
Per~mon 
Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 33, No. 5, pp. 539-542, 1996 

Copyright © 1996 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

PII: S0148-9062(96)00004~ 0148-9062/96 $15.00 + 0.00 

Technical Note 

An Improved Wing Crack Model 
Failure of Rock in Compression 
P. BAUDt  
T. REUSCHLI~/§ 
P. C H A R L E Z ¶  

for the Deformation and 

INTRODUCTION 

Brittle materials usually contain small cracks. When 
loaded in compression these cracks propagate until their 
interactions lead to final failure. Conventional theories 
do not currently offer a satisfactory explanation of 
such a phenomenon. The main problem lies in the fact 
that there is a contradiction between microstructural 
and macroscopic behaviours with regard to rupture [1]. 
Moreover, experiments show that the critical stress, in 
terms of  rupture, is not reproducible for identical samples 
and loading configurations. This is due to pre-existing 
small defects which produce high stress concentrations. 
Numerous theoretical models have been applied to this 
problem such as purely macroscopic methods using the 
classical Mohr-Coulomb criterion [2] or other methods 
using bifurcation theory [3,4]. A first step towards the 
description of the evolution of  a population of  cracks is 
to look at the conditions of propagation of a single crack. 
A second step is to look at the mechanical interactions 
between the cracks and their effects on the propagation 
conditions. A last step will be to derive the macroscopic 
deformation tensor from the evolution of  all cracks. This 
paper focuses on the first step of  this approach, that is, 
we examine the conditions and the geometry of  single 
crack propagation under biaxial compression. Several 
solutions have been proposed to solve this problem by 
looking at the stress intensity factor in mode I [5-8]. An 
original approximation is presented in this paper which 
relies on the computation of  the stress intensity factor 
and allows extended numerical applications in view of  
the next step of  our approach. 

CRACK PROPAGATION MODEL 

We look at the propagation conditions for a crack of 
length 2a subjected to stresses av and aH and lying at an 
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angle fl with trM (Fig. 1). We will focus on the case of  
biaxial compression, that is av ~< 0 and an ~< 0, the major 
compressive stress a v being vertical. Knowing av, aH and 
fl, it is straightforward to derive the shear (a t )  and 
normal (a~) stresses acting on the crack plane: 

O" N ~--- 21- {(O'V + O'H) "1- (O" V - -  O'H) COS 2 f l }  

aT = ½(av -- all) sin 2ft. (1) 

Since the crack is closed due to the compressive normal 
stress, we introduce /~, the coefficient of  friction. The 
effective shear stress is thus equal to l a~rl = I~rTI - / z  I aN I. 
The only stress intensity factor which appears at the 
crack tip is the mode II factor Ku given by KH = aeerx/~. 
When the effective shear stress reaches a critical value, 
the crack begins to propagate but not in its own plane: a 
wing crack grows from the tip of  the initial crack (Fig. 1) 
in a direction 0 for which the transformed mode I stress 
intensity factor k~ (0) is at a maximum and greater than 
Kc, the critical stress intensity factor in mode I. The 
transformed factor is given by [9]: 

0 
k~ (0) = - ~Kl, sin 0 cos ~ (2) 

which leads to 0 = + 70.5 ° for the direction of initiation 
of  the wing crack, the positive or negative orientation 
depending on the sign of Kn. 

In order to determine further wing crack propagation 
conditions, we assume that the wing crack path is defined 
by the condition of  maximum stress intensity factor KI 
at the crack tip. This is equivalent to the condition 
Kn = 0 discussed by Cotterell and Rice [10]. The exact 
calculation of  the stress intensity factor at the wing crack 
tip has been addressed by Nemat-Nasser and Horii [11], 
and Horii and Nemat-Nasser [5], but their derivation is 
very difficult to use for computational purposes. So we 
have to look at approximate models for the wing crack 
system to make these calculations easier. The problem is 
that the wing crack is not a straight crack but a curved 
one the orientation of  which depends on its length. 
Overcoming this hindrance implies some simplifications. 
The first one is that we replace the curved crack by a 
straight one by simply connecting the wing crack tip to 
the main crack tip (Fig. 2). Thus, the orientation 0 of  the 
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Fig. 1. Sketch illustrating the propagation geometry of a sliding crack 
under compression. 
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Fig. 2. The real wing crack is replaced by a straight one the orientation 
of which 0 depends on its length. 

straight wing crack depends on its length 1. This is quite 
different from the approximation made by Ashby and 
Hallam [7] since these authors assume that the straight 
wing crack has a fixed orientation (parallel to the major 
applied compressive stress) from the initiation. This is 
not true for short wing cracks and should be kept in 
mind for later discussion. 
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Fig. 3. A superposition technique is used to calculate an approximate 
K, value for the straight wing crack. The signification of I,q and A is 

given in the text. 

