that among the four
only Bentheim sandstone shows reasonable agreement with
both models up to relatively large strain. These two consti-
tutive models are widely used in geotechnical and geolog-
ical applications since they involve a relatively small
number of parameters. The cap model is built into finite
element codes such as ABAQUS [ABAQUS, Inc., 2004] or
FLAC3D [Sheldon et al., 2006] for the numerical simula-

tion of inelastic compaction in porous rock [Vajdova et al.,
2003; Grueschow, 2005], ceramic powder [Zeuch et al.,
2001] and pharmaceutical powder [Wu et al., 2005]. Our
comparison here underscores the necessity to first charac-
terize experimentally the evolution of compactive yield
behavior before selecting the appropriate constitutive model.
[45] The normality condition is implicitly assumed in

these formulations of the critical state and cap models. In
our experiments Darley Dale sandstone showed the best
agreement with the prediction of an associated flow rule.
The shear-enhanced compaction observed in both Bentheim
and Berea sandstones was appreciably more than what is
predicted for an associative flow rule, especially at relatively
low mean stresses. In Adamswiller sandstone the behavior
was rather complicated, with inelastic compaction that was
lower than predicted by normality at relatively high mean
stresses and higher at low mean stresses. The implication is
that it is necessary to introduce a nonassociative model if one
were to realistically capture the inelastic behavior of these
sandstones over a broad range of effective pressures. In
particular there are two key characteristics of critical state
soil mechanics that are not expected to apply to these
porous sandstones. First, the tip of the cap separates the
yield behavior into two distinct regimes (with compac-
tancy and dilatancy at high and low mean stress stresses,
respectively) only if the yield behavior is associative. In
porous sandstones compactancy was observed down to
relatively low mean stresses at the ‘‘other side’’ of the
cap. Second, it is commonly assumed that as a soil under-
goes inelastic compaction its porosity would be reduced to
ultimately attain the ‘‘critical state’’ corresponding to a
transition between compactancy and dilatancy, but if the
behavior is nonassociative then this stress state does not
necessarily fall on the critical state line (4a) defined by the
tips of the elliptic caps. The former description of ‘‘critical
state’’ corresponds to the stress states C*0 (Figures 1 and 2)
which we also plotted in Figure 5. It can be seen that while
our C*0 data for Bentheim and Darley Dale sandstones do
fall on linear trends, the slopes are significantly steeper than
the slope m for the tips of the elliptic caps (equation (4a)).
The linear slopes of the C*0 data are more comparable to the
slopes of the Coulomb failure envelopes for the samples that
failed by dilatant faulting.
[46] A bifurcation analysis can predict the critical con-

ditions for the onset of strain localization, thus providing a
theoretical framework for understanding how the transition
in failure mode arises from constitutive behavior. With
reference to Rice and Rudnicki’s [1975] constitutive model,

Figure 9. Constitutive parameters for the nonassociative model of Rudnicki and Rice [1975] for (a) Bentheim,
(b) Adamswiller, (c) Berea, and (d) Darley Dale sandstones. The solid circles, squares, and triangles correspond to the
dilatancy factor b as a function of internal friction coefficient m at the onset of shear-enhanced compaction for samples that
failed by the development of homogeneous cataclastic flow, discrete compaction bands, and high-angle shear/diffuse
compaction bands, respectively. The open circles correspond to the constitutive parameters at the peak stress for samples
that failed by dilatant faulting. The three failure modes (compaction band, shear band, and dilation band) predicted from
bifurcation analysis of Issen and Rudnicki [2000] are separated by the diagonal lines m + b = �

ffiffiffi
3

p
and m + b =

ffiffiffi
3

p
(2 � n)/

(1 + n), where n is Poisson’s ratio (of elastic materials). (e) Comparison of our data for the onset of shear-enhanced
compaction for samples that failed by development of compaction localization (solid symbols) and homogeneous cataclastic
flow (open symbols) with failure mode prediction from bifurcation analysis of Issen and Rudnicki [2000]. The three failure
modes (compaction band, shear band, and dilation band) predicted from bifurcation analysis of Issen and Rudnicki [2000]
are separated by the diagonal lines m + b = �

ffiffiffi
3

p
and m + b =

ffiffiffi
3

p
(2 � n)/(1 + n). For each mode, localization develops

during strain hardening (h > 0) in the shaded area and during strain softening (h < 0) in the unmarked area.
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our data show that as a porous sandstone undergoes the
brittle-ductile transition the failure mode evolves from shear
band to compaction band to homogeneous cataclastic flow
as the constitutive parameters b and m decrease with
increasing effective pressure. This agrees qualitatively with
the prediction of localization analysis that the transition of
failure mode from dilation band to shear band to compac-
tion band is associated with decreasing b and m. However,
there is significant discrepancy between the quantitative
predictions on the critical parameters at the onset of strain
localization and experimental data, which is possibly due to
the limitation of the Rudnicki-Rice model to comprehen-
sively capture the partitioning of several operative damage
mechanisms, including stress-induced microcracking, pore
collapse and grain crushing. It should also be noted that
strictly speaking such a continuum formulation should be
applied only to a material that has not developed structural
heterogeneity in the form of strain localization, unless the
constitutive behavior of the localized structure is specified
separately. In a rock such as Bentheim sandstone, which
develops discrete compaction bands soon after the onset of
shear-enhanced compaction [Baud et al., 2004], there may
be a limit on the plastic strain beyond which a homogeneous
continuum model is no longer appropriate.
[47] A more elaborate constitutive model will necessarily

involve many additional parameters. Indeed the mechanical
data summarized here have motivated the development of
several such models that attempt to account for the possible
influence of two yield surfaces [Issen, 2002], anisotropy
[Rudnicki, 2002] and intermediate principal stress (K. A.
Issen and V. Challa, Influence of intermediate principal
stress on the strain localization mode in porous rocks,
submitted to Journal of Geophysical Research, 2005).
These more involved models can predict the development
of compaction bands over a wider range of conditions while
the porous rock strain hardens. It was also postulated by
Grueschow and Rudnicki [2005] that the yield cap for
porous sandstone should evolve as a function of not only
the plastic volumetric strain but also the shear strain. In this
study we have restricted the comparison to plasticity mod-
els, but it should be noted that alternative models involving
plastic pore collapse, two-phase medium and damage me-
chanics [e.g., Curran and Carroll, 1979; Ricard and
Bercovici, 2003; Hamiel et al., 2004] have been developed
to derive the yield surface of porous rocks. Porous
sandstone is the focus of the present study, but Vajdova
et al. [2004b] have demonstrated that the phenomenology
of compactive yield and failure in porous carbonate rocks
is very similar. Indeed it is of interest to extend the present
investigation to other rock types and constitutive models.
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