Quaternary Science Reviews 30 (2011) 528-554

Contents lists available at ScienceDirect

Quaternary Science Reviews

journal homepage: www.elsevier.com/locate/quascirev

Constraints on the late Quaternary glaciations in Tibet from cosmogenic exposure ages of moraine surfaces

Marie-Luce Chevalier^{a,b,*}, George Hilley^b, Paul Tapponnier^c, Jérôme Van Der Woerd^d, Jing Liu-Zeng^e, Robert C. Finkel^f, Frederick J. Ryerson^g, Haibing Li^a, Xiaohan Liu^e

^a Key laboratory for Continental Dynamics, Institute of Geology, CAGS, 26, Baiwanzhuang Road, Beijing 100037, China

^b Department of Geological and Environmental Sciences, 450 Serra Mall, Braun Hall, Stanford University, Stanford, CA 94305, USA

^c Earth Observatory of Singapore, 50 Nanyang Ave, N2-01a-09, Singapore 639798

^d Institut de Physique du Globe de Strasbourg, UMR 7516 CNRS/ Université de Strasbourg, 5 rue Descartes, 67084 Strasbourg, France

e Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuang Qing Road, 100085 Beijing, China

^f Earth and Planetary Science Department, University of California, Berkeley, 371 McCone Hall, Berkeley, CA 94720-4767, USA

g L-231, Atmospheric Earth and Energy Division, Physical and Life Sciences directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

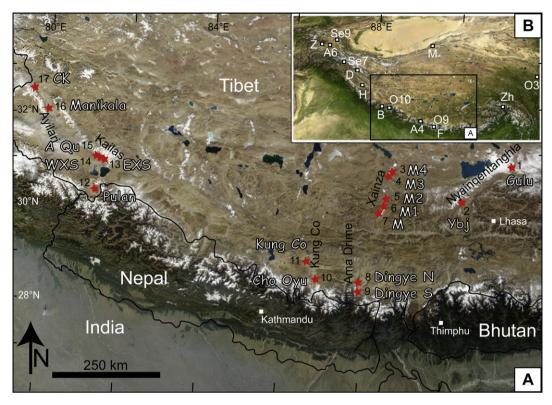
ARTICLE INFO

Article history: Received 26 June 2010 Received in revised form 2 November 2010 Accepted 9 November 2010 Available online 20 January 2011

ABSTRACT

This contribution provides new constraints on the timing of Tibetan glacial recessions recorded by the abandonment of moraines. We present cosmogenic radionuclide ¹⁰Be inventories at 17 sites in southern and western Tibet (32 crests, 249 samples) and infer the range of permissible emplacement ages based on these analyses. Individual large embedded rock and boulder samples were collected from the crests of moraine surfaces and analyzed for ¹⁰Be abundance. We consider two scenarios to interpret the age of glacial recession leading to the moraine surface formation from these sample exposure ages: 1) Erosion of the moraine surface is insignificant and so the emplacement age of the moraines is reflected by the mean sample age; and 2) Erosion progressively exposes large boulders with little prior exposure, and so the oldest sample age records the minimum moraine emplacement age. We found that depending on the scenario chosen, the moraine emplacement age can vary by > 50% for ~ 100 ka-old samples. We consider two scaling models for estimating the production rates of ¹⁰Be in Tibet, which has an important, although lesser, effect on inferred moraine ages. While the data presented herein effectively increase the database of sample exposure ages from Tibet by \sim 20%, we find that uncertainties related to the interpretation of the ¹⁰Be abundance within individual samples in terms of moraine emplacement ages are sufficient to accommodate either a view in which glacial advances are associated with temperature minima or precipitation maxima that are recorded by independent paleoclimate proxies. A reanalysis of published data from moraines throughout Tibet shows that the variation we observe is not unique to our dataset but rather is a robust feature of the Tibetan moraine age database. Thus, when viewed in a similar way with other samples collected from this area, uncertainties within moraine exposure ages obscure attribution of Tibetan glacial advances to temperature minima or precipitation maxima. Our work suggests that more reliable chronologies of Tibetan glaciations will come from improvements in production rate models for this portion of the world, as well as a better understanding of the processes that form and modify these geomorphic surfaces.

© 2010 Elsevier Ltd. All rights reserved.


1. Introduction

Mountain glaciers are sensitive climatic markers that usually advance or withdraw rapidly with changes in temperature and/or precipitation. In Tibetan and Himalayan glacial valleys in particular, successions of multiple moraines that record glacial recessions are common, providing a potential opportunity to investigate the nature of climate changes in mid-latitude continental regions where climate proxies are far more sparse than in ocean basins or polar ice-caps. Preserved embedded boulders on moraine crests

^{*} Corresponding author. Key Laboratory for Continental Dynamics, Institute of Geology, CAGS, 26, Baiwanzhuang Rd, Beijing 100037, China.

E-mail addresses: mlchevalier@hotmail.com (M.-L. Chevalier), hilley@stanford. edu (G. Hilley), tappon@ntu.edu.sg (P. Tapponnier), jeromev@eost.u-strasbg.fr (J. Van Der Woerd), liu-zeng@itpcas.ac.cn (J. Liu-Zeng), rfinkel@berkeley.edu (R.C. Finkel), Ryerson1@llnl.gov (F.J. Ryerson), lihaibing06@yahoo.com.cn (H. Li), liuxh@ itpcas.ac.cn (X. Liu).

 $^{0277\}text{-}3791/\$$ – see front matter \circledast 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.quascirev.2010.11.005

Fig. 1. A) Location of the 17 new sampled moraine sites of this study (red stars), 32 crests (with >2 samples), on a Landsat satellite image of the southern and western Tibetan Plateau, a region of about 1100 \times 500 km. Numbers refer to Fig. 14 and Tables 1, 2 and S1. B) Location of the studies used in the compilation: A4 = Abramowski (2004), A6 = Abramowski et al. (2006), B=Barnard et al. (2004b), D = Dortch et al. (2010), F=Finkel et al. (2003), H=Hedrick et al. (in press), M = Meriaux et al. (2004), O3 = Owen et al. (2003a), O9 = Owen et al. (2009), O10 = Owen et al. (2010), Se7 = Seong et al. (2007), Se9 = Seong et al. (2009), Z = Zech et al. (2005a), Zh = Zhou et al. (2007).

provide ideal targets for cosmogenic radionuclide surface-exposure dating (Gosse and Phillips, 2001), which allows dating of features devoid of datable organic material or features too old to be dated using radiocarbon.

A number of studies have recently been carried out to assess the timing of past glaciations in Tibet and to infer the relative influence that precipitation and temperature play in triggering glacial advances here (e.g. Gillespie and Molnar, 1995; Benn and Owen, 1998; Owen et al., 2001, 2002, 2009; Brown et al., 2002; Schaefer et al., 2002, 2008; Van der Woerd et al., 2002; Finkel et al., 2003; Zech et al., 2005a, 2009; Abramowski et al., 2006; Gayer et al., 2006; Seong et al., 2007, 2009; Zhou et al., 2007). Such a chronology could help to inform how the high elevation and large area of the Tibetan Plateau influences global climatic patterns, as there is some uncertainty as to whether the winter Westerlies in the west and the summer South Asian Monsoon in the east change their relative importance in response to long-period climate changes. Most studies posit that Quaternary glaciations in Tibet and the Himalayas were asynchronous with those of the Northern Hemisphere (e.g. Gillespie and Molnar, 1995; Benn and Owen, 1998; Phillips et al., 2000; Richards et al., 2000; Owen et al., 2008b, 2009), suggesting that increased precipitation during warm periods may be primarily responsible for glacial advances.

While cosmogenic exposure age studies have provided important insights into the potential controls on the timing of glacial advances, there is some question as to whether the inferred ages of surface samples represent the moraine emplacement age in a straightforward way. Typically, rock samples collected from the crest of a moraine are analyzed for ¹⁰Be concentrations (hereafter [¹⁰Be]), which are used to infer the exposure age of each of the surface samples. The age distribution of samples on the moraine crest is then used to infer the emplacement age of the moraine (i.e. the

transition between glaciation and deglaciation, i.e. when the moraine starts to be exposed to cosmic-rays). To this end, there are two main sources of uncertainty in moraine surface emplacement ages that could be better characterized by a comprehensive dataset from across the Tibetan Plateau. First, production rates of ¹⁰Be vary strongly with atmospheric depth and geomagnetic latitude-models of these effects are particularly poorly calibrated for the Tibetan Plateau (e.g. Dunai, 2000; Stone, 2000; Gosse and Phillips, 2001; Balco et al., 2008). Second, only a handful of samples are typically collected from a given moraine surface/crest, and so the limited number of samples may introduce significant uncertainty when interpreting a moraine emplacement age in terms of the rocks that are presently mantling its surface. Also, while many studies assume that the mean age of surface-mantling boulders represents the emplacement age of the moraine (e.g. Gosse et al., 1995; Briner et al., 2001; Finkel et al., 2003; Meriaux et al., 2004; Chevalier et al., 2005a; Owen et al., 2005; Barrows et al., 2007; Schaefer et al., 2009; Hedrick et al., in press), others indicate that such boulders are progressively exhumed to the surface as erosion winnows the fines from the moraine (e.g. Hallet and Putkonen, 1994; Lasserre et al., 2002; Putkonen and Swanson, 2003; Abramowski, 2004, 2006; Zech et al., 2005a, 2008, 2009; Applegate et al., 2010; Heyman et al., in press) and erosion transports material away from the crest. Thus, uncertainties in the way in which the moraine surface is modified over time can alter the manner in which we relate the moraine emplacement age to the exposure ages of the boulders mantling its surface.

In this contribution, we present new ¹⁰Be surface exposure ages of 249 samples (Table S1 in the Supplementary Information) collected in 2000-2007, on 32 lateral (and one frontal) moraine crests (17 sites, red stars on Fig. 1) located over a region of ~ 1100 km by ~ 500 km in southern and western Tibet. This new dataset increases the size of the Tibetan exposure age database by $\sim 20\%$ (compared to Heyman et al., 2010) and contains enough data to allow a better understanding of the influence of the uncertainties in moraine emplacement ages that result from the number and interpretation of samples collected from the moraine surface. We found that when considering the quantifiable uncertainties cited above, it is difficult to compellingly associate the timing of Tibetan glacial advances with either temperature minima or precipitation maxima (assuming that glacial advances during temperature maxima are driven by increased precipitation). Indeed, the δ^{18} O of ice varies with temperature; therefore it may be used to assess the correlation between temperature minima and glacial expansion using this geochemical proxy (Yao et al., 1996; Thompson et al., 1997). A precipitation-related glacial advance is more difficult to constrain, but we know that an increase of precipitation (during both warm and cold climate) brings snowfall at high elevation and allows glaciers to advance. Our study suggests that the development of such chronologies would foremost benefit from a better understanding of how these surfaces are denuded over time, and secondarily from the construction of better constrained models that describe the distribution of cosmogenic production rates in this area.

2. Methods

2.1. Sample processing and dating

Moraine crests were sampled by collecting fragments from the top surface of discrete large embedded granite boulders (up to 4 m in diameter) on the crest (highest point) of the moraine, or well-rooted cobbles (20-30 cm in diameter) in cases where boulders were not present (see Table S1 for a complete description of each of the samples collected). We sampled at least 5 different surface boulders/clasts from each moraine crest, and up to 15 samples for large-size moraines with many available boulders.

Each rock sample was crushed, sieved, and cleaned to isolate quartz from the sample, which is the mineral that we use to analyze the *in situ*-produced [¹⁰Be]. The *in-situ* produced ¹⁰Be was isolated by progressive HF/HNO₃ leaches to etch the exterior portion of the quartz crystals that may contain garden-variety ¹⁰Be that was sorbed on the mineral surface (e.g. Brown et al., 1991; Kohl and Nishiizumi, 1992; Gosse and Phillips, 2001). The purified quartz was then digested, a ⁹Be carrier of known concentration was added, and Be(OH)₂ was chemically isolated using ion exchange columns. The Be(OH)₂ was ignited to BeO, and the ¹⁰Be/⁹Be ratios were measured at Lawrence Livermore National Laboratory's Center for Accelerator Mass Spectrometer at LN2C-Cerege, France. These ratios were finally converted to [¹⁰Be] using the measured total Be concentrations prior to chemical separation.

The production rate of ¹⁰Be scales with the atmospheric depth, geomagnetic latitude, and geomagnetic field intensity. Thus, the history of the production rate must be calculated at each sample location and integrated in time to find the exposure age that most closely reproduces the measured ¹⁰Be abundance. We used the CRONUS 2.2 calculator with the constant file 2.2.1 (Balco et al., 2008, http://hess.ess.washington.edu) to infer each sample's exposure age from its [¹⁰Be].

2.2. Moraine dating

In this analysis, we assessed uncertainties in the measured [¹⁰Be] of each rock sample, the systematic uncertainties in the age of each sample that arise from uncertainties in the appropriate ¹⁰Be scaling model, and the systematic uncertainties associated with the transformation of the exposure age of individual rock samples into

the emplacement age of the moraine surface. Analytical precision related to the Accelerator Mass Spectrometer (AMS) measurement are reported in Table S1, and are typically on the order of ~2-4% of the measured [¹⁰Be]. These uncertainties are quite small relative to the uncertainties associated with converting [¹⁰Be] into sample exposure age and moraine emplacement age. Therefore, we focus our attention on the uncertainties that arise from (1) production rate scaling models and (2) the manner in which moraine emplacement ages are inferred from the distribution of ages of rock samples collected from its crest.

There are a number of sites throughout the world where the ¹⁰Be production rate has been calibrated (e.g. Nishiizumi et al., 1989, 2007; Phillips et al., 2000); however, a number of models have been developed to interpolate these point measurements to areas where such measurements do not exist. The Tibetan Plateau in particular, lacks direct calibration of production rates, and so we consider five different production rate scaling models that span the range of likely production rates when inferring the exposure ages of rocks (Balco et al., 2008). We regard the range in production rates spanned by these five models (Lal (1991)/Stone (2000) time-dependent and Lal (1991)/Stone (2000) time-independent; Dunai, 2001; Desilets and Zreda, 2003, 2006; and Lifton et al., 2005 models) as capturing the uncertainties associated with our lack of direct calibration of production rates in this area.

To assimilate systematic biases that exist between the production rate models into the covariance of the sample ages, we would need to know the likelihood of the different model scenarios, which is currently unavailable for samples collected from Tibet because of a lack of direct measurement of cosmogenic sample ages that have been dated by independent means. Thus, to provide some measure of uncertainty in moraine ages that arises due to our lack of knowledge of the appropriate production rate model, we simply report the range spanned by all model choices as encapsulating the range of possible ages that arise due to variation between production rate models. We acknowledge that these uncertainties are systematic and so will only subtly affect sample ages relative to one another; nonetheless, this range provides a useful metric to evaluate the importance of different sources of uncertainty in estimating the variations in a particular moraine's absolute age when considering different production rate model scenarios.

Inferring the timing of glacial recession, which is recorded by the age of abandonment of the moraine, requires a model that associates exposure ages of individual samples on the surface of the moraine crest to an effective abandonment age (e.g. Phillips et al., 1990). In the simplest model, clasts that are quarried by glacial erosion experience little exposure to cosmogenic radiation prior to their transport and deposition, and the surface of the moraine remains unmodified over time (assuming no post-glacial shielding). Statistical analyses of published clast exposure ages suggest that the percentage of surface boulders that experience exposure prior to glacial erosion may be quite small (<3%, Putkonen and Swanson, 2003), although this estimate may be biased by a lack of reporting of exposure ages that appear unreasonably old relative to other ages collected on the same surface (Putkonen and Swanson, 2003). In the case that the surface remains stable over time, the mean age of boulders collected on the surface of the moraine may reflect the emplacement age of the moraine surface, assuming that prior exposure is as important as incomplete exposure due to post-glacial shielding (e.g. Zreda et al., 1994; Gosse et al., 1995; Zreda and Phillips, 1995; Briner et al., 2001; Finkel et al., 2003; Meriaux et al., 2004; Chevalier et al., 2005a; Owen et al., 2005; Barrows et al., 2007; Gillespie et al., 2008; Schaefer et al., 2009; Hedrick et al., in press). The small fraction of rocks that may have experienced prior exposure to cosmogenic radiation before being eroded, transported, and deposited by glacial processes may be revealed by outlying boulder ages that are far older than the majority of the sample ages. In this case, such outliers should be identified and discarded prior to computing the mean sample age (e.g. Putkonen and Swanson, 2003; Meriaux et al., 2004; Chevalier et al., 2005a). However, Applegate et al. (2010) recently argued that the mean is a poor estimator of moraine age for data sets drawn from skewed parent distributions, and even excluding outliers before calculating the mean does not improve this mismatch.

Alternatively, a second scenario can be envisioned in which the moraine surface does not remain stable after its initial exposure. In this case, large boulders interspersed throughout the deposit may be exhumed to the surface as erosion transports the fine, and eventually, coarse material away (e.g. Hallet and Putkonen, 1994; Zreda et al., 1994; Zreda and Phillips, 1995; Phillips et al., 1997; Lasserre et al., 2002; Putkonen and Swanson, 2003; Abramowski, 2004, 2006; Briner et al., 2005; Zech et al., 2005a, 2008, 2009; Putkonen and O'Neal, 2006; Schaefer et al., 2008; Applegate et al., 2010; Heyman et al., in press). In this model, the exposure ages of boulders that gradually accumulate on the surface of the moraine represent various stages of boulder exhumation as the surface lowers around them and/or cryoturbation selectively brings boulders near the surface. Should the prior exposure rate indeed be low (Putkonen and Swanson, 2003), then the oldest age found on the surface should more closely represent the exposure age of the moraine surface, although it is still considered a minimum exposure age (e.g. Hallet and Putkonen, 1994; Zreda et al., 1994; Zreda and Phillips, 1995; Putkonen and Swanson, 2003; Briner et al., 2005; Zech et al., 2008; Applegate et al., 2010; Heyman et al., in press).

It is not altogether clear which of these scenarios may be appropriate when inferring the moraine surface emplacement age from sample exposure ages of boulders on its surface. It is still an open question as to what conceptual model applies to moraine degradation in a general sense, and to the majority of Tibetan moraines in particular. In addition, especially for pre-Holocene moraines, the boulders themselves may begin to suffer some attrition as smaller fragments are spalled from larger boulders. Processes such as spallation, erosion, weathering, rolling and snow cover can all lead to apparent young ages. The older the moraine, the more important these processes likely become. Given the unknown rates of each of these processes that may be acting to modify the Tibetan moraines, we consider both scenarios to represent the possible moraine emplacement ages that may be inferred from the ages of clasts collected from their surfaces. As with the different production rate models, this source of uncertainty, hereafter referred to as that associated with the interpretive framework that relates sample ages to moraine emplacement ages, produces a systematic variation. Because we do not have prior information that sheds light on which of these two scenarios may be more likely (and direct field observations to date do not inform the appropriateness of either of these models as applied to Tibetan moraines), we report the possible moraine emplacement ages that span these models of the interpretive framework. Finally, to provide an estimate of the range of possible moraine ages that arises due to both variation between production rate models and the interpretive framework, we use the production rate scaling model of Lifton et al. (2005) with the mean age interpretive framework to provide a minimum bound on moraine surface age, and the time-dependent production rate scaling model of Lal (1991)/Stone (2000) with the oldest age interpretive framework to provide an upper bound on moraine surface ages (which is nonetheless, still a minimum age). Importantly, this range represents the quiver of end-member production rate scaling scenarios that are adjusted for temporal changes in the geomagnetic intensity, all of which produce ages that vary systematically with the model used.

The discussion about the correct interpretative model of moraine ages derives in part from moraine age distributions obtained on individual moraine crests, which may represent instantaneous temporal events of glacier retreat. This is particularly true when a large number of samples, i.e. more than 5, are dated on a single moraine (e.g. Zreda and Phillips, 1995; Lasserre et al., 2002; Meriaux et al., 2004; Chevalier et al., 2005a; Owen et al., 2009). However, in most paleoclimatic studies involving cosmogenic dating of Tibetan moraines, the tendency is to sample very few boulders (<5). For instance, if one considers the large moraine ages database of Tibet (Owen et al., 2008b; Heyman et al., 2010, and Heyman et al., in press) of about ~1300 boulders collected on \sim 320 individual moraine crests, only \sim 29% of these moraines have at least 5 boulders dated per moraine and only $\sim 2\%$ have at least 10 boulders dated per moraine. In comparison, our study, with 249 samples on 32 individual moraine crests (with >2 samples), has 88% moraines (28 crests) with at least 5 samples, and 16% moraines (5 crests) with 10 or more samples.

Following Abramowski (2004) who distinguishes between the shape of different age distributions when plotted from youngest to oldest on each moraine, we discuss below the distribution of ages obtained on the 32 moraine crests after a presentation of their geomorphic setting. Each moraine age distribution is shown with the results from the two end-member production rate scaling scenarios that are adjusted for temporal changes in the geomagnetic intensity (i.e. Lifton et al. (2005) and Lal (1991)/Stone (2000) time-dependent). As advocated by Putkonen and Swanson (2003), we identified clasts that contained prior exposure as samples whose exposure age was more than twice that of the next oldest sample. These samples were not considered in calculating either the mean or identifying the maximum rock sample exposure age for each moraine (it is the case for two of our moraines: sample KC2-78 on #15 AQu and sample T7C-62 on #7 Xainza M, Table S1).

Finally, in the Discussion of this contribution, we explored scenarios in which possible additional outliers were identified and excluded from the calculation of ages of specific moraine crests at particular sites, by considering the samples whose error bars (1σ) do not overlap with those of the other samples. As a consequence, mean and oldest ages for these moraines are modified. We acknowledge that such outlier rejection is subjective and we will therefore discuss each moraine case by case (Table 1). We then ranked the moraine mean exposure ages into three groups based on their 1σ standard deviation, i.e. group 1, 2 and 3, for $1\sigma < 17\%$, $17\% < 1\sigma < 32\%$, and $1\sigma > 32\%$ of their mean age, respectively (Table 1). Not surprisingly, as more outliers are rejected, more moraines fit into group 1 or 2 (see Table 1). Again, we acknowledge that such quality assessment of the age distribution is not robust, but it provides some insight into the impact of different outlier rejection scenarios on the broader inferences of moraine age distributions across Tibet.