Another simplification is that we use a superposition 
technique to calculate the K, value for a straight wing 
crack. We assume that the stress intensity factor K~ is 
the sum of two terms: on one hand a component K, so 
for the two straight wing cracks, of common length l, 
regarded as a single isolated straight crack of length 21, 
and subjected to the external applied stresses; on the 
other hand a component Ksu due to the stresses induced 
by the presence of the main crack subjected to the same 
external stresses (Fig. 3). 

If  0 is the angle between the wing crack and the main 
crack, it is easy to show that the first component K~so is 
written as: 

Klso = ½{(av + an) + (av -- an) cos 2(0 + fl)} x / ~ .  (3) 

In order to calculate the second component Ksu, 
we use the following procedure. We replace the system 
(main crack + wing crack pair) by an equivalent single 
straight crack of length A and same orientation fl as the 
initial main crack (Fig. 3). The length of the equivalent 
crack is a function of the main crack length a, the wing 
crack length l and the orientation 0 of the wing crack. 
We assume that this crack is subjected to the same 
effective shear stress aefr as the main crack, but only over 
the central part of length 2a. This results from the fact 
that on one hand, in compression, it is solely the shearing 
part of the loading that contributes to K~ at the wing crack 
tip and on the other hand, that the wing crack propagates 
in such a direction that no shear stress is applied to it, 
thus its equivalent length leq on the equivalent straight 
crack (Fig. 3) should also be seen as shear stress free. In 
this case it can be shown that the stress intensity factor 
in mode I corresponding to a straight crack of length 
A = a + leq can be written as [12, 13]: 

£ Kl = 2a,fr a + l~q sin . (4) 
7~ 

We now assume that the wing crack opening is linked 
to 0. Thus, we multiply K~ by an unknown function f (0)  
which is determined by considering the infinitesimal 
wing crack limit. In this case we identify the solution 
with the transformed stress intensity factor for wing 
crack initiation given by equation (2). Thus, we have: 

£+ ' °as in - ' ( a - - -~ /~ /oa ) s in0cos  ; .  (5) KSLI = --  3a,er rr 

In order to determine the length l,q of the equivalent 
wing crack, we use the estimation introduced by Horii 
and Nemat-Nasser [14] for a long wing crack: 

2aa=~ sin 0 
Kl = x//- ~ (6) 

which is the mode I stress intensity factor produced by 
normal splitting forces F = -2aaeer sin 0 on a crack of 
length 2l. Identifying equations (5) and (6) for the long 
wing crack limit leads to: 

= t cos 2 ; .  (7) 
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Fig. 4. Normalized stress intensity factor K[ as a function of  wing crack 
length l for indicated trH/tr v with # = 0.3 and fl = 45 °. Solid lines are 
from the analytic estimate (8) and symbols are for the exact numerical 

calculation [5]. 

Finally, by introducing equation (7) into (5) and adding 
equation (3), we obtain the expression for the mode I 
stress intensity factor K~ at the tip of the wing crack: 

. - i  a . 0 a + leq sm ( - - ' ] s i n  0 cos--  KI = - 3ae~ rr \ a  + leq// 2 

+½{(trv+an)+(av--trH)COS2(O +fl )}X/~.  (8) 

It is interesting to compare our approximate model 
with the exact solution proposed by Nemat-Nasser and 
Horii [11], and Horii and Nemat-Nasser [5]. In Fig. 4 
we have reported the normalized K~ value for a main 
crack inclined at fl = 45 °, while p = 0.3 and tr n varies as 
indicated on the curves. Symbols represent values from 
Horii and Nemat-Nasser [5]. It can be seen that our 
model compares well with the exact solution, especially 
in the biaxial compression regime (an lay >1 0), but has the 
advantage of being easily computed, which is not true for 
the solution proposed by Horii and Nemat-Nasser [5]. 

COMPARISON WITH PREVIOUS ANALYTICAL 
MODELS 

A number of authors have proposed similar derivations 
for the K~ in the last decade. We will focus on two of 
them and show that our model presents advantages, as 
compared to these previous models. The first derivation 
has been proposed by Horii and Nemat-Nasser [14], and 
further applied by Kemeny and Cook [8]. It also relies 
on a superposition technique and indeed the K~so-term is 
exactly the same as the one given in equation (3); but the 
Ksu-tenn differs from our derivation [equation (5)] since 
Horii and Nemat-Nasser [14] introduce an equivalent 
wing crack length 1" which is determined by the short 
wing crack limit. They find l* = 0.27a, which does not 
depend on the wing crack orientation 0, whereas our 
equivalent wing crack length is a function of 0. Horii and 
Nemat-Nasser's final formula [14] can thus be written as: 

2aa=fr sin 0 
K,= 

+(av-a . )cos2(O + fl)} .v/-~. (9) 
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Fig. 5. Normalized stress intensity factor K l as a function of  wing 
crack length I for a main sliding crack lying at/~ = 45 ° and subjected 
to uniaxial compression (g  = 0.3). Comparison between the derivation 
by Horii and Nemat-Nasser [14] [equation (9), open symbols] and the 
present derivation [equation (8), closed symbols]. The exact results 
by Horii and Nemat-Nasser [5] are given for reference (x-symbols).  