3. Results

3.1. Sampled sites

Samples were collected along the Ayilari Range (Chaxikang CK and Manikala moraines (Chevalier et al., 2005a)), the Kailas Range (AQu, West Xiong Se and East Xiong Se moraines), the Pulan halfgraben (Pulan Rongguo moraine), the KungCo half-graben (KungCo and Cho Oyu moraines), the Ama Drime Range (Dingye N and Dingye S moraines), the Xainza graben (M4, M3, M2, M1 and M moraines), and the Nyainqentanghla Range (YanBaJain Ybj, and Gulu moraines) (locations shown in Fig. 1). Below, we describe each moraine site, from east to west. Details about the samples (location, sample thickness, lithology, qualitative size, shielding factor, [¹⁰Be], standard

# in Fig. 14	Sites	group before rejection	Lal/Stone time-dep mean ages (ka)	Lal/Stone time-dep oldest ages (ka)	Lifton mean ages (ka)	Lifton oldest ages (ka)	outliers?	group after rejection	Lal/Stone time-dep mean ages (ka)	Lal/Stone time-dep oldest ages (ka)	Lifton mean ages (ka)	Lifton oldest ages (ka)
1a	Gulu W	1	16.242 ± 0.79	17.464 ± 1.546	14.651 ± 0.672	15.685 ± 1.604	no	1	16.242 ± 0.79	17.464 ± 1.546	14.651 ± 0.672	15.685 ± 1.604
1b	Gulu E	1	17.927 ± 1.476	20.59 ± 1.822	16.164 ± 1.215	18.355 ± 1.877	no	1	17.927 ± 1.476	20.59 ± 1.822	16.164 ± 1.215	18.355 ± 1.877
2a	Ybj outer W		28.836 ± 9.442	49.757 ± 4.383	24.802 ± 7.477	40.986 ± 4.178	1 old	2	26.511 ± 6.285	34.66 ± 3.057	23.003 ± 5.149	29.618 ± 3.022
2b	Ybj inner	2	13.803 ± 3.983	20.316 ± 1.759	12.421 ± 3.303	17.82 ± 1.793	1 old	1	12.175 ± 1.868	14.384 ± 1.252	11.071 ± 1.551	12.925 ± 1.305
2c	Ybj outer E	2	39.162 ± 9.714	48.748 ± 4.259	33.653 ± 7.885	40.873 ± 4.142	1 young	1	41.436 ± 6.928	48.748 ± 4.259	35.533 ± 5.496	40.873 ± 4.142
3a	M4#1	3	67.346 ± 32.122	116.367 ± 10.139	55.399 ± 25.853	95.497 ± 9.669	2 old	1	46.133 ± 8.96	55.571 ± 4.796	38.32 ± 5.774	44.081 ± 4.425
4a	M3 main	1	39.011 ± 5.648	50.025 ± 3.671	33.408 ± 5.205	41.488 ± 3.528	1 old	1	36.809 ± 1.868	38.815 ± 3.356	31.793 ± 1.663	33.626 ± 3.382
4b	M3 inner	1	12.711 ± 1.486	15.55 ± 1.334	11.566 ± 1.254	13.963 ± 1.395	no	1	12.711 ± 1.486	15.55 ± 1.334	11.566 ± 1.254	13.963 ± 1.395
4c	M3 old	3	326.525 ± 151.884	561.669 ± 54.831	260.159 ± 120.549	447.554 ± 49.554	1 old	2	267.739 ± 87.863	359.361 ± 33.395	213.31 ± 68.878	282.908 ± 30.095
5	M2	2	30.665 ± 10.167	45.163 ± 3.877	26.379 ± 8.364	38.075 ± 3.809	3 young	1	35.785 ± 5.893	45.163 ± 3.877	30.598 ± 4.826	38.075 ± 3.809
6	M1	1	26.854 ± 2.083	30.945 ± 2.7	23.476 ± 1.744	26.98 ± 2.731	no	1	26.854 ± 2.083	30.945 ± 2.7	23.476 ± 1.744	26.98 ± 2.731
7	Mc	3	18.662 ± 6.595	30.502 ± 2.614	16.479 ± 5.444	26.214 ± 2.618	1 old	2	16.689 ± 17.854	24.457 ± 2.126	14.857 ± 3.669	21.301 ± 2.15
8	Dingye N	3	$\textbf{88.015} \pm \textbf{73.022}$	$\textbf{287.44} \pm \textbf{26.406}$	73.259 ± 59.147	234.071 ± 24.718	1 young, 6 old	2	44.013 ± 13.159	62.652 ± 5.607	$\textbf{37.302} \pm \textbf{8.86}$	50.458 ± 5.204
9a	Dingye S frontal	1	20.769 ± 2.563	24.509 ± 2.168	18.543 ± 2.159	21.734 ± 2.222	no	1	20.769 ± 2.563	24.509 ± 2.168	18.543 ± 2.159	21.734 ± 2.222
9b	Dingye S main#1	2	17.601 ± 5.895	25.7 ± 2.278	15.686 ± 4.92	22.42 ± 2.296	1 old	2	14.901 ± 2.9	17.111 ± 1.513	13.441 ± 2.467	15.32 ± 1.566
9c	Dingye S main#2	3	21.937 ± 10.14	40.784 ± 3.615	19.36 ± 8.554	35.279 ± 3.614	2 old	1	16.369 ± 2.784	18.824 ± 1.776	14.675 ± 2.359	16.729 ± 1.796
9d	Dingye S main#3	3	25.067 ± 10.099	39.768 ± 3.516	22.06 ± 8.532	34.545 ± 3.532	1 old	2	21.392 ± 6.779	28.716 ± 2.559	18.94 ± 5.668	25.047 ± 2.575
10	Cho oyu	1	$\textbf{28.46} \pm \textbf{1.798}$	31.158 ± 2.775	25.084 ± 1.531	27.382 ± 2.814	no	1	$\textbf{28.46} \pm \textbf{1.798}$	31.158 ± 2.775	25.084 ± 1.531	27.382 ± 2.814
11	Kungco	3	26.288 ± 16.175	64.545 ± 5.8	23.101 ± 13.07	52.954 ± 5.48	5 old	2	16.625 ± 4.48	21.794 ± 1.919	15.21 ± 3.82	19.66 ± 2.003
12a	Pulan M1W		20.641 ± 1.951	22.743 ± 2.087	18.989 ± 1.69	20.817 ± 2.189	no	1	20.641 ± 1.951	22.743 ± 2.087	18.989 ± 1.69	20.817 ± 2.189
12b	Pulan M2	3	60.559 ± 23.354	94.724 ± 8.45	51.872 ± 19.274	80.542 ± 8.3	2 young		69.645 ± 17.138	94.724 ± 8.45	59.258 ± 14.454	80.542 ± 8.3
12c	Pulan M1E	2	31.493 ± 9.808	45.499 ± 4.041	$\textbf{28.226} \pm \textbf{8.318}$	39.861 ± 4.09	no	2	31.493 ± 9.808	45.499 ± 4.041	28.226 ± 8.318	39.861 ± 4.09
13	EXS	1	15.436 ± 1.521	16.974 ± 1.599	14.275 ± 1.313	15.594 ± 1.672	no	1	15.436 ± 1.521	16.974 ± 1.599	14.275 ± 1.313	15.594 ± 1.672
14	WXS	2	35.5 ± 9.157	48.354 ± 4.212	31.084 ± 7.599	41.026 ± 4.148	3 young	1	39.627 ± 4.463	48.354 ± 4.212	34.535 ± 3.572	41.026 ± 4.148
15	AQu ^b	2	28.351 ± 6.062	36.895 ± 3.207	24.69 ± 5.003	31.764 ± 3.206	no	2	28.351 ± 6.062	36.895 ± 3.207	24.69 ± 5.003	31.764 ± 3.206
16a	Manikala M1	2	33.652 ± 8.095	42.005 ± 3.728	29.575 ± 6.839	36.713 ± 3.765	2 young		37.566 ± 2.639	42.005 ± 3.728	$\textbf{32.868} \pm \textbf{2.328}$	36.713 ± 3.765
16b	Manikala M2E	2	186.871 ± 59.91	287.017 ± 26.115	154.781 ± 48.461	235.758 ± 24.733	3 old	1	153.287 ± 24.886	191.361 ± 16.99	127.424 ± 19.525	159.837 ± 16.447
16c	Manikala M2W	1	126.74 ± 20.979	163.341 ± 14.53	105.713 ± 16.069	132.302 ± 13.609	no	1	126.74 ± 20.979	163.341 ± 14.53	105.713 ± 16.069	132.302 ± 13.609
16d	Manikala M3	3	114.28 ± 59.873	194.086 ± 17.37	95.749 ± 49.059	163.013 ± 16.877	4 young	1	173.727 ± 22.3	194.086 ± 17.37	144.266 ± 19.539	163.013 ± 16.877
17a	CK M3	1	122.248 ± 21.382	155.882 ± 13.803	103.824 ± 16.542	128.931 ± 13.224	no	1	122.248 ± 21.382	155 882 + 13 803	103.824 ± 16.542	128.931 ± 13.224
17a 17b	CK M2	3	52.240 ± 21.582 52.241 ± 33.675	81.387 ± 7.152	44.354 ± 27.573	68.794 ± 7.008	1 young		70.673 ± 15.151	81.387 ± 7.152	59.3 ± 13.425	68.794 ± 7.008
170 17c	inner CK M2	3	47.24 ± 16.719	67.824 ± 6.103	40.931 ± 13.571	58.091 ± 6.022	3 old	2	36.273 ± 9.244	47.71 ± 4.229	33.3 ± 13.423 32.087 ± 7.661	41.226 ± 4.224
170	outer	J	47.24 ± 10./19	07.024 ± 0.103	40.931 ± 13.371	30.091 ± 0.022	2 010	2	30.273 ± 9.244	47.71 ± 4.229	J2.001 ± 1.001	41.220 ± 4.224

Note that Ybj outer N, M4 #2 and M4 #3 have < 2 samples and therefore are not presented in this table. ^a group1: $1\sigma < 17\%$, group 2: $17\% < 1\sigma < 32\%$, group 3: $1\sigma > 32\%$.

^b KC2-78 on AQu is an outlier because twice as old as the next oldest age.
 ^c T7C-62 on M is an outlier because twice as old as the next oldest age.

used and model ages using all scaling models) are listed in Table S1 in the Supplementary Information, as well as geomorphic maps and field photos of each site and each sample collected, when available. While in the field, we focused our attention to the particular geomorphic circumstances of our sites and sampled adequately (e.g. samples collected from the crest, presenting minimum weathering, well-rooted cobbles or embedded large boulders, top of boulders to limit shielding, located far from slopes or gullies, etc.).

3.1.1. Nyainqentanghla Range

YanBaJain and Gulu moraines are located on the southeastern side of the Nyainqentanghla Range, the most prominent mountain range on the Tibetan Plateau, at the edge of the monsoon-influenced Tibet region. Previous cosmogenic moraine chronologies along the range, south of our Gulu site, have shown ages that range from 15 to 40 ka, and 50 to 110 ka (Owen et al., 2005). Initial morphotectonic mapping of these sites was first carried out by Armijo et al. (1986) (drawing, Fig. 2).

The YanBaJain (Ybj) moraine is located at 30°N-90.2°E, at an elevation of ~5000-5300 m asl. It is composed of two lateral crests vertically offset by the active normal fault along the range-front, and extends about 2 km southeast of the range-front (Fig. 2, S1 and S2). The present-day glacier terminus is located about 3 km upstream from the range-front. Several inset river terraces are observed along the present-day river outwash (T on Fig. S1 and S2), located several tens of meters downslope from the range-front. The surface of the moraine is covered by a thin veneer of grass-topped turf with emerging large embedded boulders (50 cm to 4 m in diameter, Fig. S2 to S4). We collected 20 granite and quartzite boulders on the crest of the southern lateral moraine (Ybj outer W #2a: T5C-25-34 and Ybj outer E #2c: T5C-35-44 on either side of the fault) and 2 on the crest of the northern lateral moraine (Ybj outer N #2d: T5C-44bis-45). Five additional samples were collected from the crest of an inset moraine, closer to the present-day glacier (Ybj inner #2b: T5C-19-23) (Fig. 2, S3 and S4, Table S1).

Moraine Ybj outer W has ages that range from 15 to 41 ka, with a mean of 25 ± 7 ka (using Lifton) ($1\sigma \sim 30\%$, group 2) (Fig. 3, Tables 1 and 2 and S1). If sample T5C-30, which seems different from all other samples at the 1σ level, is considered as an outlier, the mean clusters at 23 ± 5 ka ($1\sigma \sim 22\%$, group 2) (Table 1). Moraine Ybj outer E has older ages that range from 17 to 41 ka, with a mean of 34 ± 8 ka ($1\sigma \sim 23\%$, group 2) (Fig. 3, Tables 1 and S1). Sample T5C-35 seems different than all others at the 1σ level, and if considered as an outlier, produces a mean age of 36 ± 5 ka ($1\sigma \sim 15\%$, group 1) (Table 1). The five boulders of Ybj inner have ages that range from 10 to 18 ka, with a mean of 12 ± 3 ka ($1\sigma \sim 26\%$, group 2) (Fig. 3, Tables 1 and S1). Considering sample T5C-22 as an outlier results in a mean age of 11 ± 2 ka ($1\sigma \sim 14\%$, group 1) (Table 1).

The Gulu moraine is located at 30.8° N-91.6°E, at an elevation of ~4800-5000 m asl, at the terminus of a 4-km-long U-shaped valley, whose drainage area is headed by Samdain Kangsang Peak (6532 m, Fig. 2, S5 and S6). The lateral moraine crests are vertically offset by a series of normal faults along the range-front (Fig. S5), whose rupture probably dates back to the M~8, 1951 Damxung earthquake (Armijo et al., 1986). The moraine extends about 1 km east of the range-front and the present-day glacier terminus is located about 4 km upstream from it. We collected 15 samples from large embedded boulders located on the crest of the southern lateral moraine (Gulu W #1a: T5C-58-64 and Gulu E #1b: T5C-66-73 on either side of the fault) (Fig. 2, S5 and S7, Table S1). An inset frontal moraine located upstream (Fig. S6) was not sampled in this study. The surface is covered by a thin veneer of grass-topped turf with emerging large embedded granite boulders (up to 3 m in diameter, Fig. S6 and S7).

The ages of Gulu W (ranging from 14 to 16 ka) and Gulu E (from 15 to 18 ka) average at 15 \pm 1 and 16 \pm 1 ka (using Lifton),

respectively (Fig. 3, Tables 2 and S1). No outliers are identified. Both moraines belong to group 1 ($1\sigma \sim 4$ -7%) (Table 1). While the means are not significantly different, Gulu E is slightly older than Gulu W, as expected for a slowly retreating glacier. These two tectonically separated ridges, while processed as two different sets of samples, clearly belong to the same moraine crest, subsequently offset by active normal faulting, and may be considered to belong to the same glacial advance.

3.1.2. Xainza range

The Xainza Range is located about 200 km west of the Nyainqentanghla Range, south of Gyaring Co (Fig. 4 and S8). The five moraines sampled here are referred to as M4 and M3, which are located on the eastern side of the northern range, in addition to M2, M1 and M, which are located on the western side of the southern range.

The M4 moraine is located at 30.7°N-88.6°E, at an elevation of about 5200 m asl, and consists of two wide lateral crests extending 4 km southeast of the range-front. The present-day glacier terminus is located about 3 km upstream and is very restricted (Fig. 4). We collected 3 samples from large embedded boulders and two samples from well-rooted cobbles (20-30 cm in diameter), all located on the crest of the southern moraine (M4 # 3a (crest #1): T7C-7, 11, 15, 17 and 18), and two samples from large embedded boulders collected on two nearby crests (M4 #3b: T7C-14 and M4 #3c: T7C-12) (Fig. S9 and Table S1). The surface is not as sharp-crested as at Ybj or Gulu. We tried to avoid weathered boulders as much as possible but the available boulders were typically fractured. The surface is mantled by a thin veneer of turf on which only grass is growing, with emerging boulders up to 1 m in diameter (Fig. S9 and S10).

The ages of moraine M4 (crest #1) range from 33 to 95 ka, with a mean of 55 \pm 26 ka (using Lifton) (1 σ ~46%, group 3) (Fig. 5, Tables 1 and S1). If samples T7C-11 and T7C-17, which seem different from the others at the 1 σ level, are considered outliers, the mean samples age is 38 \pm 6 ka (1 σ ~15%, group 1) (Table 1).

The M3 moraine is located 8 km southwest of M4 (Fig. 4 and S9), at 30.6°N-88.5°E, at an elevation of about 5000-5300 m asl, and is composed of two relatively sharp, lateral crests along the river outwash, 40-50 m lower (Fig. 4 and S11), as well as an older lateral moraine \sim 1 km to the north that is not as sharp-crested. A smaller inset moraine is present upstream from this location (Fig. S11 and S12). The frontal moraine has been breached by the glacial outwash river, which is feeding a lake to the east. The moraines extend about 3 km southeast of the range-front and were fed by glaciers coming from 4 main valleys. Small ice patches are currently located about 4 km upstream from the range-front. We collected 19 granite samples from large embedded boulders (n = 16) and well-rooted cobbles (20-30 cm in diameter, n = 3) (Fig. S13 and S14) located on the crests of the northern moraines: 5 (Xainza M3-old #4c: T7C-19-24) on the outer smoother crest, 7 (Xainza M3 inner #4b: T7C-32-39) on the inner moraine upstream and 7 (Xainza M3 main #4a: T7C-24-30) on the main crest (Table S1). The main surfaces are vegetation-free (Fig. S12) and are covered by ~ 1 m diameter boulders (Fig. S12 to S14). The inset moraine is covered by huge 5-10 m fragmented boulders.

The samples on Xainza M3-old belong to the oldest surface samples ever dated in Tibet and range from 132 to 448 ka, with a mean of 260 ± 121 ka (using Lifton) ($1\sigma \sim 46\%$, group 3). The oldest sample, T7C-22 seems different from the others at the 1σ level and considering it as an outlier allows to tighten the mean at 213 ± 69 ka ($1\sigma \sim 32\%$, group 2) (Tables 1 and S1). The samples on Xainza M3 inner have ages ranging from 10 to 14 ka, with a mean of 12 ± 1 ka ($1\sigma \sim 10\%$, group 1) (Fig.5, Tables 1 and 2). No outlier appears present on that surface. The ages on Xainza M3 main range from 29

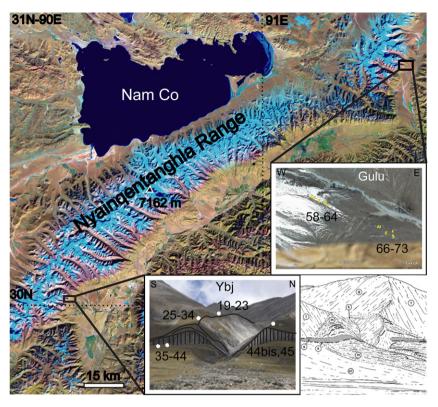
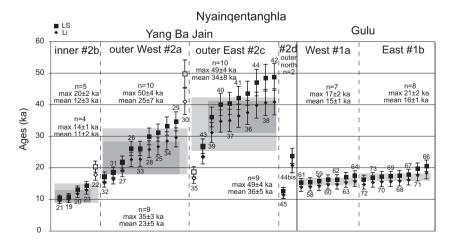


Fig. 2. Landsat satellite image of the Nyainqentanghla area, with location of YanBaJain (Ybj) and Gulu sites. The numbers on each inset photo refer to sample numbers. The drawing represents the Ybj moraine from Armijo et al. (1986).


to 41 ka, with a mean of 33 ± 5 ka $(1\sigma \sim 15\%, \text{group 1})$ (Fig.5, Tables 1 and 2). Sample T7C-24-24bis (same collected sample processed separately) may be different from the others at the 1σ level and when considered as outliers, result in a mean age of 32 ± 2 ka $(1\sigma \sim 5\%, \text{group 1})$ (Fig. 5, Tables 1 and S1).

The M2 moraine is located about 60 km south of M3 (Fig. 4), at 30°N-88.4°E, at an elevation of about 5300 m asl, and is composed of sharp lateral and frontal crests that extend 3 km west of the range-front (Fig. S16). The U-shaped valley east of the range-front is 4 km-long and is free of ice today. The large embedded boulders are up to 5 m in diameter (Fig. S15 and S17) and show some signs of

surficial weathering, although the competence of the rock suggests limited attrition has taken place. We collected 11 granite samples along the crest of the southern lateral moraine (Xainza M2 #5: T7C-40-51). The surface of the moraine is vegetation-free (Fig. S15).

The ages on Xainza M2 range from 13 to 38 ka, with a mean of 26 ± 8 ka (using Lifton) $(1\sigma \sim 31\%$, group 2) (Tables 1 and 2). The three youngest samples do not overlap with other samples at the 1σ level, and when considered outliers, the mean becomes 31 ± 5 ka $(1\sigma \sim 16\%$, group 1) (Fig. 5, Tables 1 and S1).

The M1 moraine is located 20 km south of M2 (Fig. 4), at 29.9° N-88.3°E, at an elevation of about 5100 m asl and is composed of one

Fig. 3. ¹⁰Be surface exposure ages for the YanBaJain and Gulu sites (in the Nyainqentanghla range) plotted from youngest to oldest, with 1 σ error bars. The numbers next to each sample refer to sample numbers in Table S1. Squares show ages calculated using the Lal(1991)/Stone(2000) time-dependent scaling model (LS), diamonds represent ages using the Lifton et al. (2005) model (Li). The oldest age (using Lal/Stone) and the mean age (using Lifton) for each crest are also shown, as well as the number of samples on each crest. Light grey-shaded boxes represent the mean age of all samples (using Lifton) while dark grey-shaded boxes represent the mean age (using Lifton) without the possible outliers (in white, see text for details).