Figure 5 illustrates the comparison between this 
derivation and our own calculation for the uniaxial 
compression case. We see that both models compare 
very well with the exact calculation by Horii and Nemat- 
Nasser [5]. However, by comparing equations (8) and (9), 
it comes out that the main difference lies in the angular 
dependence of Kl for short wing cracks. Indeed when 
I is infinitesimally small, equation (9) leads to an angle 
of initiation 0 = 90 °, whereas equation (8) leads to 
0 = 70.5 °, which is the value found for crack initiation 
under mode II conditions [10]. Thus, equation (9) does 
not lead to the correct 0-value for short wing cracks 
even if Horii and Nemat-Nasser [14] have derived their 
/*-value by using 0 = 70.5 ° for l = 0. This comparison 
shows that our model may be seen as an improvement 
of Horii and Nemat-Nasser's model [14] since we have 
calibrated the 0-dependence of Kj for short wing cracks 
and the/-dependence for long wing cracks. 

We have made a second comparison with an approxi- 
mate analytical solution given by Ashby and Hallam [7]. 
These authors propose an approach based on the calcu- 
lation of energy. Using some approximations and the 
assumption that the wing crack is straight and parallel 
to the major compressive stress, their approach leads 
to an analytical expression for Kj which is written as: 

- a v x / ~  {1 - 2 - #(1 + 2) - 4.32L} K, = + L)3/2 

{ ' t x 0.23L + x/~( 1 + L) '/2 (10) 

where L = l/a and 2 =aH/av.  This expression does not 
depend on the orientation of the main crack, which is 
quite surprising when compared to equations (8) and (9). 
Since the exact calculation by Horii and Nemat-Nasser 
[5] has shown that K] is strongly dependent on the 
orientation B of the main crack, we cannot use equation 
(10) and we should rather look at the complete inter- 
mediate equation derived by Ashby and Hallam [71 
where the angle ~ has not yet disappeared through the 
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Fig. 6. Normalized stress intensity factor K I as a function of wing crack 
length I for two orientations of the main sliding crack (open symbols: 
fl = 40°; closed symbols: fl = 60 °) subjected to a uniaxial compression 
(p =0.3). There is only one curve (x-symbols) for Ashby and 
Hailam's model [7] since their final result does not depend on fl 
[equation (10)]. Comparison is made with the result by Horii and 
Ncmat-Nasser [14] [A, &: equation (9)], the complete intermediate 
equation by Ashby and Hallam [7] [F-l, II: equation (ll)], and the 

present derivation [O, O: equation (8)]. 

approximations that these authors apply in their model. 
This equation may be written as: 

f 2 2.5 1 g~= 
( I  + L ) L  - + L J 

0.4L cos//x/1 + L + 1 + L sin//] (11) 
x x/cos 2/1 + (s in / /+  L )  2 " 

Figure 6 illustrates the comparison between equations 
(8), (9), (10) and (11) for a sliding crack lying a t / / =  40 ° 
or 60 °, and subjected to uniaxial compression. We see 
that the final result presented by Ashby and Hallam [7] 
[equation (10)] is not a correct approximation of K., 
especially for short wing cracks, since it does not account 
for the dependence of K~ with the orientation//of the 
main crack. The complete equation derived by Ashby 
and Hallam [7] [equation (11)] is even less accurate, 
showing some severe limitations in their approach. The 
model proposed by Horii and Nemat-Nasser [14] and 
the present derivation compare well for both angles, and 
differ mainly on the angle of initiation of the wing crack 
as discussed earlier. 

C O N C L U S I O N  

We have developed an original approximation of 
the stress intensity factor K~ at the wing crack tip which 
is computed by resolving it into a component/(,so for 
an isolated straight wing crack and a component Ksu 
due to the stresses induced by the presence of the main 
sliding crack. This approximation is consistent with the 
exact numerical calculation by Horii and Nemat-Nasser 
[5], and is an improvement of previous derivations, 
especially without any internal contradiction at the wing 
crack initiation as may be the case in the model by Horii 
and Nemat-Nasser [14]. The next important step in our 
approach will be to introduce crack interactions, and to 
analyse their effects on the solution we have proposed in 
this paper. 
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