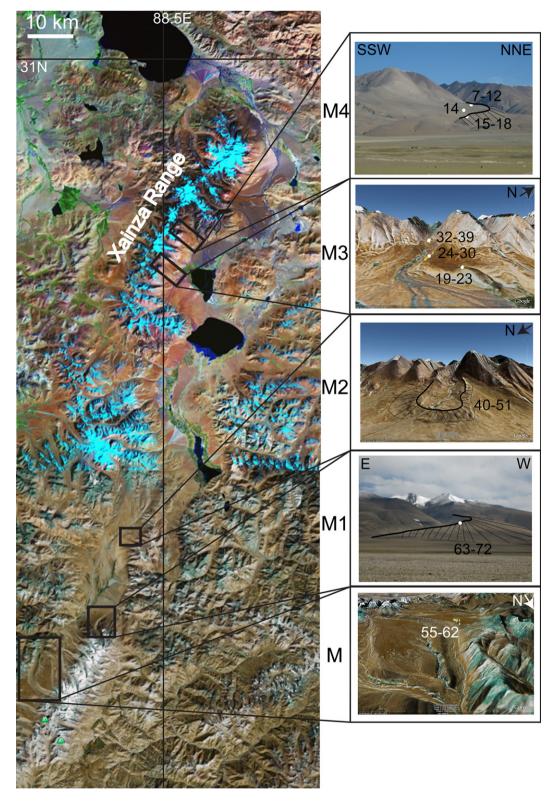


Fig. 4. Landsat satellite image of the Xainza area, where we sampled five sites: M4, M3, M2, M1 and M, from north to south. The numbers on each inset photo refer to sample numbers.

sharp lateral crest on the west side of the range (Fig. S16). The crest is up to 120 m higher than the river outwash (Fig. S15). The presentday glacier terminus is located 6 km from the moraine terminus. We collected samples from 9 large embedded granite boulders (up to 3 m in diameter) on the western crest (Xainza M1 #6: T7C-63-72, Fig. S18, Table S1). The surface is slightly vegetated with very short grass (Fig. S15).

The ages of Xainza M1 range from 21 to 27 ka, with a mean of 23 ± 2 ka (using Lifton) ($1\sigma \sim 7\%$, group 1) (Fig. 5, Tables 1, 2 and S1). No outliers can be identified.

The M moraine is located 15 km southwest of M1 (Fig. 4), at 29.8°N-88.2°E, at an elevation of about 5300 m asl, and is composed of two sharp lateral crests. It extends > 10 km west of the range-front and the present-day glacier terminus is about 4 km upstream from it (Fig. S16). The surface is mantled by a thin veneer of turf on which only grass is growing, with large emerging embedded granite boulders (up to 6 m in diameter) (Fig. S15 and S19). The river outwash has incised ~100 m-deep near the range-front, to 250 m-deep further downstream (Fig. S15). We collected 8 samples from the crest of the southwestern moraine (Xainza M #7: T7C-55-62, Fig. 5 and S19, Table S1).

The ages of Xainza M range from 11 to 26 ka (sample T7C-62 already excluded because it is twice the value of the next oldest sample; Putkonen and Swanson, 2003), with a mean of 16 \pm 5 ka (using Lifton) (1 σ ~ 33%, group 3) (Tables 1 and 2). Sample T7C-59 seems different than the others at the 1 σ level, and when rejected, it allows to calculate a mean of 15 \pm 4 ka (1 σ ~ 24%, group 2) (Fig. 5, Tables 1 and S1).

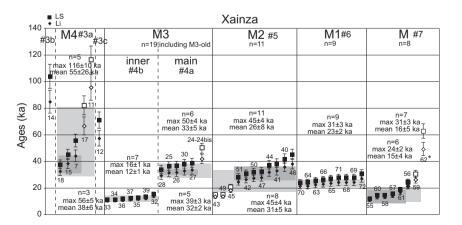
3.1.3. Ama Drime Range

The Ama Drime Range is located close to the Himalayan Range, south of the Xainza graben and east of the Phung Chu-Arun river valley, which crosses the Himalaya (Fig. 1). We collected samples from two sites (Dingye N and S) along its eastern front (Fig. 6).

Dingye N moraine is located at 28.3° N-87.7°E, at an elevation of about 4700-5100 m asl and is composed of two lateral crests (Fig. S20) that extend < 2 km from the range-front. The U-shaped valley is about 3 km-long upstream from it and is free of ice today. The surface is somewhat smooth, covered with well-rooted cobbles and lacks a vegetative cover (Fig. S20). The river outwash has incised about 100 m deep. We collected 14 samples (mostly quartzite, 20-30 cm in diameter) on the crest of the northern lateral moraine (Dingye N #8: T5C-141-155, Figs. 6, 7 and S21, Table S1).

The ages of Dingye N range from 16 to 234 ka, with a mean of 73 \pm 59 ka (using Lifton) (1 σ ~80%, group 3) (Tables 1 and 2). We note that the youngest ages are found closer to the range front (samples T5C-141 to 148, with the exception of sample T5C-155) and that they may form a different group between 16 and 50 ka. Rejecting the youngest sample T5C-141 from that younger population (as well as the 6 older samples), because it is different than the others at the 1 σ level, allows to calculate a mean of 37 \pm 9 ka (1 σ ~23%, group 2) (Table 1).

The Dingye S moraine is located 20 km south of Dingye N, at 28.1°N-87.6°E, at an elevation of ~5000-5300 m asl, and presents lateral moraine crests and one frontal moraine that extends 3-4 km east of the range-front. The present-day glacier terminus (and glacial lake) is located 3 km upstream. The lateral moraines are characterized by well-rooted cobbles and large embedded boulders up to 4 m in diameter and are devoid of vegetation (Fig. S22 and S23). Large truncated spurs (Fig. S22) are present at the site. attesting the normal faulting activity along the range-front. We collected 7 samples (5 cobbles about 20-30 cm in diameter, and 2 boulders) on the crest of the frontal moraine (Dingye S frontal #9a: T5C-133-140) and 15 samples (8 cobbles about 20-30 cm in diameter, and 7 boulders) on the crest of the southern lateral inset moraine, far from the facets (Dingye S main #9b: T5C-115-119, #9c: T5C-121-126, #9d: T5C-127-132) (Figs. 6 and 7, S24 and S25, Table S1).


The ages of Dingye S main #9b (crest #1) range from 11 to 22 ka with a mean of 16 \pm 5 ka (using Lifton) (1 σ ~31%, group 2). Rejecting the oldest sample T5C-115 allows to compute a mean of 13 \pm 2 ka (1 σ ~18%, group 2) (Table 1). The ages at Dingye S main #9c (crest #2) range from 12 to 35 ka with a mean of 19 \pm 9 ka (1 σ ~44%, group 3) (Tables 1 and 2). Rejecting the two oldest samples brings the mean at 15 \pm 2 ka (1 σ ~16%, group 1) (Table 1). The ages at Dingye S main #9d (crest #3) range from 13 to 35 ka with a mean of 22 \pm 9 ka (1 σ ~38%, group 3). Rejecting the oldest sample T5C-130 brings the mean to 19 \pm 6 ka (1 σ ~30%, group 2) (Table 1). Finally, Dingye S frontal #9a has ages that range from 15 to 22 ka with a mean of 19 \pm 2 ka (1 σ ~11%, group 1) (Tables 1 and 2). No outlier can be identified.

3.1.4. KungCo half-graben

The KungCo half-graben is located \sim 120 km west of the Ama Drime Range, close to the Himalayan Range. We collected samples from two sites: Cho Oyu and KungCo (Fig. 8).

The Cho Oyu moraine is located at 28.3°N-86.6°E, at an elevation of about 5000 m asl and consists of two sharp, lateral crests with no vegetation cover (Fig. 8 and S26). The samples were embedded boulders of about 50 cm in diameter. We collected 4 samples on the crest of the western moraine (Cho Oyu #10: KC2-A-E, Figs. 8, 10, Table S1).

The ages on Cho Oyu range from 24 to 27 ka, with a mean of 25 ± 2 ka (using Lifton) ($1\sigma \sim 6\%$, group 1) (Tables 1 and 2). No outliers can be identified.

Fig. 5. ¹⁰Be surface exposure ages for the Xainza area, plotted from youngest to oldest, with 1 σ error bars. The numbers next to each sample refer to the sample numbers in Table S1. Sample T7C-62 on M is twice as old as the next oldest sample and is discarded (Putkonen and Swanson, 2003). T7C-24 and 24bis are presented as one uncertainty weighted mean age. M3-old is not plotted on this graph, with ages ranging from ~167 to 562 ka (see Table S1). The oldest age (using Lal/Stone) and the mean age (using Lifton) for each crest are also shown, as well as the number of samples on each crest. Light grey-shaded boxes represent the mean age of all samples (using Lifton) while dark grey-shaded boxes represent the mean age (using Lifton) without the outliers (in white, see text for details).

Table 2

Compilation of moraine ages (<120 ka and with a sufficient number of samples, see text for details) from this study and published studies (total of 71 crests and 524 samples), for each climatic zone. All sample details are in Tables S1 and S2.

	Study	Site	sample #	# of samples per crest	standard used ^b	published ages (ka)	Lifton mean ages (ka) ^{a, c}	Lal/Stone time-dep oldest ages (ka
Westernmost Himalayan-Tibetan orogen					_		-uges (iiu)	
S-Alichur Range	Zech et al.	M2	M2/5	7	S555	$\textbf{46.9} \pm \textbf{6.1}$	32.619 ± 16.96	62.278 ± 5.60
(Yashikul)	(2005a)	1012	112/5	,	3333	40.3 ± 0.1	52.015 ± 10.50	02.270 ± 3.00
(Tushikur)	(20050)	M1	M1/5	7	S555	61.2 ± 8	65.753 ± 2.92	79.845 ± 7.57
C Alichur Dango	Abramowski		'					
S-Alichur Range	Abramowski	GU1	GU19	6	S555	56.8 ± 6.3	31.265 ± 14.986	69.323 ± 6.30
(Gurumdy)	et al. (2006)							
Mustagata and	Seong et al.	m3f	MUST-3	6	07KNSTD	$\textbf{8.9} \pm \textbf{0.3}$	9.639 ± 0.151	10.083 ± 0.90
Kongur Shan	(2009)							
		m3f	MUST-7	8	07KNSTD	8.9 ± 0.3	9.312 ± 0.374	9.981 ± 0.91
		m5a	MUST-21	6	07KNSTD	$\textbf{6.9} \pm \textbf{0.2}$	7.381 ± 0.251	7.734 ± 0.68
		m6a	MUST-30	5	07KNSTD	7 ± 0.2	7.35 ± 0.266	7.816 ± 0.69
		m7a	MUST-35	7	07KNSTD	2.1 ± 0.1	2.049 ± 0.193	2.529 ± 0.23
		m6c	MUST-55	5	07KNSTD	0.6 ± 0.1	0.431 ± 0.184	0.684 ± 0.09
		m3c	MUST-61	5	07KNSTD	14.7 ± 0.4	14.08 ± 0.682	16.401 ± 1.44
		m4c	MUST-69	5	07KNSTD	14.2 ± 0.3	14.071 ± 0.301	15.882 ± 1.39
		m4h	KONG_12	6	07KNSTD	7 ± 0.2	7.704 ± 0.094	7.799 ± 0.69
		m5h	KONG_22	5	07KNSTD	4.5 ± 0.1	3.512 ± 1.504	5.174 ± 0.46
		m6h	KONG_26	6	07KNSTD	$\textbf{3.3} \pm \textbf{0.1}$	$\textbf{2.71} \pm \textbf{1.041}$	3.833 ± 0.35
		m3i	KONG_37	5	07KNSTD	1.5 ± 0.1	1.15 ± 0.501	1.703 ± 0.2
		m2c	MUST-65	6	07KNSTD	75.4 ± 1.4	33.031 ± 18.802	77.666 ± 6.83
		m2b		8		112.7 ± 1.7		
Frenching love and Minter The		11120	MUST-90	o	07KNSTD	112.1 ± 1.1	48.025 ± 26.553	113.730 ± 10.0
Franshimalaya and Western Tibet				40		440 5 5 5 6	00.40	00.007
Sulamu Tagh	Mériaux	M1	NNM-9	12	KNSTD	112.7 ± 7.3	39.46 ± 12.695	93.935 ± 8.47
	et al. (2004)							
		M2	NNM-11A	12	KNSTD	$\textbf{76.3} \pm \textbf{4.9}$	26.289 ± 17.606	70.423 ± 6.20
	Seong	m2g	K2-65	6	KNSTD	12.6 ± 0.4	7.405 ± 2.864	12.874 ± 1.13
	et al. (2007)	0						
	ee un (2007)	m1h	K2-93	7	KNSTD	$\textbf{2.1} \pm \textbf{0.2}$	1.238 ± 0.64	2.33 ± 0.34
			K2-13	8	KNSTD			
		m1c				16.7 ± 0.4	16.416 ± 0.608	17.076 ± 1.55
		m1g	K2-59	11	KNSTD	12.3 ± 0.3	11.577 ± 1.095	12.604 ± 1.12
		m1i	K2-76	8	KNSTD	16.5 ± 0.4	12.841 ± 1.157	16.746 ± 1.47
		m2i	K2-81	6	KNSTD	15.3 ± 0.5	13.588 ± 1.434	15.552 ± 1.38
Ladakh	Dortch	Nubra	NU-24	10	07KNSTD	93.9 ± 6.3	55.512 ± 18.924	99.099 ± 8.93
	et al. (2010)							
	cc un (2010)	Nubra	NU-7	6	KNSTD	51.6 ± 3.4	34.997 ± 10.444	55.411 ± 4.82
	Hedrick	PM-3	India-47	6	07KNSTD	1.22 ± 0.12	0.61 ± 0.444	1.304 ± 0.12
		I WI-5	mana 47	0	0/10/10	1.22 ± 0.12	0.01 ± 0.444	1.504 ± 0.12
	et al. (in press)	DM 2	L. 1. 47	7	OTVNCTD	7.50 . 0.77	2 6 4 2 2 2 6 7	7 40 1 0 7
		PM-2	India-47	7	07KNSTD	7.59 ± 0.77	3.643 ± 2.367	7.49 ± 0.74
		KM-2	TM-9	6	07KNSTD	97.54 ± 9.02	40.71 ± 23.192	85.571 ± 7.62
		KM-1	TM-15	6	07KNSTD		39.258 ± 32.584	114.909 ± 10.8
Ayilari Range	Chevalier	16a:	WG-15	9	LLNL3000	45.1 ± 3.9	29.575 ± 6.839	42.005 ± 3.72
	et al. (2005a)	Manikala M1						
	This study	17c:	CK-61	8	KNSTD	1	40.931 ± 13.571	67.824 ± 6.10
	This study	CK M2 outer	ert of	0	RIGIE	1	10.001 ± 10.071	07.021 ± 0.10
Veiles Denne	This study.		KC2 C7	0		1	14075 + 1010	10.074 + 1.50
Kailas Range	This study	13: EXS	KC2-67	8	LLNL3000		14.275 ± 1.313	16.974 ± 1.59
		14: WXS	Zi-88	14	LLNL3000	1	31.084 ± 7.599	48.354 ± 4.2
		15: AQu	KC2-76	7	LLNL3000	/	24.69 ± 5.003	36.895 ± 3.20
Monsoon-influenced Himalaya								
Garhwal (Nanda Devi)	Barnard	m2	NDL 30	6	LLNL3000	$\textbf{4.4} \pm \textbf{0.13}$	2.804 ± 1.743	4.265 ± 0.38
	et al. (2004b)							
	. ,	m1	NDL 22	5	LLNL3000	16.45 ± 0.4	$\textbf{7.26} \pm \textbf{5.286}$	16.285 ± 1.43
Khumbu Himal	Finkel	Thyangboche I	E84	6	LLNL3000		47.5 ± 22.122	85.875 ± 7.56
		Thyangboche T	L04	0	LLINLSUUU	91.19 ± 1.03	47.3 ± 22.122	0.075 ± 7.00
	et al. (2003)			_				
Nepal	Abramowski	Macha Khola 4	MK41	5	S555	$\textbf{4.8} \pm \textbf{0.67}$	3.916 ± 1.106	5.263 ± 0.64
	(2004)							
		Langtang 1	LT16	7	S555	1.71 ± 0.34	0.999 ± 0.46	1.534 ± 0.22
Rongbuk-Everest	Owen	T5c	Ron-28	9	KNSTD	2.6 ± 0.2	1.856 ± 0.761	2.807 ± 0.26
-	et al. (2009)							
	21 411 (2005)	T4	Ron-8	12	KNSTD	24.6 ± 2.2	13.666 ± 3.051	23.019 ± 2.02
		T3	Ron-24	11	KNSTD	28.8 ± 2.6	20.231 ± 2.697	26.521 ± 2.29
	_	T2	Ron-41	8	KNSTD	$\textbf{47.8} \pm \textbf{4.4}$	27.074 ± 4.195	40.433 ± 3.64
Pulan graben	Owen	m4c	Na26	6	07KNSTD	46.1 ± 1.6	$\textbf{32.434} \pm \textbf{6.158}$	43.15 ± 3.95
	et al. (2010)							
		M4a	Na12	6	07KNSTD	54.5 ± 1.3	26.703 ± 13.333	51.018 ± 4.52
		M3	Na40	6	07KNSTD	64.4 ± 1.3	39.528 ± 11.47	61.521 ± 5.4
		M2	Na42	6	07KNSTD	107.3 ± 2.3	63.563 ± 13.589	
								2166 ± 0.2
		M10	Na52	5	07KNSTD	$\textbf{2.7} \pm \textbf{0.07}$	1.268 ± 1.441	3.166 ± 0.27
		M10 M4	Na52 Na76	6	07KNSTD	54.3 ± 1.3	1.268 ± 1.441 31.469 ± 15.684	

Table 2 (continued)

	Study	Site	sample #	# of samples per crest	standard used ^b	published ages (ka)	Lifton mean ages (ka) ^{a, c}	Lal/Stone time-dep oldest ages (ka)
Ama Drime Range	This study	9a: Dingye S frontal	T5C-133	7	07KNSTD	1	18.543 ± 2.159	24.509 ± 2.168
		9c: Dingye S main #2	T5C-126	6	07KNSTD	1	19.36 ± 8.554	40.784 ± 3.615
Pulan Graben	This study	12c: Pulan M1E	KC2-45	6	KNSTD	1	$\textbf{28.226} \pm \textbf{8.318}$	45.499 ± 4.041
		12b: Pulan M2	KC2-51	9	KNSTD	1	51.872 ± 19.274	94.724 ± 8.45
Monsoon-influenced Tibet								
Nianbaoyeze	Owen et al. (2003a)	Ximencuo	N6	5	LLNL3000	20.89 ± 0.5	17.051 ± 2.082	20.217 ± 1.775
		Jiukehe	N17	10	LLNL3000	42.24 ± 1.09	27.309 ± 6.689	40.258 ± 3.587
		Qiemuqu	A11	5	LLNL3000	17.81 ± 0.38	12.536 ± 2.889	17.844 ± 1.56
Gonga Shan	Zhou et al. (2007)	Baiyu	BYG-9b	9	KNSTD	18.5 ± 2.2	14.189 ± 3.64	18.98 ± 1.72
Nyainqentanghla	This study	1a: Gulu W	T5C-64	7	07KNSTD	/	14.651 ± 0.672	17.464 ± 1.54
		1b: Gulu E	T5C-66	8	07KNSTD	1	16.164 ± 1.215	20.59 ± 1.822
		2c: Ybj outer E	T5C-42	10	07KNSTD	1	33.653 ± 7.885	48.748 ± 4.259
		2a: Ybj outer W	T5C-30	10	07KNSTD	1	24.802 ± 7.477	49.757 ± 4.383
		2b: Ybj inner	T5C-22	5	07KNSTD	1	12.421 ± 3.303	20.316 ± 1.759
Xainza Range	This study	4b: M3 inner	T7C-32	7	07KNSTD	1	11.566 ± 1.254	15.55 ± 1.334
		4a: M3 main	T7C-24-24bis	6 6	07KNSTD	1	$\textbf{33.408} \pm \textbf{5.205}$	50.025 ± 3.671
		5: M2	T7C-46	11	07KNSTD	1	26.379 ± 8.364	45.163 ± 3.87
		6: M1	T7C-72	9	07KNSTD	1	23.476 ± 1.744	30.945 ± 2.7
		7: M	T7C-59	8	07KNSTD	1	16.479 ± 5.444	30.502 ± 2.61
KungCo Graben	This study	11: Kungco	KC2-268	15	KNSTD	1	23.101 ± 13.07	64.545 ± 5.8

See Tables S1 and S2 for more details about each sample.

We used Cronus 2.2 with constant file 2.2.1.

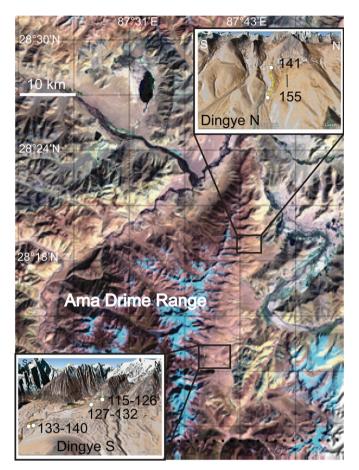
 $^{a}\,$ Uncertainties are reported at the 1σ confidence level.

^b ¹⁰Be isotope ratios for KNSTD = 3.11×10^{-12} ; for LLNL3000 = 3×10^{-12} ; for S555 = 95.5×10^{-12} ; for 07KNSTD = 2.85×10^{-12} .

^c Mean age of the surface.

The KungCo moraine, first described by Armijo et al. (1986) (drawing, Fig. 8), is located at 28.8° N-86.4°E, at an elevation of about 4800 m asl, and consists of two sharp, lateral crests, with sparse grass cover. It is located on the western side of the range, extending ~ 2 km west of the range-front (Fig. S26). The hanging U-shaped valley is free of ice today. The moraines are vertically offset by the KungCo normal fault (Fig. S26), whose activity has been discussed based on exhumation rate estimates in Maheo et al. (2007). We collected 15 well-rooted quartzite cobbles of about 20-30 cm in diameter on the crest of the northern moraine, far from the triangular facet (KungCo #11: KC2-266-280, Figs. 8, 10, Table S1).

The ages on the KungCo moraine range from 8 to 53 ka with a mean of 23 ± 13 ka (using Lifton) ($1\sigma \sim 56\%$, group 3) (Tables 1 and 2). Similarly to Dingye N, it is possible to identify 5 old outliers; their exclusion results in a mean sample age of 15 ± 4 ka ($1\sigma \sim 25\%$, group 2) (Table 1).


3.1.5. Rongguo moraine

The Pulan half-graben is located 600 km west of the KungCo half-graben, along the western side of the Gurla Mandhata (7728 m), south of the Manasarovar and Raksas lakes in the Kailas basin.

The Rongguo lateral moraines are located ~ 10 km north of the town of Pulan, at an elevation of \sim 4500 m, at 30.3°N-81.2°E (Fig. 9), on either side of the Rongguo glacial outwash. They form broad till ridges (M, M', Fig. S27) that stand 150-250 m above the outwash and

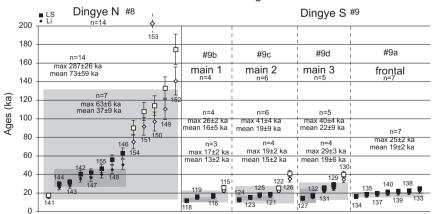
extend ~ 5 km southwest of the Gurla Mandhata range front (Fig. S27). The three crests we sampled were emplaced NW of the outwash, at the outlet of the deepest and longest (>20 km) U-shaped valley carved by the largest glacier on the south side of Gurla Mandhata's summit. The present terminus of this glacier lies ~ 12 km upstream. Smaller glaciers hang from the north cliff of the Rongguo valley (photograph, Fig. S28). The lower moraine M2 (Fig. 9) is broad, relatively flat-topped, and appears to extend continuously downstream to the trunk valley to the Karnali river, which drains the Pulan graben into Nepal's Karnali river. The upper moraines M1E and M1W are much shorter, with M1W extending < 1 km from the range-front. They have narrower sharper crests, with slightly steeper inner edges that stand locally \sim 50 m higher than the flat surface of the lower moraine M2, implying M1W was emplaced on top of M2. Between M1E and M1W lies the range-front normal fault zone, whose trace has channeled rills born on the facet, leading to transverse incision (Fig. 9).

All moraine surfaces contain large embedded granite boulders 1-2 m in diameter with smaller well-rooted cobbles (\sim 20-30 cmdiameter) interspersed (Fig. S28). The surfaces are free of vegetation. The surfaces of M1E and M1W have a rougher, more chaotic micro-topography. Eighteen samples were collected on the crests of the upper and lower moraines, half of them from the top surface of boulders, the other half from cobbles (20-30 cm in diameter, yellow and orange circles on Fig. 9, respectively): 3 samples on the crest of M1W (#12a: KC2-39-44), 6 samples on the crest of M1E (#12c:

Fig. 6. Landsat satellite image of the Ama Drime area, where we sampled two sites: Dingye north and Dingye south. The numbers on each inset photo refer to sample numbers.

KC2-45-50), and 9 samples on the crest of M2 (#12b: KC2-51-59) (Figs. 9 and 10, Table S1).

On M1W the ages range from 17 to 21 ka with a mean of 19 ± 2 ka (using Lifton) ($1\sigma \sim 9\%$, group 1). No outlier is identified. On M1E the ages range from 18 to 40 ka with a mean of 28 ± 8 ka ($1\sigma \sim 29\%$, group 2) (Tables 1 and 2). No outlier is identified. The


ages on M2 are widely spread from 26 to 81 ka with a mean at 52 ± 19 ka ($1\sigma \sim 37\%$, group 3) (Tables 1 and 2). Rejecting the two youngest samples yields a mean age of 59 ± 14 ka ($1\sigma \sim 24\%$, group 2) (Fig. 10, Tables 1 and S1). Interestingly, while sample ages collected from cobbles show systematically younger cosmogenic exposure ages than boulders at sites along the San Andreas Fault (e.g. Behr et al., 2009), at this particular site, we resolve no difference in exposure ages between these two populations (e.g. Briner, 2009). For this reason, in the following analysis we include both boulder and cobble ages, although the exclusion of these typically less-reliable cobble ages does not substantively affect our results.

We can compare the ages we obtained on our M1W and M2 surfaces with the ages presented in Owen et al. (2010) from M4a and M3, respectively. Our M2 ages (n = 9) range from 26 to 81 ka, while the ages from M3 surface (n = 6) in Owen et al. (2010) range from 25 to 52 ka (using Lifton). This might reflect that we picked more representative samples from that minimum 80 ka-old surface. Concerning the younger surface, our M1W (n = 3) ages range from 17 to 21 ka, while the ages from M4a (n = 6) in Owen et al. (2010) range from 10 to 43 ka (using Lifton). Therefore it seems like this surface might be at least twice as old as what we have found, implying that Owen et al. (2010) may have picked more representative samples. One could wonder if our M1W and M1E surfaces might actually be the same surface, that has been rightlaterally offset by the Gurla Mandhata fault. Indeed, M1E ages range from 18 to 40 ka, which is very similar to what Owen et al. (2010) have for their M4a surface.

3.1.6. Kailas Range

The Kailas Range is located in western Tibet, north of the Rongguo site (Fig. 9). The highest peak of the range is the Mt. Kailas (6714 m). We sampled three lateral moraines on its southern side: AQu, West Xiong Se and East Xiong Se.

The West Xiong Se and East Xiong Se lateral moraines are located at $31^{\circ}N - 81.2^{\circ}E$, at an elevation of ~4800 m asl (Fig. 9). They form part of a large, composite, moraine ring complex abandoned by the Xiong Se glacier at the outlet of one of the largest glacial valleys of the range, just west of Mount Kailas. The farthest-reaching lobes of this moraine extend up to ~5 km south of the range-front (Fig. 9). The trunk glacier that formerly covered the wide, flat-floored Xiong Se valley resulted from the confluence of two main glaciers ~10 km north of the range-front. Hanging

Ama Drime Range

Fig. 7. ¹⁰Be surface exposure ages for the Ama Drime area, plotted from youngest to oldest, with 1 σ error bars. The numbers next to each sample refer to the sample numbers in Table S1. The oldest age (using Lal/Stone) and the mean age (using Lifton) for each crest are also shown, as well as the number of samples on each surface. Light grey-shaded boxes represent the mean age of all samples (using Lifton) while dark grey-shaded boxes represent the mean age (using Lifton) without the outliers (in white, see text for details).

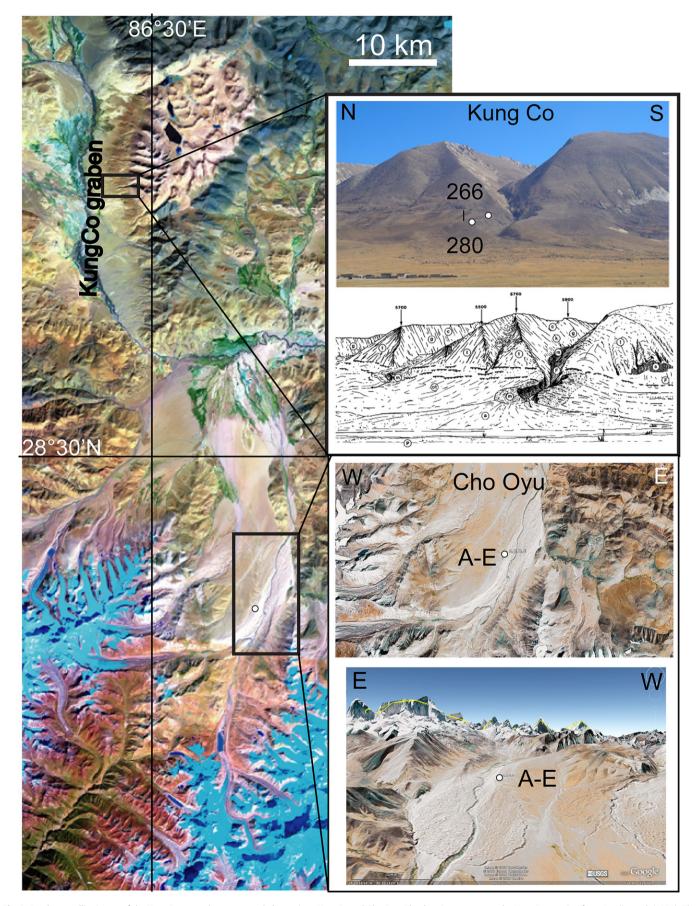
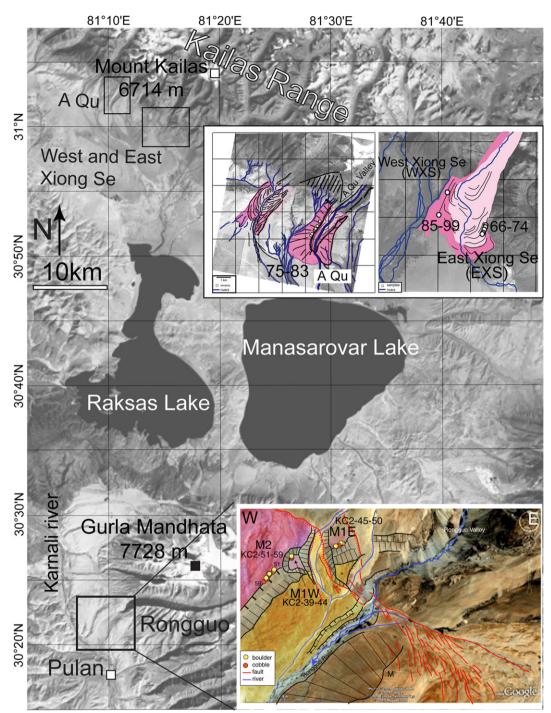
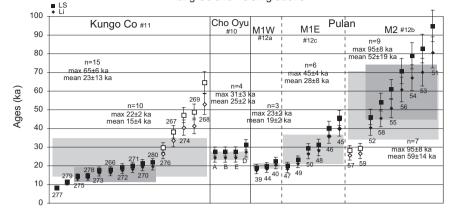


Fig. 8. Landsat satellite image of the KungCo area, where we sampled two sites: KungCo and Cho Oyu. The drawing represents the KungCo moraine from Armijo et al. (1986). The numbers and letters A-E on each inset photo refer to sample numbers.




Fig. 9. Landsat satellite image of the Kailas and Pulan areas, where we sampled four sites: AQu, West Xiong Se, East Xiong Se, and Pulan. The numbers on each inset photo refer to sample numbers.

present-day tributary glaciers remain on the north side of Mount Kailas, and much smaller ice patches are perched ~15 km north of the range-front. Within the moraine complex, the Xiong Se outwash river forms a ~90° dogleg bend along one of the innermost moraine rings (Fig. 9 and S30). Large, angular, embedded granite boulders are common along the inner ridge crest of the East Xiong Se moraine (Fig. S30) where some small bushes are present at places. Along the West Xiong Se outer moraine crest, covered by short grass, similarly large embedded boulders, surrounded by smaller well-rooted ones are also found. Eight and fourteen boulders were collected on the crests of the East and West Xiong Se

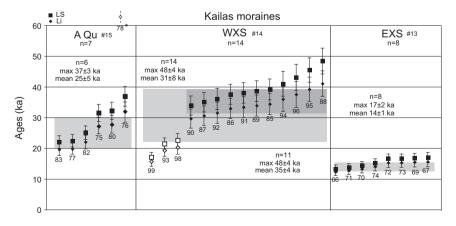
lateral moraines, respectively (EXS #13: KC2-66-74 and WXS #14: ZI-85-99, from south to north, Fig. 11, Table S1).

The ages on EXS range from 12 to 16 ka with a mean of 14 ± 1 ka (using Lifton) ($1\sigma \sim 9\%$, group 1) (Tables 1 and 2). No outlier can be identified. On WXS the ages are more scattered and range from 16 to 41 ka with a mean of 31 ± 8 ka ($1\sigma \sim 24\%$, group 2) (Tables 1 and 2). Separating the 3 youngest samples, which are different from all the others at the 1σ level allows to tighten the mean age at 35 ± 4 ka ($1\sigma \sim 10\%$, group 1) (Fig. 11, Tables 1 and S1).

The AQu lateral moraines are located at about $31^{\circ}N - 81.2^{\circ}E$, 6 km west of the Xiong Se moraines, at an average elevation of

Kung Co and Pulan grabens

Fig. 10. ¹⁰Be surface exposure ages for the KungCo and Pulan areas, plotted from youngest to oldest, with 1 σ error bars. The numbers next to each sample refer to the sample numbers in Table S1. The oldest age (using Lal/Stone) and the mean age (using Lifton) for each crest are also shown, as well as the number of samples on each surface. Light grey-shaded boxes represent the mean age of all samples (using Lifton) while dark grey-shaded boxes represent the mean age (using Lifton) without the outliers (in white, see text for details).


5100 m. They have well-defined shapes, no vegetation, with sharp crests extending 5 km south of the Kailas range-front (dark pink on Fig. 9; photographs, Fig. S29). The AQu glacial valley was formed by the confluence of two glaciers about \sim 3 km north of the Kailas range-front. The present-day termini lie about 6 km north of the front, at 5500 m asl (Fig. 9). A younger moraine complex (light pink on Fig. 9), which probably reflects the penultimate stages of glacial retreat, is inset within and below the highest moraine crests. Seven embedded quartzite boulders, \sim 40 cm in diameter (Fig. S29), were collected on the crest of the western AQu lateral moraine (#15: KC2-75-83 from south to north, Figs. 9 and 11, Table S1).

The ages on AQu range from 19 to 32 ka (after sample KC2-78 was rejected as being more than two times older than the next oldest sample on the moraine; Putkonen and Swanson, 2003), with a mean of 25 ± 5 ka (using Lifton) ($1\sigma \sim 20\%$, group 2) (Fig. 11, Tables 1, 2 and S1). No other outlier can be identified.

3.1.7. Ayilari Range

The Ayilari Range is located 200 km northwest of the Kailas range in western Tibet, near the disputed border between China and India. We collected samples from two sites located north of the range: Manikala (Chevalier et al., 2005a, 2005b) and Chaxikang CK (Fig. 12).

The Manikala moraine complex lies at the base of the Ayilari range-front, which bounds the west side of the Gar valley, a large basin floored by marshland. It is located at 32°N-80°E and \sim 4600 m asl. The moraines lie northeast of the U-shaped Manikala valley, a glacial trough deeply entrenched into the range (Fig. 12). They were emplaced by the Manikala Daer glacier, whose terminus is currently \sim 7 km upstream. The relative ages of the moraine groups can be qualitatively assessed from their surface characteristics and from their distance to the upstream source valley (Fig. S2 in Chevalier et al., 2005a). The M1 surface is rough and composed of chaotically distributed embedded blocks as large as 3 m in diameter, which are surrounded by coarse debris, and is devoid of vegetation. The smoother surface of M2 appears older, with wellrooted blocks tens of centimeters to a meter in diameter protruding above a mantle of smaller debris and no vegetation. The surface of M3 is even smoother and is probably the oldest surface of the moraine complex, with relatively smaller well-rooted blocks and still no vegetation. The youngest moraine group, M1 (Fig. 12), is the only one present on both sides of the Manikala outwash valley and displays terminal lobes and sharply defined ridge crests. We collected 9 well-rooted quartzite cobbles (20-30 cm in diameter) on the crest of M1 (#16a: WG-11-19), 18 on the crest of M2 (M2W

Fig. 11. ¹⁰Be surface exposure ages for the Kailas area, plotted from youngest to oldest, with 1 σ error bars. The numbers next to each sample refer to the sample numbers in Table S1. Sample KC2-78 on AQu is considered as an outlier (~203 ka). The oldest age (using Lal/Stone) and the mean age (using Lifton) for each crest are also shown, as well as the number of samples on each surface. Light grey-shaded boxes represent the mean age of all samples (using Lifton) while dark grey-shaded boxes represent the mean age (using Lifton) without the outliers (in white, see text for details).

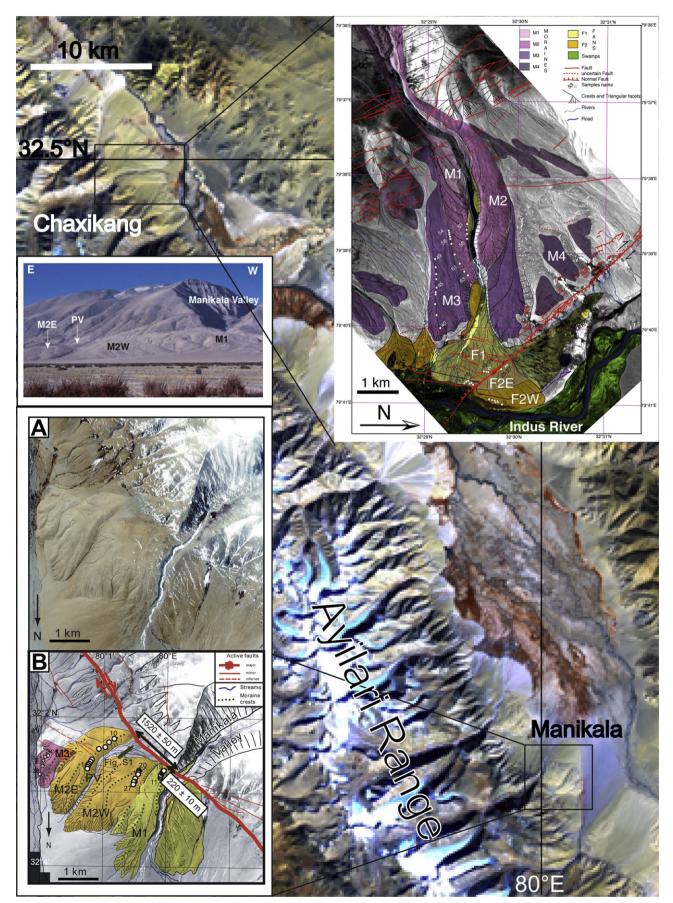
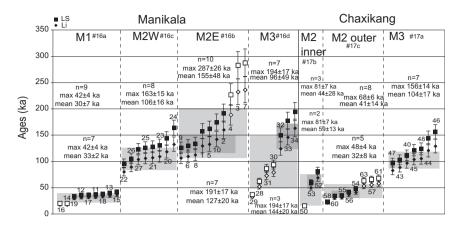



Fig. 12. Landsat satellite image of Manikala (Chevalier et al., 2005a, 2005b) and Chaxikang sites. The numbers on each inset photo refer to sample numbers.

Fig. 13. ¹⁰Be surface exposure ages for Manikala and Chaxikang, plotted from youngest to oldest, with 1 σ error bars. The numbers next to each sample refer to the sample numbers in Table S1. The oldest age (using Lal/Stone) and the mean age (using Lifton) for each crest are also shown, as well as the number of samples on each surface. Light grey-shaded boxes represent the mean age of all samples (using Lifton) while dark grey-shaded boxes represent the mean age (using Lifton) without the outliers (in white, see text for details).

#16c: WG-20-27, M2E #16b: WG-1-10) and 7 on the crest of M3 (#16d: WG-28-34) (Figs. 12 and 13, Table S1).

The ages on the crest of Manikala moraine M1 range from 18 to 37 ka with a mean of 30 \pm 7 ka (using Lifton) (1 σ ~ 23%, group 2) (Tables 1 and 2). Separating the samples in two groups, the two youngest samples of 20 ka on one side and the older ones on the other side, results in a mean sample age of 33 ± 2 ka ($1\sigma \sim 7\%$, group 1) for the older group (Table 1). The ages on the crest of Manikala M2W range from 80 to 132 ka, with a mean of 106 ± 16 ka ($1\sigma \sim 15\%$, group 1). No outliers are identified. The ages on the crest of Manikala M2E range from 106 to 236 ka with a mean of 155 \pm 48 ka $(1\sigma \sim 31\%)$, group 2). Considering the three oldest samples as outliers results in a mean sample age of 127 \pm 20 ka (1 σ ~ 15%, group 1) (Table 1). The ages on the crest of Manikala M3 range from 33 to 163 ka with a mean of 96 \pm 49 ka (1 σ ~ 51%, group 3). Rejecting the 4 youngest samples because they are different from the others at the 1σ level and because geologic relationships require M3 to be older than M2 and M1, revises the mean sample age to 144 ± 20 ka (1 $\sigma \sim 13\%$, group 1) (Fig. 13, Tables 1 and S1).


The Chaxikang moraines (CK M1, M2, M3 and M4) are located 60 km west of Manikala, and lie between the Indus River and the Ayilari range at elevations between 4250 and 4530 m. These moraines are located at the outlet of a large flat-floored glacial valley, the Miren Nongba valley (MRNB, Fig. 12). At times of larger glacial extent, the glacier flowed down from the ice cap topping the westernmost part of the Ayilari Range (5800-5900 m asl), almost all the way to the Indus flood-plain, a distance of ~20 km. Today, only small ice patches are left on top of this part of the range, in contrast to the more extensive ice cover farther south (Fig. 12).

Following the work of Liu (1993), which was mostly based on Spot image interpretation, we have mapped (on Ikonos images and 1/50,000 topographic maps) four main sets of distinct moraines, emplaced downstream from the outlet of the valley (Fig. 12). The youngest moraine (M1, light pink, Fig. 12) extends ~ 1.6 km northeast of the range-front. This innermost moraine is incised ~ 20-30 m by the present outwash. Asymmetric patches of only one main, abandoned terrace are visible along the outwash river bed (yellow patches). An older moraine complex (M2, dark pink), at the outlet of which the present-day river has incised a narrow, 50-60 m deep canyon, extends ~ 3.6 km from the range-front. The oldest moraine complex (M3, light purple) extends 5.2 km from the range-front. The terminus of this complex is not preserved. It has been eroded and breached by the river, as it fanned out of the canyon incised into M2 and M3. There are other more ancient moraine complexes, whose distinctive shapes indicate that significant surface modification has taken place (for example, M4, dark purple, Fig. 12). Eighteen samples were collected at Chaxikang, along the two distinct vege-tation-free moraines on the south side of the Miren Nongba valley: 7 on the crest of CK M3 (#17a: CK-40-48), 8 on the crest of CK M2 outer (#17c: CK-54-63) and 3 on the crest of CK M2 inner (#17b: CK-50-53). All samples were from embedded quartzite boulders 20 to 70 cm in diameter (Fig. S31).

The ages on CK M3 range from 83 to 129 ka with a mean of 104 ± 17 ka (using Lifton) ($1\sigma \sim 16\%$, group 1). The spread of ages is regular and no outliers can be identified. The ages on CK M2 outer range from 21 to 58 ka with a mean of 41 ± 14 ka ($1\sigma \sim 33\%$, group 3) (Tables 1 and 2). At the 1σ level, the three oldest samples might be considered outliers, resulting in a mean sample age of 32 ± 8 ka ($1\sigma \sim 24\%$, group 2) (Table 1). The ages on CK M2 inner range from 14 to 69 ka with a mean of 44 ± 28 ka ($1\sigma \sim 62\%$, group 3). Considering the youngest sample as an outlier brings the mean to 59 ± 13 ka ($1\sigma \sim 22\%$, group 2) (Fig. 13, Tables 1 and S1).

3.2. Moraine age distribution

The uncertainties associated with scaling models and with geomorphic interpretation of the moraine emplacement age is illustrated in Fig. 14. The uncertainties in determining moraine exposure age based on the choice of oldest or mean rock sample exposure age on each moraine are shown in Fig. 14A,C versus Fig. 14B,D, respectively. Scaling models advocated by Lifton et al. (2005) (Fig. 14C,D) yield systematically younger rock sample exposure ages than a version of the Lal (1991)/Stone (2000) scaling model that is scaled for temporal variations in geomagnetic field intensities (Fig. 14A,B). On Fig.14A and D, we also represented the probability density function (PDF) of all the moraine emplacement ages supposing that each age was normally distributed. The summed PDF was normalized such that the integrated probability density between $-\infty$ and ∞ was unity. We acknowledge that such a summation assumes that we have sampled different moraines without bias as to their ages and location, which is certainly not correct (e.g. Phillips et al., 1997; Putkonen and Swanson, 2003). However, such a PDF illustrates the magnitude of change in the overall age distributions that is incurred when different scenarios are considered. The Gaussian distributions produced by each moraine age were then summed and presented together and according to their group, with group 1 being the most straightforwardly interpreted moraines (due to the tight clustering of individual rock sample ages) and group 3

Fig. 14. Compilation of moraine ages from this study, as a function of longitude (Tables 1 and S1). Numeral refers to moraine number as listed in Table 1. *n* = 245 because we do not present crests with <2 samples (Ybj outer N, M4 #2 and M4 #3). A) oldest sample age per moraine crest, calculated using Lal/Stone scaling model, B) mean ages, calculated using Lal/Stone scaling model, C) oldest sample age per moraine crest, calculated using Lifton scaling model. In A) and D), probability density function (PDF) of moraine age groups 1 to 3 according to 1*σ* uncertainties ranking (Table 1).

being the most problematic (due to the wide distribution of sample ages).

As expected, moraine ages derived from the oldest age scenario are systematically older than those derived from using the mean age scenario, regardless of the scaling model used. While the magnitude of this systematic change depends on the specific distribution of rock sample exposure ages on each moraine, it is not unusual for the moraine exposure age to vary >50% between each of these two scenarios. The moraine age distribution shows a large number of moraines between 10 and 50 ka, group 1 moraines

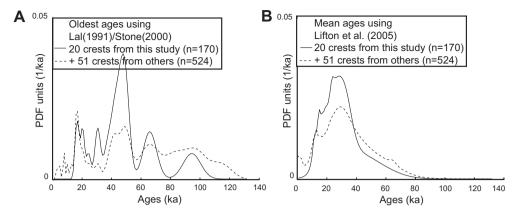


Fig. 15. Probability Density Functions (PDF) of moraine ages (<120 ka and with a sufficient number of samples, see text for details) from this study (20 crests, 170 samples, solid line) and compiled with the published studies (51 crests, 354 samples, dashed line) (Tables 2, S1 and S2). A) oldest ages per moraine crest, calculated using Lal/Stone scaling model and B) mean ages, calculated using Lifton scaling model.

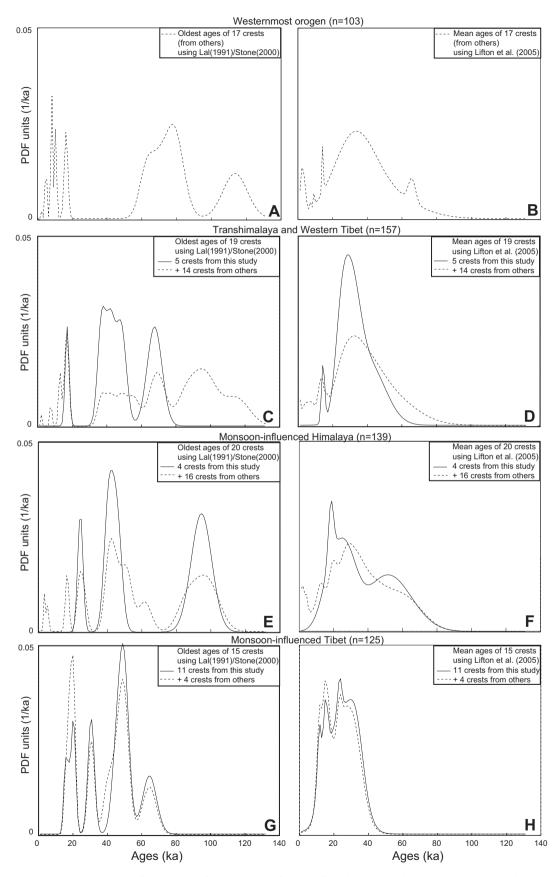
showing distinctive peaks between 10 and 40 ka. The largest number of moraines from all groups is around 25 ka when the mean age is considered, or 50 ka when the oldest age is considered (Fig. 14A and D).

We then grouped our moraines in Tibet (solid line in Fig. 15), or within different sub-regions within the area (solid line in Fig. 16) to assess how the different sources of uncertainty impact regional interpretations of the distribution of moraine exposure ages. This analysis does not include moraines < 20 ka with <5 samples, and moraines > 20 ka with <6 samples per crest (** on Fig. 14 and in Table S1), nor did we include crests > 120 ka (* on Fig. 14 and in Table S1). This represents 20 crests and 170 samples (Table 2), from all groups 1, 2 and 3, i.e. 32 crests minus M4 #1, Dingye S main #1, Dingye S main #3, Cho Oyu, Pulan M1W, CK M2 inner, M3-old, Dingye N, Manikala M2E, Manikala M2E, Manikala M3 and CK M3. In addition to our dataset (solid line in Figs. 15 and 16), we added the results from 51 published moraine crests (or 354 samples) in the same area (dashed line in Figs. 15 and 16) (Fig. 1 inset, Tables 2, S1 and S2 and text below for more details).

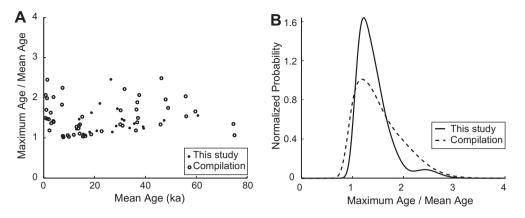
When interpreting moraine exposure ages in terms of the mean exposure age of samples collected from its surface for all of Tibet (dashed line, Fig. 15B), the age distribution reaches peaks at 2, 14, 30 and (65) ka, but nonetheless shows relatively poor definition. With just our data, there are peaks at 15 and 24-29 ka (solid line, Fig. 15B). In contrast, viewing the Tibetan moraine exposure ages in terms of the oldest sample exposure age collected from its surface fundamentally changes the age distribution of moraines (Fig. 15A). Instead of a dominant peak at ~30 ka, the maximum age model shows an age distribution that is highly variable with multiple peaks since 120 ka (at 3-5, 8, 10, (13), 17, (24), 31, 43-49, 66, 96 and (114) for the compilation and at 17, 20, 25, 31, 48, 66 and 95 ka for our data alone). In both cases, varying the scaling model both translates and distorts the specific form of each of the PDFs.

Combining our moraine ages throughout our study area may obscure the spatial pattern of the timing of glaciations, and so we divided our dataset into sub-regions of Tibet and the Himalayas as defined by Owen et al. (2008b): Transhimalaya and western Tibet, the monsoon-influenced Himalaya and the monsoon-influenced Tibet (solid line on Fig. 16) and repeated this analysis.

We present the two scenarios for the distribution of moraine ages in the area in Figs. 15 and 16 for expediency and illustration. As before, we acknowledge that the construction of such a PDF assumes that we have sampled both old and young moraines in a representative manner. In Fig. 16A-C-E-G, we show the PDF that is produced by interpreting the moraine exposure age in terms of the oldest exposure age, using the Lal(1991)/Stone(2000) time-varying scaling model. In Fig. 16B-D-F-H, we considered the mean age of the rock samples on each moraine, calculated using the Lifton et al. (2005) scaling model, to represent each moraine surface's emplacement age.

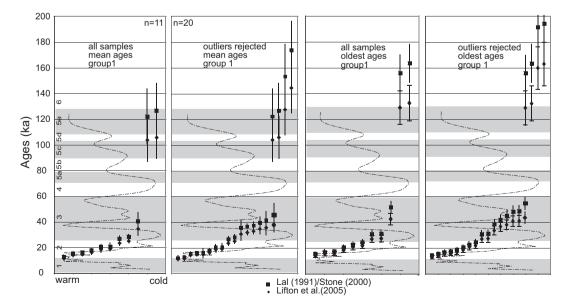

When considering the oldest exposure age of all samples collected from the moraine crest (dashed line on Fig. 16 A, C, E, and G), we find peaks at 2, 5, 8, 10, 16, (66), 77 and 114 ka for the westernmost orogen; peaks at (2), 7, 13, 17, 38-55, 69, 95 and (114) ka for the Transhimalava and western Tibet (peaks at 17, 38-42, 48) and 68 ka with just our data); peaks at 3, (5), 16, 24, 42, 50, 62 and 95 ka for the monsoon-influenced Himalaya (peaks at 25, 43 and 95 ka with just our data); and peaks at 20, 31, 49 and 65 ka for the monsoon-influenced Tibet (peaks at (16), 20, 31, 49 and 65 ka with just our data). No moraines <10 ka appear from the monsooninfluenced Tibet, most probably due to a sampling bias because our study presents more moraines > 20 ka, those moraines that are <20 ka-old are produced from the compiled data. Older peaks in moraine ages are observed at 77 and 114 ka only in the westernmost orogen region, while peaks at 95 ka are observed in both the Transhimalayas and Monsoon-influenced Himalayan regions.

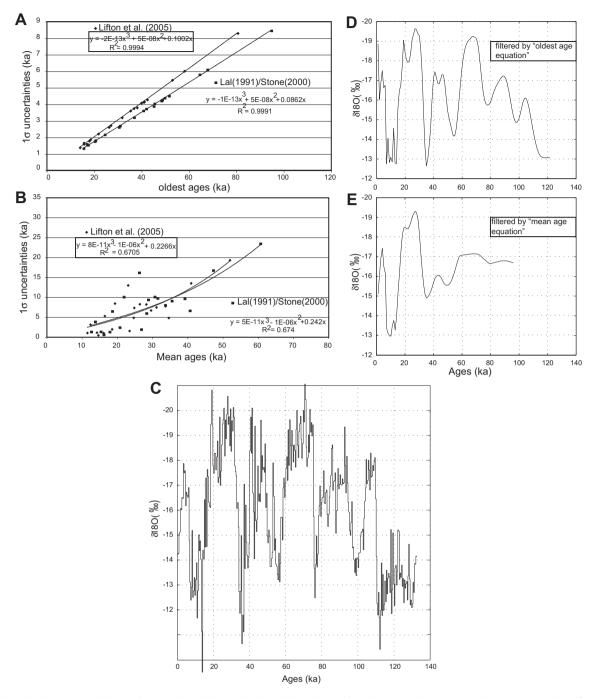
As with data from across the region, interpreting moraine exposure ages in terms of the mean rock sample exposure age on each moraine's surface profoundly changes each of the regional moraine-age PDFs. We find peaks (dashed line on Fig. 16 B, *D*, F and H) at 2, (7), (9), 14, 33 and 66 ka for the westernmost orogen; peaks at (6-8), 13 and 32 ka for the Transhimalaya and western Tibet (peaks at 14 and 29 ka with just our data); peaks at 2, 12, 20, 29 and (61) ka for the monsoon-influenced Himalaya (peaks at 19, 26 and 52 ka with just our data); and peaks at (12), 15, 24 and 28 ka for the monsoon-influenced Tibet (peaks at (12), 15, 24 and 28 ka with just our data). In all areas, we observe a broad peak in the moraine age PDF between ~20-60 ka (20-40 ka in the monsoon-influenced Tibet).


4. Discussion

4.1. Effects of data sampling methodology on moraine surface exposure ages

While in the field, we attempted to collect samples from large boulders that were well seated along the moraine crest. Nonetheless, at some sites, these materials were not available, and yet at others, the crest of the moraine was less distinct. Thus, it is important to acknowledge that while we collected samples that we felt had the highest probability of being unaffected by near-surface


Fig. 16. PDF of moraine ages (<120 ka and with a sufficient number of samples, see text for details) from this study (solid line), and compiled with published studies (dashed line), calculated with the two models. To the left, PDF of oldest ages per moraine crest, using Lal/Stone scaling model, and to the right, PDF of mean ages, using Lifton scaling model. Four different climatic zones are distinguished, as defined in Owen et al. (2008b): Westernmost orogen (panels A and B), Transhimalaya and Western Tibet (panels C and D), monsoon-influenced Himalaya (panels E and F) and monsoon-influenced Tibet (panels G and H).


Fig. 17. Compilation of all sample ages reported in Table 2, calculated as for our dataset, using the time-dependent scaling model of Lal/Stone. A) All sampled moraines from Tibet show a comparable range in the ratio of maximum to mean age, regardless of the group that is working there, with our data (closed circles) falling cleanly within this pattern. B) PDF of the maximum to mean age ratio for samples collected by other working groups (dashed line) as well as samples collected as part of this work (solid line). Both visual inspection, as well as a two-sided Student's *T*-test shows that the means of these populations are indistinguishable at the 95% level.

processes, there were certainly sites that were geomorphically more straightforward than others and as such, some of the variation we observe in sample age distributions at individual moraine sites may arise due to local site and sampling conditions. At sites where both cobbles and boulders were analyzed, the ages yielded by these two different populations were indistinguishable (Table S1 and Briner, 2009). This consistency might be interpreted as either an indication that samples from these sites record similar moraine surface processes and/or age of surface establishment, or that our sites were so poorly selected that neither boulder nor cobble ages provide a meaningful estimate of the moraine emplacement age. Below, we provide an assessment of the relative fidelity of our dataset by viewing our results in the context of the larger Tibetan moraine sample age database that spans many working groups across this region to determine if our sampling produced anomalous exposure ages relative to other work reported from this area.

First, we conducted a visual comparison of our sampling sites with those of other working groups in the region (Fig. S32). For most of the moraines analyzed, the visual characteristics of the surfaces we sampled did not appear to be substantively different than those sampled by others. Second, we compiled all sample ages reported for all moraines in this region, and used the CRONUS online calculator to determine sample ages in a manner identical to the methods used for our dataset. We assessed the variation within the sample age distribution by calculating the ratio of the maximum age to the mean age (using the time-dependent scaling model of Lal/Stone) for each moraine sampled by different working groups throughout Tibet (Table 2 and Fig. 17A). Not only does this metric in part quantify the variation in moraine sample ages, but provides a measure of the change in the inferred moraine surface exposure age that is incurred by using the two different interpretive frameworks discussed above. Two important conclusions can be reached by analyzing Fig. 17A: all sampled moraines from Tibet show a comparable range in this ratio, regardless of the group that is working there, with our data (closed circles) falling cleanly within this pattern, and a regression analysis shows that the ratio of maximum to mean age is poorly correlated with increasing mean age. This latter point allows us to create a PDF of the maximum to

Fig. 18. Moraine ages from group 1 only (1*σ* uncertainties < 17%), for oldest age and mean age scenario (using both Lal/Stone and Lifton scaling models), before and after rejecting outliers (Table 1), and comparison with the climatic curve (filtered Thompson et al., 1997 curve) and Marine Isotope Stages (Imbrie et al., 1984) (see text for discussion).

Fig. 19. A and B) 3rd order polynomial (required to pass through the origin) obtained from the 20 oldest (A) or mean (B) moraine ages (<120 ka and with a sufficient number of samples, see text for details) from this study and their 1 σ uncertainties. C) Original δ^{18} O climate proxy curve from the Guliya ice cap (Thompson et al., 1997). D) Filtered climatic curve with a low-pass filter using the highest uncertainties from oldest ages scaled to model of Lifton. E) Filtered climatic curve with a low-pass filter using the highest uncertainties from mean ages scaled to model of Lifton.

mean age ratio for samples collected by other working groups (dashed line, Fig. 17B) as well as samples collected as part of this work (solid line, Fig. 17B). Both visual inspection, as well as a twosided Student's *T*-test shows that the means of these populations are indistinguishable at the 95% level. Thus, while on the surface our sample ages appear highly variable and as a result, might lead to the supposition that our sampling was particularly poorly executed, this analysis shows that our data are no more (or no less) variable than all other dated moraines in Tibet. Thus, either sampling has been poorly carried out by all workers from this region (including us), or geological factors such as prior exposure or post-glacial shielding may be important contributors to the observed variation in sample ages from this region.

4.2. Regional climate correlations

The timing of glaciations in Tibet revealed by the exposure age of glacial moraine surfaces has previously been used to infer the spatio-temporal distribution of temperature and precipitation changes in the area (e.g. Finkel et al., 2003; Owen et al., 2005). These types of studies are particularly relevant for testing conceptual models of changes in atmospheric circulation in the vicinity of the high plateau as climate transitions between generally warm and cold periods in Earth's recent (<150 ka) past (e.g. Ruddiman and Kutzbach, 1989; Raymo and Ruddiman, 1992; Benn and Owen, 1998; Lehmkuhl and Haselein, 2000; Aizen et al., 2001; Brown et al., 2003; Abramowski et al., 2006; Harris, 2006). To assess the sensitivity of such interpretations to uncertainties in the scaling model used, or those associated with inferring moraine ages from the distribution of surface sample ages, we compiled all available exposure age sample data from this region and analyzed them in a manner identical to that presented above. These data include a recent compilation of $>1000^{-10}$ Be moraine ages (Owen et al., 2008b; Heyman et al., 2010) spread out in four climatic zones in the Himalayan-Tibetan orogen (Owen et al., 2008b): 1) the Westernmost orogen (Tibet and Himalaya), 2) the Transhimalaya and Western Tibet region, 3) the monsoon-influenced Himalaya, and 4) the monsoon-influenced Tibet. Following Putkonen and Swanson (2003), we required that a minimum number of samples (at least 5 samples for moraines < 20 ka and at least 6 samples for moraines > 20 ka) be collected and analyzed from each moraine crest to ensure that either the mean or oldest sample age was identified. This criterion eliminates [¹⁰Be] reported from samples from moraine surfaces that are presented in a number of studies (e.g. Phillips et al., 2000; Owen et al., 2001, 2002, 2003b,c, 2005, 2006a,b; Brown et al., 2002; Schaefer et al., 2002; Tschudi et al., 2003; Barnard et al., 2004a, 2006; Colgan et al., 2006; Gayer et al., 2006; Heimsath and McGlynn, 2008; Strasky et al., 2009: Zech et al., 2009). The data remaining (Finkel et al., 2003: Owen et al., 2003a, 2009, 2010; Abramowski, 2004, 2006; Barnard et al., 2004b: Meriaux et al., 2004: Chevalier et al., 2005a; Zech et al., 2005a; Seong et al., 2007, 2009; Zhou et al., 2007; Dortch et al., 2010; Hedrick et al., in press) include 51 crests (354 samples) and 20 crests (170 samples) from our study (moraine ages are given in Table 2 and individual sample ages in Tables S1 and S2; locations shown in Fig. 1). Note that four studies have one outlier each and that we took the next oldest age to represent the moraine age (moraine m2 in Barnard et al., 2004b: NDL29; moraine m2i in Seong et al., 2007: K2-83; moraine PM-2 in Hedrick et al., in press: India-13; and moraine T4 in Owen et al., 2009: ron12; italic in Table S2).

The moraine exposure age distribution deduced from the compilation of all moraines <120 ka with a sufficient number of samples is shown as a dashed line in Fig. 15. Overall, the inclusion of additional moraine sites from others gives definition to, but does not change the salient aspects of the PDF determined from our dataset (solid line in Fig. 15). Additionally, when using the oldest sample exposure age to represent the moraine exposure age, inclusion of additional sample sites generally strengthens those

peaks in the PDF calculated from only our dataset (solid line in Fig. 15A). Thus, while our data are consistent with those collected by others, the choice of how the exposure age of the moraine is related to the exposure age of samples mantling its surface, plays an important control on determining the first-order structure of the moraine-age PDF from this area.

As with only our data (Fig. 16, solid lines), we subdivided the moraine exposure ages inferred from all samples that have been analyzed in this area according to their geographic region (Fig. 16, dashed lines). As with the moraine exposure age PDF computed from all regions (Fig. 15), the inclusion of additional data strengthens the overall shape and definition of the PDFs determined from our data.

Finally, we consider moraine age distributions that result from a reanalysis of the data after removing additional data outliers as discussed above. Although these results may be less reliable because of the subjective nature of rejecting outliers in the data, it is clear from Fig. 18 (Table 1), that the increase in number of moraines in group 1 (n = 11 to n = 20) allows identification of moraine age peaks around ~17-25, ~40 and ~100-200 ka, regardless of the scaling model used. These peaks in the moraine age distribution may broadly correspond to the cold periods recognized globally as MIS-2, MIS-3 and MIS-6, respectively (Fig. 18, Marine Isotope Stages of Imbrie et al., 1984).

The δ^{18} O composition of glacial ice varies systematically and inversely with temperature (Yao et al., 1996), and this variation provides a means of assessing the correlation between temperature minima and glacial expansion recorded in the geologic record. Ice core records from Tibet have been collected at the Guliva ice cap in Tibet (Thompson et al., 1997), which contain a record of \sim 400 year fluctuations in temperature for this region over the last 132 ka (Fig. 19C). Such high frequency features are impossible to resolve given the precision of [¹⁰Be] of samples collected from our moraine crests. To provide a rational means of comparing such high-resolution ice cores with our relatively imprecise ages, we considered the two moraine emplacement age scenarios discussed above, and determined how the uncertainties in each moraine exposure age varied with the inferred exposure age of the moraine (Fig. 19). This uncertainty in moraine exposure age sets a lower limit to the wavelength fluctuations in climate that might be inferred using such a chronology. For each scenario, we plot the 1σ uncertainties in the moraine exposure age versus the moraine exposure age (Fig. 19A,B). From this plot, we used a third-order polynomial (that was required to pass through the origin) to determine the uncertainties associated with moraine ages as their age varied. Finally, we applied an adaptive low-pass filter to the δ^{18} O time series (from Thompson et al., 1997) to highlight features of the time-series that

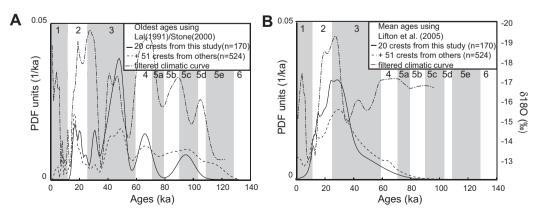


Fig. 20. Same as in Fig. 15 with added filtered climatic curve (dotted-dashed line). Grey-shaded sectors and associated numbers represent Marine Isotope Stages (Imbrie et al., 1984).

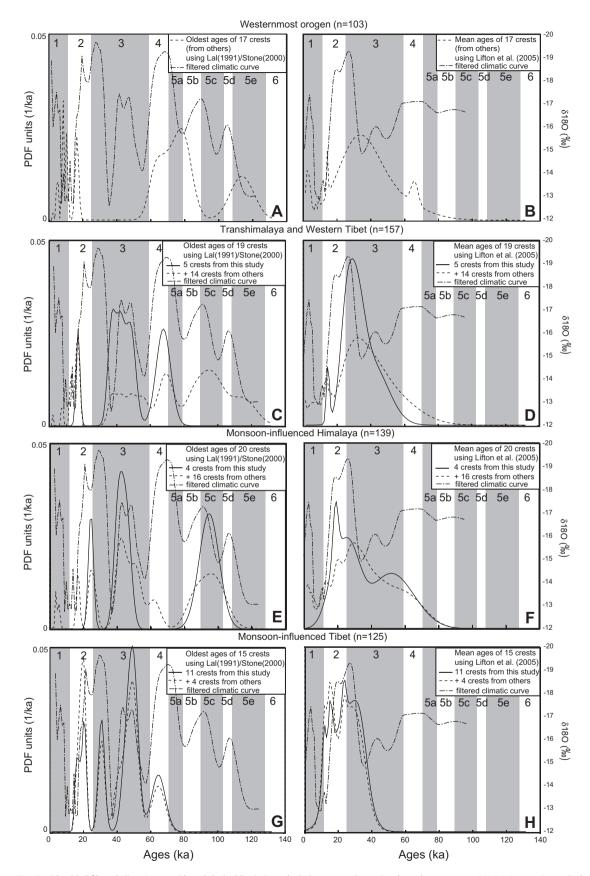


Fig. 21. Same as Fig. 16 with added filtered climatic curve (dotted-dashed line). Grey-shaded sectors and associated numbers represent Marine Isotope Stages (Imbrie et al., 1984).

might be detectable with the cosmogenic moraine ages, supposing that larger amplitude cold periods in climate proxies are associated with increased frequency of moraine emplacements. The cut-off frequency for the low-pass filter was thus allowed to change throughout the time-series such that all frequencies higher than those spanned by the 1σ uncertainties in moraine ages were filtered from the time-series (Fig. 19D,E).

When trying to correlate the moraine emplacement ages with the global climatic curve of Martinson et al. (1987) or with the detailed local climatic curve at the Guliya ice cap of Thompson et al. (1997) (see Fig. S33 for a comparison between the filtered Thompson et al. (1997) and the Martinson et al. (1987) curves), we observe that the correlation of moraine emplacement ages with paleoclimate proxies again changes with both the assumed scaling model, as well as the choice of how to interpret moraine exposure ages in terms of sample exposure ages (Fig. 20). Many peaks in the moraine age PDFs coincide with temperature minima (maximum peaks) recorded by paleoclimate proxies. That is, should the mean age of surface samples represent the moraine emplacement age, moraines in the entire region, and within each sub-region (Fig. 21) may correspond with a broad temperature minimum between \sim 18-35 ka revealed by the filtered paleoclimate proxy curve (Figs. 20B and 21). However, regarding the oldest sample exposure age as each moraine's age causes ages to approximately align with temperature minima at \sim 40-50 ka, and to a lesser degree, 18-35 ka (Figs. 20A and 21). Additionally, we find \sim LGM and \sim MIS-4 moraines in every region while ~MIS-3 moraines seem to be absent only from the westernmost orogen. This might be due to a sampling bias or to a different climatic system (westerlies or monsoon) occurring in those regions. However, a correlation analysis of these data shows that while these visual trends suggest that such a correlation exists, there are at least as many intervals during which moraine ages are anti-correlated with temperature minima. The net result of this is that both throughout the entire region, as well as within sub-regions of this area, the correlation of moraine exposure ages for the period 15-120 ka and paleoclimate proxies is questionable because it depends on the way in which moraine exposure ages are derived from surface sample ages.

5. Conclusions

We present 249 new ¹⁰Be rock sample exposure ages from Tibetan moraines to deduce the timing of moraine emplacement (for information on their extent, see Fig. S34). In interpreting exposure ages of individual rock samples in terms of moraine exposure ages, we considered two main sources of uncertainty: 1) uncertainties within, and variation between, the different scaling models that may be applied to this area, and 2) uncertainties associated with our choice of how to relate these rock sample ages to the emplacement age of the moraine surface. We found that our results were most strongly affected by our choice of whether or not the moraine surface exposure age was best represented by the mean, or oldest sample ages collected from each moraine. In many cases, systematic differences in moraine ages > 50% result from this choice. Secondarily, the choice of the appropriate scaling model (Lifton or Lal/Stone time-dependent) systematically affected moraine surface exposure ages by \sim 10-20%. When comparing our moraine exposure ages to the timing of temperature minima revealed by independent paleoclimate proxies, we found that the correlation of the timing of moraine emplacement with specific temperature changes depends strongly on these sources of uncertainty. For any given moraine, the choice of the interpretive framework and scaling model can cause the emplacement age to be correlated with a temperature minimum, maximum, or neither of these conditions. On average, moraine emplacement ages revealed by a composite moraine age PDF show some correspondence with temperature mimima, although the changes associated with the different interpretive frameworks suggest that these visual correlations may be coincidental. Furthermore, a correlation analysis suggests that there are at least as many cases in which moraine ages are anti-correlated with temperature minima than are correlated with these paleoclimates, leading to a poor overall correlation.

The consistency of our results with those of others when analyzed in a consistent manner suggests that more samples collected from Tibet may not reveal additional information about the relative importance of temperature mimima versus precipitation maxima (assuming that glacial advances during temperature maxima are driven by increased precipitation) on the emplacement of Tibetan moraines. The large database that we have presented and compiled appears difficult to interpret because of the confounding uncertainties associated with the process of moraine emplacement, degradation and exhumation of rock samples to the moraine surface, as well as uncertainties associated with the appropriate scaling model for this region. To this end, reconstruction of the timing of Tibetan glaciations would foremost benefit from studies that clarify how the exposure age of moraines are related to the ages of rock samples mantling its surface, and secondarily by calibration of ¹⁰Be production rates in this area where the age of geomorphic features might be independently determined.

Acknowledgements

This work was performed under the auspices of the European Marie Curie Outgoing International Fellowship, Stanford University, the U.S Department of Energy (University of California, Lawrence Livermore National Laboratory), the Institut National des Sciences et de l'Univers (INSU), Centre National de la Recherche Scientifique (Paris, France), as well as by the China Earthquake Administration and the Ministry of Lands and Resources (Beijing, China). We thank Wen Li and Zhang Pei Quan from the Institute of the Tibetan Plateau, Chinese Academy of Sciences (Beijing, China), for their help in the field. We thank two anonymous reviewers as well as lakob Heyman for his thorough and constructive comments. The ¹⁰Be measurements were performed at the ASTER AMS French national facility (CEREGE, Aixen-Provence), which is supported by the INSU-CNRS, the French Ministry of Research and Higher Education, IRD and CEA, and at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory, USA.

Appendix. Supplementary data

Supplementary data related to this article can be found online at doi:10.1016/j.quascirev.2010.11.005.

References

- Abramowski, U., 2004. The use of ¹⁰Be surface exposure dating of erratic boulders in the reconstruction of the Late Pleistocene glaciation history of mountainous regions, with examples from Nepal and Central Asia. Dissertation, University of Bayreuth, Bayreuth, 185pp.
- Abramowski, U., Bergau, A., Seebach, D., Zech, R., Glaser, B., Sosin, P., Kubik, P.W., Zech, W., 2006. Pleistocene glaciations of Central Asia: results from ¹⁰Be surface exposure ages of erratic boulders from the Pamir (Tajikistan) and the Alay-Turkestan range (Kyrgyzstan). Quaternary Science Reviews 25, 1080–1096.
- Aizen, E.M., Aizen, V.B., Melack, J.M., Nakamura, T., Ohta, T., 2001. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. International Journal of Climatology 21, 535–556.
- Applegate, P.J., Urban, N.M., Laabs, B.J.C., Keller, K., Alley, R.B., 2010. Modeling the statistical distributions of cosmogenic exposure dates from moraines. Geoscientific Model Development 3, 293–307.

- Armijo, R., Tapponnier, P., Mercier, J.L., Han, T., 1986. Quaternary extension in Southern Tibet: field observations and tectonic implications. Journal of Geophysical Research 91, 13803–13872.
- Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology. doi:10.1016/j.quageo.2007.12.001.
- Barnard, P.L., Owen, L.A., Finkel, R.C., 2004a. Style and timing of glacial and paraglacial sedimentation in a monsoonal influenced high Himalayan environment, the upper Bhagirathi Valley. Garhwal Himalaya. Sedimentary Geology 165, 199–221.
- Barnard, P.L., Owen, L.A., Sharma, M.C., Finkel, R.C., 2004b. Late Quaternary landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology 61, 91–110.
- Barnard, P.L., Owen, L.A., Finkel, R.C., Asahi, K., 2006. Landscape response to deglaciation in a high relief, monsoon-influenced alpine environment, Langtang Himal, Nepal. Quaternary Science Reviews 25, 2162–2176.
- Barrows, T.T., Lehman, S.J., Fifield, L.K., De Deckker, P., 2007. Absence of Cooling in New Zealand and the adjacent Ocean during the younger Dryas Chronozone. Science 318, 86–89.
- Behr, W.M., Rood, D.H., Fletcher, K.E., Guzman, N., Finkel, R.C., Hanks, T.C., Hudnut, K., Kendrick, K.J., Platt, J.P., Sharp, W.D., Weldon, R.J., Yule, J.D., 2009. Uncertainties in slip-rate estimates for the Mission Creek strand of the southern San Andreas fault at Biskra Palms Oasis, southern California. Geological Society of American Bulletin 122 (9/10), 1360–1377. doi:10.1130/B30020.1.
- Benn, D., Owen, L.A., 1998. The role of the Indian summer monsoon and the midlatitude Westerlies in Himalayan glaciation: review and speculative discussion. Geological Society of London Journal 155, 353–363.
- Briner, J.P., 2009. Moraine pebbles and boulders yield indistinguishable ¹⁰Be ages: a case study from Colorado, USA. Quaternary Geochronology 4. doi:10.1016/ j.quageo.2009.02.010.
- Briner, J.P., Swanson, T.W., Caffee, M.W., 2001. Late Pleistocene cosmogenic Cl-36 glacial chronology of the southwestern Ahklun mountains, Alaska. Quaternary Research 56, 148–154.
- Briner, J.P., Kaufman, D.S., Manley, W.F., Finkel, R.C., 2005. Cosmogenic exposure dating of late Pleistocene moraine stabilization in Alaska. Geological Society of American Bulletin 117, 1108–1120.
- Brown, E.T., Edmond, J.M., Raisbeck, G.M., Yiou, F., Kurz, M.D., Brook, E.J., 1991. Examination of surface exposure ages of Antarctic moraines using in situ produced ¹⁰Be and ²⁶Al. Geochimica et Cosmochimica Acta 55, 2269–2283.
- Brown, E.T., Bendick, R., Bourles, D.L., Gaur, V., Molnar, P., Raisbeck, G.M., Yiou, F., 2002. Slip rates of the Karakorum Fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines. Journal of Geophysical Research 107 art. no. 2192.
- Brown, E.T., Bendick, R., Bourles, D.L., Gaur, V., Molnar, P., Raisbeck, G.M., Yiou, F., 2003. Early Holocene climate recorded in geomorphological features in Western Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology 199, 141–151.
- Chevalier, M.-L., Ryerson, F.J., Tapponnier, P., Finkel, R.C., Van Der Woerd, J., Haibing, Li, Qing, Liu, 2005a. Slip-Rate measurements on the Karakorum fault may Imply secular variations in fault Motion. Science 307, 411–414.
- Chevalier, M.-L., Ryerson, F.J., Tapponnier, P., Finkel, R.C., Van Der Woerd, J., Haibing, Li, Qing, Liu, 2005b. Response to comment on "Slip-Rate measurements on the Karakorum fault may Imply secular variations in fault Motion". Science 309, 1326c. doi:10.1126/science.1112629.
- Colgan, P.M., Munroe, J.S., Zhou, S., 2006. Cosmogenic radionuclide evidence for the limited extent of last glacial maximum glaciers in the Tanggula Shan of the central Tibetan Plateau. Quaternary Research 65, 336–339.
- Desilets, D., Zreda, M., 2003. Spatial and temporal distribution of secondary cosmicray nucleon intensities and applications to in-situ cosmogenic dating. Earth and Planetary Science Letters 206, 21–42.
- Desilets, D., Zreda, M., Prabu, T., 2006. Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude. Earth and Planetary Science Letters 246, 265–276.
- Dortch, J.M., Owen, L.A., Caffee, M.W., 2010. Quaternary glaciation in the Nubra and Shyok valley confluence, northernmost Ladakh, India. Quaternary Research 74, 132–144.
- Dunai, T., 2000. Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth and Planetary Science Letters 176, 157–169.
- Dunai, T., 2001. Influence of secular variation of the magnetic field on production rates of in situ produced cosmogenic nuclides. Earth and Planetary Science Letters 193, 197–212.
- Finkel, R.C., Owen, L.A., Barnard, P.L., Caffee, M.W., 2003. Beryllium-10 dating of Mount Everest moraines indicates a strong monsoon influence and glacial synchroneity throughout the Himalaya. Geology 31, 561–564.
- Gayer, E., Lave, J., Pik, R., France-Lanord, C., 2006. Monsoonal forcing of Holocene glacier fluctuations in Ganesh Himal (Central Nepal) constrained by cosmogenic 3He exposure ages of garnets. Earth and Planetary Science Letters 252, 275–288.
- Gillespie, A.R., Molnar, P., 1995. Asynchronous maximum advances of mountain and continental glaciers. Review of Geophysics 33, 311–364.
- Gillespie, A.R., Burke, R.M., Komatsu, G., Bayasgalan, A., 2008. Late Pleistocene glaciers in Darhad basin, northern Mongolia. Quaternary Research 69, 169–187. Gosse, J., Phillips, F., 2001. Terrestrial in situ cosmogenic nuclides: theory and
- application. Quaternary Science Reviews 20, 1475–1560. Gosse, J., Klein, J., Evenson, E.B., Lawn, B., Middleton, R., 1995. Beryllium-10 dating of the Duration and retreat of the last Pinedale glacial Sequence. Science 228, 1329–1333.

- Hallet, B., Putkonen, J., 1994. Surface dating of dynamic landforms: young boulders on aging moraines. Science 265, 937–940.
- Harris, N., 2006. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeography, Palaeoclimatology. Palaeoecology 241, 4–15.
- Hedrick, K. A., Seong, Y. B., Owen, L. A., Caffee, M. W., Dietsch, C. Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced Greater Himalaya and the semi-arid Transhimalaya of Northern India. Quaternary International, in press.
- Heimsath, A.M., McGlynn, R., 2008. Quantifying periglacial erosion in the Nepal high Himalaya. Geomorphology 97, 5–23.
- Heyman, J., Stroeven, A.P., Harbor, J., Caffee, M.W., 2010. Boulder cosmogenic exposure ages as constraints for glacial chronologies. Geophysical Research Abstracts Vol. 12 EGU2010-14159-1.
- Heyman, J., Stroeven, A. P., Harbor, J., Caffee, M. W. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science letters, in press. Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G.,
- Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ¹⁸ O record. In: Berger, A., Imbrie, J., Hays, J., Kukla, G., Saltzman, B. (Eds.), Milankovitch and Climate: Understanding the Response to Astronomical Forcing. Reidel, Boston, pp. 269–305.
- Kohl, C.P., Nishiizumi, K., 1992. Chemical isolation of quartz for measurement of in situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, 3583–3587.
- Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424–439.
- Lasserre, C., Gaudemer, Y., Tapponnier, P., Mériaux, A.-S., Van der Woerd, J., Yuan, D., Ryerson, R.J., Caffee, M.W., 2002. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan Fault, Qinghai, China. Journal of Geophysical Research 107 (B11), 2276. doi:10.1029/2000JB000060.
- Lehmkuhl, F., Haselein, F., 2000. Quaternary paleoenvironmental change on the Tibetan plateau and adjacent areas (Western China and western Mongolia). Quaternary International 65/66, 121–145.
- Lifton, N., Bieber, J., Clem, J., Duldig, M., Evenson, P., Humble, J., Pyle, R., 2005. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planetary Science Letters 239, 140–161.
- Liu, Q., 1993. Paleoclimat et contraintes chronologiques sur les mouvements recents dans l'ouest du Tibet: failles du Karakorum et de Longmu Co-Gozha Co, lacs en pull-apart de Longmu Co et de Sumxi Co, Ph.D. thesis Paris 7.
- Mahéo, G., Leloup, P.H., Valli, F., Lacassin, R., Arnaud, N., Paquette, J.-L., Fernandez, A., Haibing, Li, Farley, K.A., Tapponnier, P., 2007. Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben. Earth and Planetary Science Letters 256, 233–243.
- Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J., 1987. Age dating and the orbital theory of the ice ages: development of a high resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27, 1–29.
- Meriaux, A.-S., Ryerson, F.J., Tapponnier, P., Van der Woerd, J., Finkel, R.C., Xu, Xiwei, Xu, Zhiqin, Caffee, M.W., 2004. Rapid slip along the central Altyn Tagh fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh. Journal of Geophysical Research 109 (B18) art. no. B06,401.
- Nishiizumi, K., Winterer, E.L., Kohl, C.P., Lal, D., Arnold, J.R., Klein, J., Middleton, R., 1989. Cosmic ray production rates of ¹⁰Be and ²⁶Al in quartz from glacially polished rocks. Journal of Geophysical Research 94 (B12), 17,907–17,915.
- Nishiizumi, K., Imamura, M., Caffee, M., Southon, J., Finkel, R., McAnich, J., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research B 258, 403–413.
- Owen, LA., Gualtieri, L., Finkel, R.C., Caffee, M.W., Benn, D.I., Sharma, M.C., 2001. Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, northern India: defining the timing of Late Quaternary glaciation. Journal of Quaternary Science 16, 555–563.
- Owen, L.A., Finkel, R.C., Caffee, M.W., Gualtieri, L., 2002. Timing of multiple Late Quaternary glaciations in the Hunza Valley, Karakoram Mountains, northern Pakistan: defined by cosmogenic radionuclide dating of moraines. Geological Society of America Bulletin 114, 593–604.
- Owen, L.A., Finkel, R.C., Ma, H., Spencer, J.Q., Derbyshire, E., Barnard, P.L., Caffee, M.W., 2003a. Timing and style of late Quaternary glaciations in NE Tibet. Geological Society of America Bulletin 115, 1356–1364.
- Owen, L.A., Ma, H., Derbyshire, E., Spencer, J.Q., Barnard, P.L., Zeng, Y.N., Finkel, R.C., Caffee, M.W., 2003b. The timing and style of Late Quaternary glaciation in the La Ji Mountains, NE Tibet: evidence for restricted glaciation during the latter part of the Last Glacial. Zeitschrift fur Geomorphologie 130, 263–276.
- Owen, L.A., Spencer, J.Q., Haizhou, M.A., Barnard, P.L., Derbyshire, E., Finkel, R.C., Caffee, M.W., Zeng, Y.N., 2003c. Timing of late Quaternary glaciation along the southwestern slopes of the Qilian Shan, Tibet. Boreas 32, 281–291.
- Owen, L.A., Finkel, R.C., Barnard, P.L., Ma, H., Asahi, K., Caffee, M.W., Derbyshire, E., 2005. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by ¹⁰Be cosmogenic radionuclide surface exposure dating. Quaternary Science Reviews 24 (12–13), 1391–1411.
- Owen, L.A., Caffe, M.W., Bovard, K.R., Finkel, R.C., Sharma, M.C., 2006a. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India. Geological Society of American Bulletin 118 (3/4), 383–392.

- Owen, L.A., Finkel, R.C., Ma, H., Barnard, P.L., 2006b. Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: a framework for examining the links between glaciation, lake level changes and alluvial fan formation. Quaternary International 154/155, 73–86.
- Owen, L.A., Caffee, M.W., Finkel, R.C., Seong, Y.B., 2008b. Quaternary glaciation of the Himalayan–Tibetan orogen. Journal of Quaternary Sciences 23, 513–531. ISSN0267-8179.
- Owen, L.A., Robinson, R., Benn, D.I., Finkel, R.C., Davis, N.K., Yi, Chaolu, Putkonen, J., Li, Dewen, Murray, A.S., 2009. Quaternary glaciation of Mount Everest. Quaternary Science Reviews 28, 1412–1433. doi:10.1016/j.quascirev.2009.02.010.
- Owen, L.A., Yi, Chaolu, Finkel, R.C., Davis, N.K., 2010. Quaternary glaciation of Gurla Mandhata (Naimon'anyi). Quaternary Science Reviews 29, 1817–1830.
- Phillips, F.M., Zreda, M.G., Smith, S.S., Elmore, D., Kubik, P.W., Sharma, P., 1990. Cosmogenic Chlorine-36 chronology for glacial deposits at Bloody canyon, eastern Sierra Nevada. Science 248, 1529–1532.
- Phillips, F.M., Zreda, M.G., Gosse, J.C., Klein, J., Evenson, E.B., Hall, R.D., Chadwick, O.A., Sharma, P., 1997. Cosmogenic ³⁶Cl and ¹⁰Be ages of Quaternary glacial and fluvial deposits of the Wind River range, Wyoming. Geological Society of American Bulletin 109 (11), 1453–1463.
- Phillips, W.M., Sloan, V.F., Shroder, J.F., Sharma, P., Clarke, M.L., Rendell, H.M., 2000. Asynchronous glaciation at Nanga Parbat, northwestern Himalaya mountains, Pakistan. Geology 28, 431–434.
- Putkonen, J., Swanson, T., 2003. Accuracy of cosmogenic ages for moraines. Quaternary Research 59, 255–261.
- Putkonen, J., O'Neal, M.A., 2006. Degradation of unconsolidated Quaternary landforms in the western North America. Geomorphology 75, 408–419.
- Raymo, M.E., Ruddiman, W.F., 1992. Tectonic forcing of late Cenozoic climate. Nature 359, 117–124.
- Richards, B.W., Owen, L.A., Rhodes, E.J., 2000. Timing of late Quaternary glaciations in the Himalayas of northern Pakistan. Journal of Quaternary Sciences 15, 283–297.
- Ruddiman, W.F., Kutzbach, J.E., 1989. Forcing of late Cenozoic northern Hemisphere climate by plateau uplift in southern Asia and the America west. Journal of Geophysical Research 94 (18), 409–427.
- Schaefer, J.M., Tschudi, S., Zhao, Z., Wu, X., Ivy-Ochs, S., Wieler, R., Baur, H., Kubik, P.W., Schluchter, C., 2002. The limited influence of glaciations in Tibet on global climate over the past 170000 yr. Earth and Planetary Science Letters 194, 287–297.
- Schaefer, J.M., Oberholzer, P., Zhao, Zhizhong, Ivy-Ochs, S., Wieler, R., Baur, H., Kubik, P.W., Schluchter, C., 2008. Cosmogenic beryllium-10 and neon-21 dating of late Pleistocene glaciations in Nyalam, monsoonal Himalayas. Quaternary Science Reviews 27, 295–311.
- Schaefer, J.M., Denton, G.H., Kaplan, M., Putnam, A., Finkel, R.C., Barrell, D.J.A., Andersen, B.G., Schwartz, R., Mackintosh, A., Chinn, T., Schluchter, C., 2009. High-Frequency Holocene glacier fluctuations in New Zealand Differ from the northern Signature. Science 324, 622–625.

- Seong, Y.B., Owen, L.A., Bishop, M.P., Bush, A., Clendon, P., Copland, P., Finkel, R.C., Kamp, U., Shroder, J.F., 2007. Quaternary glacial history of the Central Karakoram. Quaternary Science Reviews 26, 3384–3405.
- Seong, Y.B., Owen, L.A., Yi, C., Finkel, R.C., 2009. Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late-glacial and Holocene in westernmost Tibet. Geological Society of American Bulletin 121, 348–365. doi:10.1130/B26339.1.
- Stone, J.O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 23,753–23,760.
- Strasky, S., Graf, A.A., Zhao, Zhizhong, Kubik, P.W., Baur, H., Schlüchter, C., Wieler, R., 2009. Late Glacial ice advances in southeast Tibet. Journal of Asian Earth Sciences 34, 458–465.
- Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.-N., Beer, J., Synal, H.-A., Cole-Dai, J., Bolzan, J.F., 1997. Tropical climate Instability: the last glacial Cycle from a Qinghai-Tibetan ice core. Science 276, 1821–1825.
- Tschudi, S., Schaefer, J.M., Zhao, Zhizong, Wu, Xihao, Ivy-Ochs, S., Kubik, P.W., Schluchter, C., 2003. Glacial advances in Tibet during the younger Dryas? Evidence from cosmogenic ¹⁰Be, ²⁶Al, and ²¹Ne. Journal of Asian Earth Sciences 22, 301–306.
- Van Der Woerd, J., Tapponnier, P., Ryerson, F.J., Mériaux, A.S., Meyer, B., Gaudemer, Y., Finkel, R.C., Caffee, M.W., Guoguang, Z., Zhiqin, Xu, 2002. Uniform postglacial slip-rate along the central 600km of the Kunlun Fault (Tibet), from ²⁶Al, ¹⁰Be, and ¹⁴C dating of riser offsets, and climatic origin of the regional morphology. Geophysical Journal International 148, 356–388.
- Yao, T., Thompson, L.G., Mosley-Thompson, E., Zhihong, Y., Xingping, Z., Lin, P.-N., 1996. Climatological significance of δ^{18} O in north Tibetan ice cores. Journal of Geophysical Research 101 (D23), 29,531–29,537.
- Zech, R., Abramowski, U., Glaser, B., Sosin, P., Kubik, P.W., Zech, W., 2005a. Late Quaternary glacier and climate history of the Pamir Mountains derived from cosmogenic ¹⁰Be exposure ages. Quaternary Research 64, 212–220.
- Zech, R., May, J.H., Kull, C., Ilgner, J., Kubik, P.W., Veit, H., 2008. Timing of the late Quaternary glaciation in the Andes from ~15 to 40S. Journal of Quaternary Sciences 23 (6–7), 635–647.
- Zech, R., Zech, M., Kubik, P.W., Kharki, K., Zech, W., 2009. Deglaciation and landscape history around Annapurna, Nepal, based on ¹⁰Be surface exposure dating. Quaternary Science Reviews 28, 1106–1118. doi:10.1016/ j.quascirev.2008.11.013.
- Zhou, ShangZhe, LiuBing, Xu, Colgan, P.M., Mickelson, D.M., XiaoLi, Wang, Jie, Wang, Wei, Zhong, 2007. Cosmogenic ¹⁰Be dating of Guxiang and Baiyu glaciations. Chinese Science Bulletin 52, 1387–1393.
- Zreda, M.G., Phillips, F.M., 1995. Insights into alpine moraine development from cosmogenic ³⁶Cl buildup dating. Geomorphology 14, 149–156. doi:10.1016/ 0169-555X(95)00055-9.
- Zreda, M.G., Phillips, F.M., Elmore, D., 1994. Cosmogenic ³⁶Cl accumulation in unstable landforms: 2. Simulations and observations on eroding moraines. Water Resources Research 30 (11), 3127–3136. doi:10.1029/94WR00760.

	ilts of ¹⁰ Be geo	-	-	-	Thick.	quartz./	boulder/	shielding	$^{10}\text{Be}^{a}$		Lal/Stone time indep	Desilets	Dunai	Lifton	Lal/Stone time-dep
1a: Gulu W	Sample T5C-58	30,81	Long (E) 91,56	5003	4	granite g	cobble b	factor 0,99	(10 ⁶ at/g) 1.227±0.024	used h 07KNSTD		Ages (ka) * 14,552±1,747	Ages (ka) * 15,041±1,798	Ages (ka) * 14,004±1,413	Ages (ka) * 15,486±1,346
	T5C-59	30,81	91,56	5003 4995	4	g	b	0,99	1.252±0.024	07KNSTD		14,809±1,777	15,283±1,826	14,244±1,437	15,768±1,371
	T5C-60 T5C-61	30,81 30,81	91,56 91,56	4995	4	g g	b b	1	1.297±0.023 1.21±0.025	07KNSTD 07KNSTD		15,285±1,831 14,419±1,732	15,74±1,877 14,913±1,784	14,697±1,478 13,875±1,402	16,292±1,41 15,328±1,335
	T5C-62	30,81	91,56	4991 4991	4	g	b	1	1.298±0.037	07KNSTD		15,325±1,868	15,779±1,916 16,372±1,974	14,736±1,52	16,333±1,462
	T5C-63 T5C-64	30,81 30,81	91,56 91,56	4991 4987	4	g g	b b	1 0,99	1.358±0.034 1.393±0.035	07KNSTD 07KNSTD		15,941±1,93 16,328±1,979	16,3/2±1,9/4 16,747±2,021	15,319±1,564 15,685±1,604	17,026±1,504 17,464±1,546
1b: Gulu E	T5C-66	30,81	91,56	4874	4 4	g	b	1	1.584±0.04	07KNSTD		19,186±2,326	19,537±2,358	18,355±1,877	20,59±1,822
	T5C-67 T5C-68	30,81 30,81	91,56 91,57	4874 4858	4	g g	b b	1	1.364±0.034 1.32±0.035	07KNSTD 07KNSTD		16,811±2,036 16,461±2	17,226±2,078 16,887±2,043	16,148±1,65 15,821±1,624	17,91±1,584 17,499±1,556
	T5C-69	30,81	91,57	4840	4	g	b	1	1.294±0.032	07KNSTD		16,307±1,975	16,738±2,018	15,676±1,601	17,308±1,53
	T5C-70 T5C-71	30,81 30,81	91,57 91,56	4860 4876	4	g g	b b	1	1.3±0.04 1.512±0.047	07KNSTD 07KNSTD		16,225±1,987 18,404±2,256	16,658±2,032 18,779±2,293	15,597±1,619 17,628±1,832	17,233±1,556 19,717±1,782
	T5C-72	30,81	91,56	4869	4	g	b	1	1.219±0.03	07KNSTD	16,659±1,514	15,297±1,852	15,762±1,9	14,719±1,504	16,203±1,432
2b: ybj inner	T5C-73 T5C-19	30,81 30,02	91,56 90,24	4855 5305	4	g q	b	1	1.273±0.031 0.947±0.026	07KNSTD 07KNSTD		15,987±1,933 10,295±1,25	16,427±1,978 10,824±1,309	15,373±1,567 9,991±1,025	16,96±1,495 10,874±0,967
	T5C-20	30,02	90,24	5302	4	g	b	1	1.135±0.023	07KNSTD	13,252±1,188	12,22±1,468	12,745±1,525	11,763±1,189	13,044±1,137
	T5C-21 T5C-22	30,02 30,02	90,24 90,24	5302 5295	4	g q	ь b	1	0.904±0.018 1.821±0.032	07KNSTD 07KNSTD		9,88±1,186 18,664±2,236	10,41±1,244 18,999±2,267	9,607±0,97 17,82±1,793	10,401±0,905 20,316±1,759
	T5C-23	30,02	90,24	5287	4	g	b	1	1.248±0.025	07KNSTD	14,678±1,315	13,445±1,615	13,952±1,668	12,925±1,305	14,384±1,252
2a: ybj outer W	T5C-25 T5C-26	30,02 30,02	90,24 90,24	5276 5258	4	g g	b b	0,98 0,98	2.881±0.052 2.344±0.042	07KNSTD 07KNSTD	34,463±3,085 28,216±2,523	28,113±3,378 23,753±2,851	28,014±3,351 23,874±2,853	26,742±2,699 22,636±2,282	31,104±2,703 26,094±2,265
	T5C-27	30,02	90,24	5248	4	q	b	0,98	1.912±0.037	07KNSTD	23,085±2,067	20,021±2,405	20,32±2,43	19,09±1,927	21,797±1,896
	T5C-28 T5C-29	30,02 30,02	90,24 90,24	5227 5221	4	g	b b	0,99 1	2.711±0.07 3.202±0.074	07KNSTD 07KNSTD	32,977±3,014 38,979±3,54	27,184±3,304 31,212±3,781	27,152±3,286 30,929±3,73	25,838±2,651 29,618±3,022	29,907±2,657 34,66±3,057
	T5C-30	30,02	90,24	5206	4	g	b	1	4.812±0.103	07KNSTD	59,271±5,383	43,247±5,24	42,211±5,091	40,986±4,178	49,757±4,383
	T5C-31 T5C-32	30,02 30,02	90,24 90,24	5200 5200	4	g g	b b	1	1.587±0.03 1.457±0.026	07KNSTD 07KNSTD	19,414±1,737 17,806±1,587	17,235±2,069 16,003±1,917	17,616±2,105 16,418±1,958	16,509±1,666 15,356±1,545	18,585±1,615 17,165±1,487
	T5C-32	30,02	90,24	5184	4	g	b	1	2.289±0.041	07KNSTD	28,254±2,526	23,862±2,865	23,992±2,867	22,746±2,293	26,123±2,268
2 au achi au tau E	T5C-34 T5C-35	30,02 30,02	90,24 90,25	5177 5034	4	g	b b	1	2.987±0.053 1.485±0.026	07KNSTD 07KNSTD	37,061±3,316 19,546±1,743	29,977±3,602 17,468±2,093	29,778±3,562 17,863±2,131	28,5±2,875 16,74±1,685	33,168±2,881 18,698±1,62
2c: ybj outer E	T5C-36	30,02	90,25	5034	4	g g	b	1	3.903±0.083	07KNSTD	51,806±4,696	39,326±4,76	38,668±4,659	37,499±3,818	43,556±3,83
	T5C-37 T5C-38	30,02 30,02	90,25 90,25	5066 5026	4	g	b	0,99 0,99	3.624±0.064 4.35±0.075	07KNSTD 07KNSTD	47,221±4,237 57,855±5,198	36,71±4,418 42,818±5,158	36,194±4,337 41,9±5,024	34,991±3,536 40,649±4,109	40,331±3,51 48,461±4,22
	T5C-39	30,02	90,25	5021	4	g g	b b	0,99	3.081±0.054	07KNSTD	40,896±3,664	32,83±3,947	32,503±3,891	31,166±3,146	36,056±3,134
	T5C-40 T5C-41	30,02 30,02	90,25 90,25	5014 5010	4	q	b	0,99 0,99	3.504±0.066 3.719±0.065	07KNSTD 07KNSTD	46,725±4,202 49,729±4,462	36,518±4,401 38,197±4,597	36,027±4,322 37,623±4,507	34,795±3,522 36,472±3,685	39,996±3,489 42,047±3,658
	T5C-42	30,02	90,25	4999	4	g g	ь b	0,99 0,99	4.321±0.08	07KNSTD	58,175±5,243	43,078±5,198	42,145±5,062	40,873±4,142	48,748±4,259
	T5C-43 T5C-44	30,02 30,02	90,25 90,25	4991 4982	4	g	b b	1 0,99	2.163±0.031 4.112±0.108	07KNSTD 07KNSTD	29,093±2,581	24,699±2,953 41,861±5,111	24,829±2,955 41,055±4,99	23,533±2,359 39,821±4,104	26,808±2,309 46,921±4,193
d**: ybj outer N	T5C-44bis	30,02	90,25	5239	4	g g	b b	0,99	2.105±0.113	07KNSTD	56,082±5,163 25,417±2,612	21,782±2,837	22,013±2,857	20,755±2,342	23,74±2,386
3a**: M4 #1	T5C-45 T7C-7	30,02 30,66	90,24 88,56	5261 5232	4	g	b c	0,99	1.073±0.032 5.45±0.064	07KNSTD 07KNSTD	12,793±1,182 64,707±5,765	11,838±1,446 46,929±5,627	12,375±1,506 45,391±5,416	11,407±1,18 44,081±4,425	12,597±1,133 55,571±4,796
3a^^: M4 #1	T7C-11	30,60 30,67	88,55	5252 5280	4	q g	b	1	11.85±0.004	07KNSTD 07KNSTD		40,929±3,027 101,171±12,262		44,081±4,423 95,497±9,669	116,367±10,139
	T7C-15	30,65	88,56	5096	4	g	b	1	4.252±0.052	07KNSTD	53,466±4,754	40,261±4,821	39,471±4,705	38,349±3,846	45,088±3,884
	T7C-17 T7C-18	30,65 30,65	88,56 88,56	5101 5102	4	g q	c b	1	7.523±0.091 3.449±0.047	07KNSTD 07KNSTD	95,379±8,567 43,15±3,836	71,05±8,573 34,26±4,102	68,767±8,256 33,767±4,024	66,538±6,719 32,532±3,264	81,966±7,124 37,741±3,253
3b**: M4 #2	T7C-14	30,66	88,55	5231	4	g	b	1	10.217±0.091	07KNSTD	123,137±11,09	90,918±10,999	87,78±10,564	84,716±8,564	103,725±9,023
3c**: M4 #3 4c*: M3 old	T7C-12 T7C-19	30,67 30,6	88,55 88,53	5283 4988	4	q g	b	1	7.089±0.06 19.64±0.25	07KNSTD 07KNSTD	82,66±7,366 274,269±25,806	61,522±7,386 193.067±24.039	59,621±7,123 186,541±23,084	57,244±5,745 182,31±18,969	70,932±6,117 224,294±20,231
	T7C-20	30,6	88,53	4988	4	g	с	1	30.053±0.29	07KNSTD	436,537±42,633	305,263±39,016	290,614±36,838	282,908±30,095	359,361±33,395
	T7C-21 T7C-22	30,6 30,6	88,53 88,53	4989 4990	4	g g	ь b	1	27.252±0.244 44.44±0.304	07KNSTD 07KNSTD			263,881±33,206 463,478±61,325		320,194±29,431 561,669±54,831
	T7C-23	30,6	88,53	4993	4	g	b	1	14.691±0.153	07KNSTD	201,077±18,505	142,42±17,473	135,349±16,502	132,033±13,527	167,11±14,801
4a: M3 main	T7C-24-24bis T7C-25	30,6 30,6	88,52 88,52	5036 5041	4	g	c b	1	4.451±0.065 and 4.689±0. 3.206±0.048	083 07KNSTD 07KNSTD	59.157±4.476 41,295±3,679	43.788±4.441 33,136±3,972	42.728±4.311 32,725±3,905	41.488±3.528 31,472±3,163	50.025±3.671 36,47±3,152
	T7C-26	30,6	88,52	5042	4	g	b	1	3.238±0.038	07KNSTD	41,69±3,693	33,399±3,991	32,974±3,922	31,72±3,174	36,741±3,156
	T7C-27 T7C-28	30,6 30,6	88,52 88,52	5051 5056	4	g g	b b	1	3.487±0.052 2.963±0.043	07KNSTD 07KNSTD	44,749±3,99 37,872±3,367	35,365±4,242 30,781±3,685	34,844±4,16 30,505±3,636	33,626±3,382 29,262±2,937	38,815±3,356 33,943±2,928
	T7C-30	30,6	88,52	5086	4	g	b	1	3.458±0.038	07KNSTD	43,667±3,866	34,623±4,136	34,122±4,058	32,885±3,289	38,076±3,268
4b: M3 inner	T7C-32 T7C-33	30,61 30,61	88,5 88,5	5254 5238	4	g g	b b	1	1.368±0.019 0.975±0.021	07KNSTD 07KNSTD		14,526±1,731 10,682±1,285	14,973±1,777 11,198±1,341	13,963±1,395 10,353±1,049	15,55±1,334 11,262±0,984
	T7C-34	30,61	88,5	5243	4	g	b	1	0.992±0.016	07KNSTD	11,593±1,028	10,831±1,293	11,345±1,349	10,49±1,051	11,433±0,985
	T7C-35 T7C-36	30,61 30,61	88,5 88,5	5209 5200	4	g g	b b	1	1.102±0.018 1.008±0.023	07KNSTD 07KNSTD		12,159±1,452 11,211±1,351	12,675±1,507 11,738±1,409	11,715±1,174 10,845±1,101	12,907±1,112 11,85±1,039
	T7C-37	30,61	88,5	5207	4	g	b	1	1.064±0.024	07KNSTD	12,638±1,14	$11,763\pm1,418$	12,29±1,476	11,347±1,153	12,471±1,094
5: M2	T7C-39 T7C-40	30,61 30,08	88,5 88,43	5179 5337	4	g g	b	1	1.14±0.022 4.279±0.047	07KNSTD 07KNSTD	13,715±1,225 49,52±4,391	12,721±1,525 37,572±4,492	13,231±1,58 36,925±4,394	12,253±1,235 35,84±3,587	13,509±1,173 41,917±3,601
5. 142	T7C-41	30,08	88,43	5337	4	g	b	1	3.848±0.049	07KNSTD	44,478±3,949	34,693±4,151	34,158±4,068	32,903±3,297	38,483±3,313
	T7C-42 T7C-43	30,08 30,08	88,42 88,42	5334 5337	4	g	b	1	2.942±0.036 1.34±0.02	07KNSTD 07KNSTD		27,754±3,314 14,048±1,676	27,647±3,286 14,499±1,723	26,391±2,639 13,489±1,35	30,709±2,636 15,028±1,293
	T7C-45	30,08	88,42	5341	4	g g	b	1	3.713±0.061	07KNSTD	42,822±3,827	33,628±4,038	33,146±3,962	31,879±3,211	37,377±3,24
	T7C-45 T7C-46	30,08 30,08	88,42 88,42	5340 5322	4	g g	ь b	1	1.911±0.024 4.622±0.046	07KNSTD 07KNSTD	21,942±1,937 53,89±4,777	19,11±2,277 40,002±4,782	19,406±2,303 39,187±4,662	18,234±1,821 38,075±3,809	20,819±1,784 45,163±3,877
	T7C-47	30,08	88,42	5314	4	g	b	1	3.101±0.031	07KNSTD	36,127±3,188	29,208±3,482	29,007±3,442	27,789±2,773	32,443±2,777
	T7C-49 T7C-50	30,08 30,08	88,42	5291 5273	4	g	b	1	1.329±0.019 2.985±0.038	07KNSTD 07KNSTD	15,565±1,376 35,383±3,134	14,223±1,696 28,772±3,437	14,675±1,742 28,615±3,403	13,663±1,366	15,19±1,304 31,849±2,737
	T7C-51	30,08	88,42 88,41	5253	4	g g	b b	1	2.595±0.036	07KNSTD	30,998±2,748	25,816±3,085	25,833±3,073	27,385±2,741 24,529±2,457	28,346±2,439
6: M1	T7C-63 T7C-64	29,94	88,35	5170	4	g	b	1	2.223±0.028	07KNSTD 07KNSTD	27,637±2,443	23,494±2,803	23,636±2,807 22,622±2,688	22,405±2,239	25,595±2,195
	T7C-65	29,94 29,94	88,35 88,35	5161 5167	4 4	g g	b b	1	2.094±0.028 2.363±0.033	07KNSTD	29,424±2,608	22,426±2,677 24,782±2,961	24,869±2,959	21,386±2,139 23,59±2,363	24,32±2,089 27,075±2,33
	T7C-66	29,94	88,35	5161	4	g	b	1	2.276±0.054	07KNSTD	28,414±2,577	24,057±2,911	24,176±2,913	22,932±2,339	26,246±2,314 27,759±2,382
	T7C-68 T7C-69	29,94 29,94	88,35 88,35	5140 5130	4	g g	b b	1	2.402±0.03 2.398±0.067	07KNSTD 07KNSTD	30,283±2,678 30,36±2,793	25,442±3,036 25,511±3,112	25,508±3,031 25,576±3,107	24,193±2,419 24,259±2,501	27,759±2,382 27,821±2,489
	T7C-70	29,94	88,35	5120	4	g	b	1	2.045±0.025	07KNSTD	25,982±2,295	22,366±2,667	22,572±2,68	21,333±2,131	24,199±2,075
	T7C-71 T7C-72	29,94 29,94	88,35 88,36	5110 5070	4	g g	ь b	1 1	2.368±0.061 2.634±0.052	07KNSTD 07KNSTD	34,287±3,081	25,454±3,094 28,324±3,411	25,525±3,089 28,251±3,387	24,208±2,483 26,98±2,731	27,73±2,464 30,945±2,7
7: M	T7C-55	29,82	88,19	5340	4	g	b	1	1.052±0.017	07KNSTD	12,125±1,075	11,258±1,344	11,773±1,4	10,882±1,09	11,943±1,029
	T7C-56 T7C-57	29,82 29,82	88,19 88,19	5345 5350	4	g g	b b	1	2.279±0.043 1.404±0.024	07KNSTD 07KNSTD		22,36±2,686 14,645±1,752	22,533±2,695 15,082±1,797	21,301±2,15 14,065±1,413	24,457±2,126 15,687±1,356
	T7C-58	29,82	88,19	5355	4	g	b	1	1.307±0.03	07KNSTD	14,97±1,352	13,704±1,653	14,174±1,703	13,165±1,338	14,651±1,286
	T7C-59 T7C-60	29,82 29,82	88,19 88,19	5360 5355	4 4	g g	b b	1	2.938±0.033 1.295±0.04	07KNSTD 07KNSTD		27,583±3,29 13,592±1,663	27,5±3,265 14,069±1,714	26,214±2,618 13,061±1,354	30,502±2,614 14,529±1,309
	T7C-61	29,82	88,19	5350	4	g	b	1	1.717±0.025	07KNSTD	19,736±1,748	17,421±2,079	17,767±2,112	16,67±1,669	18,869±1,623
8*: Dingye N	77C-62 T5C-141	29,83 28,32	88,2 87,72	5320 5071	4	g q	b c	0,99	6.199±0.068 1.363±0.033	07KNSTD 07KNSTD	73,115±6,521 18,332±1,664	53,395±6,409 16,553±2,003	51,204±6,115 16,992±2,047	49,1±4,93 15,881±1,62	62,709±5,415 17,628±1,556
	T5C-142	28,32	87,72	5061	3	q	с	0,99	3.566±0.115	07KNSTD	47,707±4,474	36,933±4,557	36,546±4,49	35,197±3,683	40,365±3,681
	T5C-143 T5C-144	28,32 28,32	87,72 87,72	5043 5018	2 2	q q	c c	0,99 0,99	2.664±0.067 2.42±0.059	07KNSTD 07KNSTD		29,145±3,54 27,229±3,301	29,155±3,526 27,351±3,302	27,733±2,841 25,884±2,645	31,785±2,819 29,482±2,606
	T5C-146	28,32	87,73	4960	3	g	с	0,99	5.225±0.134	07KNSTD	73,558±6,786	54,975±6,726	53,303±6,491	50,458±5,204	62,652±5,607
	T5C-147 T5C-148	28,32 28,32	87,73 87,73	4937 4907	5 6	q	c c	0,99 0,99	3.454±0.162 4.468±0.112	07KNSTD 07KNSTD		38,2±4,898 48,438±5,912	37,776±4,824 47,079±5,719	36,477±4,022 45,23±4,654	41,681±4,067 55,84±4,982
	T5C-149	28,32	87,73	4864	4	q q	c c	0,99	10.871±0.266	07KNSTD	164,784±15,502	117,624±14,591	114,117±14,082	110,479±11,537	132,877±12,06
	T5C-150	28,32	87,73	4835 4812	3	q	c	0,99	9.223±0.267	07KNSTD	139,598±13,238	102,596±12,782	100,234±12,427	96,846±10,194	114,055±10,46
	T5C-151 T5C-152	28,32 28,32	87,73 87,73	4812 4773	4	q q	c c	0,99 0,99	8.489±0.227 13.439±0.423	07KNSTD 07KNSTD			95,465±11,772 146,719±18,501	91,675±9,58 140,495±15,059	107,674±9,782 174,421±16,397
	T5C-153	28,32	87,73	4741	4	q	b	0,99	21.24±0.295	07KNSTD	356,795±34,36	254,68±32,248	245,03±30,812	234,071±24,718	287,44±26,406
	T5C-154 T5C-155	28,32 28,32	87,73 87,74	4727 4696	3 5	q q	b c	0,99 0,99	6.736±0.118 3.475±0.088	07KNSTD 07KNSTD	106,214±9,667 55,814±5,125	80,702±9,818 42,181±5,143	78,739±9,532 41,548±5,043	75,07±7,659 40,135±4,128	90,024±7,928 46,291±4,124
*: Dingye S main #1	T5C-115	28,15	87,65	5254	4	g	b	0,96	2.192±0.056	07KNSTD	27,855±2,54	23,545±2,857	23,773±2,873	22,42±2,296	25,7±2,278
	T5C-116 T5C-118	28,15 28,15	87,65 87,65	5247 5250	4	q q	c b	0,96 0,96	1.393±0.035 0.928±0.028	07KNSTD 07KNSTD		15,973±1,935 10,994±1,343	16,404±1,978 11,509±1,401	15,32±1,566 10,647±1,102	17,111±1,513 11,617±1,045
	T5C-119	28,15	87,65	5254	4	q	с	0,96	1.295±0.036	07KNSTD	16,445±1,508	14,958±1,82	15,411±1,868	14,357±1,477	15,977±1,426
		28,15	87,65	5223 5225	4	q	c c	0,99 0,99	1.576±0.065 2.194±0.055	07KNSTD 07KNSTD	19,697±1,905	17,484±2,195 23,291±2,825	17,894±2,237 23,535±2,843	16,729±1,796	18,824±1,776
Dingye S main #2	T5C-121	20 10								U/KINSTD	41 40±4 001	2 1 2 9 1 ± 2 8 2 5	(1) 110±2 843	22,186±2,27	25,362±2,246
Dingye S main #2	T5C-121 T5C-122 T5C-123	28,15 28,15	87,65 87,65	5225	4	q q	b	0,99	1.295±0.032	07KNSTD		14,782±1,788	15,248±1,836	14,197±1,448	15,76±1,39
Dingye S main #2	T5C-122										16,199±1,469				

9d**: Dingye S main #3	T5C-127 T5C-129	28,15 28,15	87,65 87,65	5151 5146	4 4	q	b c	0,99 0,99	1.155±0.028 2.454±0.065	07KNSTD 07KNSTD	14,799±1,342 31,642±2,9	13,677±1,654 26,388±3,212	14,185±1,708 26,543±3,217	13,153±1,342 25,047±2,575	14,51±1,28 28,716±2,559
	T5C-130	28,15	87,66	5140	4	q g	b	0,99	3.612±0.085	07KNSTD	46,867±4,269	36,32±4,408	35,967±4,346	34,545±3,532	39,768±3,516
	T5C-131 T5C-132	28,15 28,15	87,66 87,66	5142 5143	4 4	q g	c b	0,99 0,99	2.136±0.055 1.359±0.034	07KNSTD 07KNSTD	27,563±2,515 17,482±1,588	23,46±2,849 15,84±1,917	23,712±2,867 16,288±1,963	22,354±2,291 15,206±1,552	25,461±2,259 16,883±1,491
9a: Dingye S frontal	T5C-133 T5C-134	28,13 28,13	87,67 87,67	5006 5012	4 4	g q	b c	1 1	1.939±0.048 1.283±0.032	07KNSTD 07KNSTD	26,413±2,403 17,399±1,58	22,789±2,763 15,868±1,921	23,091±2,788 16,329±1,968	21,734±2,222 15,243±1,556	24,509±2,168 16,814±1,485
	T5C-135 T5C-137	28,13 28,13	87,67 87,67	5012 5011	4	q q	c c	1	1.435±0.035 1.538±0.038	07KNSTD 07KNSTD	19,46±1,765 20,883±1,899	17,469±2,113 18,583±2,251	17,906±2,157 19,011±2,294	16,736±1,707 17,762±1,815	18,621±1,642 19,87±1,757
	T5C-138 T5C-139	28,13 28,13	87,67 87,67	5007 5012	4 4	q q	c b	1	1.753±0.045 1.721±0.051	07KNSTD 07KNSTD	23,856±2,177 23,367±2,158	20,901±2,538 20,517±2,508	21,278±2,573 20,911±2,546	19,922±2,042 19,564±2,024	22,409±1,989 22,007±1,978
	T5C-140	28,13	87,67	5004	4	g	с	1	1.642±0.064	07KNSTD	22,362±2,144	19,746±2,467	20,155±2,508	18,844±2,009	21,155±1,978
10**: cho oyu	KC2-A KC2-B	28,35 28,35	86,63 86,63	4948 4948	5 5	q q	b b	1	2.368±0.06 2.371±0.062	KNSTD KNSTD	30,091±2,745 30,13±2,757	25,552±3,103 25,581±3,111	25,755±3,114 25,784±3,123	24,295±2,489 24,321±2,497	27,533±2,442 27,564±2,452
	KC2-D KC2-E	28,35 28,35	86,63 86,63	4948 4948	4 4	q q	b b	1 1	2.751±0.073 2.393±0.062	KNSTD KNSTD	34,706±3,18 30,16±2,757	28,756±3,501 25,603±3,113	28,794±3,49 25,805±3,124	27,382±2,814 24,341±2,498	31,158±2,775 27,588±2,452
11: KungCo	KC2-266 KC2-267	28,78 28,78	86,47 86,47	4882 4874	4	q q	c c	1	1.42±0.036 3.356±0.083	KNSTD KNSTD	18,506±1,684 44,166±4,034	16,861±2,043 35,27±4,287	17,291±2,086 34,958±4,231	16,189±1,655 33,51±3,434	17,78±1,573 38,095±3,379
	KC2-268 KC2-269	28,78 28,78	86,46	4866 4858	7	q	с	1	5.55±0.148	KNSTD KNSTD	75,735±7,014 58,529±5,245	57,561±7,06	55,945±6,83 42,694±5,112	52,954±5,48 41,283±4,164	64,545±5,8
	KC2-270	28,78	86,46 86,46	4849	3	q q	c c	1	4.363±0.069 1.724±0.041	KNSTD	22,636±2,051	43,562±5,24 20,148±2,437	$20,526\pm 2,472$	19,243±1,961	48,715±4,23 21,397±1,885
	KC2-271 KC2-272	28,78 28,78	86,46 86,46	4847 4843	2 5	q q	c c	1	1.621±0.038 1.508±0.036	KNSTD KNSTD	21,123±1,913 20,176±1,828	18,958±2,292 18,208±2,201	19,359±2,33 18,625±2,242	18,129±1,847 17,44±1,777	20,085±1,769 19,254±1,696
	KC2-273 KC2-274	28,78 28,78	86,46 86,46	4840 4835	6 3	q q	c c	1	1.356±0.047 4.249±0.073	KNSTD KNSTD	18,314±1,722 56,617±5,087	16,744±2,068 42,441±5,113	17,179±2,113 41,694±5	16,083±1,688 40,338±4,078	17,612±1,614 47,051±4,097
	KC2-275 KC2-276	28,78 28,78	86,46 86,46	4831 4827	4 5	q q	c c	1	1.094±0.026 2.425±0.041	KNSTD KNSTD	14,579±1,32 32,783±2,925	13,728±1,658 27,652±3,317	14,24±1,713 27,738±3,313	13,228±1,347 26,332±2,651	14,301±1,259 29,669±2,57
	KC2-277	28,78	86,46	4821	3	q	с	1	0.625±0.016	KNSTD	8,285±0,752	8,048±0,973	8,595±1,035	7,938±0,81	8,109±0,716
	KC2-278 KC2-279	28,78 28,78	86,46 86,46	4817 4795	5	q q	c c	1	1.083±0.026 0.844±0.02	KNSTD KNSTD	14,888±1,348 11,522±1,044	14,005±1,692 11,025±1,332	14,504±1,745 11,559±1,391	13,487±1,374 10,705±1,091	14,584±1,284 11,339±0,999
12a**: Pulan M1W	KC2-280 KC2-39	28,78 30,38	86,46 81,18	4777 4504	5	q g	c c	1	1.674±0.039 1.334±0.039	KNSTD KNSTD	23,1±2,092 19,746±1,822	20,585±2,489 18,199±2,223	20,963±2,524 18,52±2,253	19,66±2,003 17,481±1,808	21,794±1,919 18,887±1,696
	KC2-40 KC2-44	30,38 30,38	81,18 81,18	4506 4515	7 4	g g	c b	1	1.595±0.055 1.449±0.05	KNSTD KNSTD	24,193±2,279 21,337±2,005	21,743±2,689 19,474±2,404	21,959±2,704 19,763±2,43	20,817±2,189 18,669±1,959	22,743±2,087 20,293±1,858
12c: Pulan M1E	KC2-44 KC2-45 KC2-46	30,38 30,38	81,18 81,18 81,18	4530 4533	3 6	g	b b	1	3.702±0.091 3.12±0.115	KNSTD KNSTD	54,11±4,952 46,588±4,451	41,823±5,091 37,373±4,663	41,06±4,976 36,856±4,579	39,861±4,09 35,744±3,798	45,499±4,041 40,02±3,722
	KC2-47	30,38	81,18	4532	5	g g	b	1	1.413±0.036	KNSTD	20,808±1,897	19,032±2,31	19,331±2,336	18,252±1,87	19,827±1,758
	KC2-48 KC2-49	30,38 30,38	81,18 81,18	4530 4530	10 5	g g	c c	1	2.251±0.055 1.667±0.043	KNSTD KNSTD	34,69±3,159 24,596±2,244	29,421±3,57 22,028±2,675	29,27±3,536 22,223±2,687	28,094±2,874 21,086±2,161	31,338±2,773 23,08±2,048
12b: Pulan M2	KC2-50 KC2-51	30,38 30,38	81,18 81,17	4526 4476	5 5	g g	ь b	1 1	2.163±0.054 7.172±0.157	KNSTD KNSTD	32,033±2,921 110,894±10,217	27,567±3,347 86,204±10,566	27,524±3,327 83,719±10,21	26,323±2,696 80,542±8,3	29,196±2,587 94,724±8,45
	KC2-52 KC2-53	30,38 30,38	81,17 81,17	4477 4471	5 5	g	b c	1 1	3.595±0.088 6.238±0.213	KNSTD KNSTD	54,794±5,014 96,351±9,213	42,374±5,158 74,823±9,359	41,579±5,038 72,793±9,063	40,356±4,141 70,021±7,433	46,049±4,089 82,615±7,67
	KC2-54	30,38 30,38	81,17 81,17 81,17	4470 4470	5	g	b	1	5.957±0.131	KNSTD	91,946±8,431	71,428±8,722	69,48±8,443	67,033±6,884 50,755±5,155	78,753±6,997
	KC2-55 KC2-56	30,38	81,17	4467	5	g g	c b	1	4.59±0.084 5.349±0.229	KNSTD KNSTD	70,477±6,37 82,486±8,161	54,86±6,638 64,544±8,232	53,16±6,402 63,091±8,012	$60,719\pm6,629$	60,818±5,328 70,618±6,8
	KC2-57 KC2-58	30,38 30,38	81,17 81,17	4466 4465	5 5	g g	c c	1	2.022±0.052 4.116±0.088	KNSTD KNSTD	30,799±2,814 63,237±5,748	26,766±3,254 48,371±5,868	26,77±3,24 46,971±5,671	25,546±2,621 45,381±4,63	28,219±2,507 53,941±4,755
13: EXS	KC2-59 KC2-66	30,38 30,99	81,17 81,26	4466 4801	5	g q	c b	1	2.111±0.054 1.12±0.05	KNSTD LLNL3000	32,164±2,938 13,443±1,318	27,745±3,372 12,82±1,622	27,699±3,352 13,269±1,672	26,503±2,718 12,383±1,344	29,3±2,602 13,251±1,268
	KC2-67 KC2-69	30,99 30,99	81,26 81,26	4799 4796	4 4	g q	b b	1 1	1.458±0.06 1.443±0.041	LLNL3000 LLNL3000	17,533±1,692 17,373±1,595	16,201±2,031 16,077±1,958	16,54±2,066 16,42±1,992	15,594±1,672 15,478±1,595	16,974±1,599 16,832±1,504
	KC2-70 KC2-71	30,99 30,99	81,26 81,26	4794 4795	4	q q	b b	1	1.211±0.031 1.156±0.032	LLNL3000 LLNL3000	14,581±1,327 13,915±1,274	13,808±1,673 13,235±1,609	14,233±1,718 13,676±1,656	13,318±1,362 12,776±1,313	14,324±1,268 13,701±1,22
	KC2-72 KC2-73	30,99 30,99	81,26 81,26	4793 4797	4	g	b b	1	1.42±0.042 1.425±0.03	LLNL3000 LLNL3000	17,116±1,58 17,149±1,541	15,876±1,94 15,899±1,913	16,227±1,975 16,249±1,947	15,289±1,582 15,311±1,55	16,605±1,493 16,634±1,453
	KC2-74	30,99	81,26	4798	4	q q	b	1	1.29±0.04	LLNL3000	15,504±1,438	14,574±1,786	$14,976\pm1,827$	14,055±1,46	15,168±1,37
14: WXS	Zi-85 Zi-86	31,01 31,01	81,24 81,24	4800 4800	4 4	g g	b b	1 1	3.725±0.064 3.537±0.061	LLNL3000 LLNL3000	45,035±4,035 42,744±3,828	36,055±4,336 34,604±4,161	35,471±4,247 34,081±4,079	34,374±3,47 32,927±3,323	39,124±3,4 37,55±3,262
	Zi-87 Zi-88	31,01 31,01	81,24 81,24	4800 4800	4	g g	ь b	1 1	3.239±0.102 4.712±0.081	LLNL3000 LLNL3000	39,102±3,651 57,138±5,134	32,123±3,954 43,188±5,203	31,731±3,889 42,19±5,059	30,572±3,189 41,026±4,148	34,977±3,177 48,354±4,212
	Zi-89 zi-90	31,01 31,01	81,24 81,24	4800 4800	4 4	g	b b	1	3.659±0.077 3.123±0.107	LLNL3000 LLNL3000	44,229±3,998 37,689±3,553	35,554±4,297 31,142±3,854	34,999±4,211 30,805±3,796	33,873±3,444 29,649±3,117	38,566±3,384 33,88±3,109
	Zi91 zi-92	31,01 31,01	81,24 81,24	4800 4800	4 4	g	b b	1	3.593±0.078 3.355±0.144	LLNL3000 LLNL3000	43,42±3,933 40,523±3,967	35,048±4,241 33,104±4,189	34,499±4,156 32,654±4,115	33,358±3,397 31,496±3,413	38,007±3,342 36,022±3,439
	zi-93	31,01	81,24	4800	4	g g	b	1	1.794±0.037	KNSTD	22,56±2,027	20,168±2,428	$20,392\pm 2,444$	19,302±1,954	21,431±1,871
	zi-94 zi95	31,01 31,01	81,24 81,24	4800 4800	4 4	g	b b	1	3.942±0.194 4.237±0.077	LLNL3000 KNSTD	47,692±4,821 53,703±4,831	37,595±4,85 41,097±4,954	36,972±4,751 40,277±4,833	35,951±3,998 39,172±3,965	40,965±4,041 45,438±3,964
	zi-96 zi-98	31,01 31,01	81,24 81,24	4800 4800	4	g g	b b	1 1	4.177±0.211 1.987±0.095	LLNL3000 LLNL3000	50,565±5,148 23,897±2,388	39,262±5,088 21,21±2,716	38,541±4,974 21,393±2,729	37,495±4,194 20,285±2,237	43,019±4,275 22,573±2,204
15: A Qu	zi-99 KC2-75	31,01 31,03	81,24 81,17	4800 5093	4 4	g	b b	1	1.407±0.032 3.119±0.069	KNSTD KNSTD	17,672±1,594 34,712±3,14	16,309±1,967 28,632±3,46	16,645±1,999 28,388±3,416	15,698±1,594 27,304±2,778	17,099±1,5 31,501±2,768
	KC2-76 KC2-77	31,04 31,04	81,18 81,18	5091 5103	4 4	q	b b	1	3.949±0.069 2.265±0.064	LLNL3000 LLNL3000	41,771±3,742 23,728±2,183	33,429±4,019 20,764±2,533	32,88±3,935 20,925±2,542	31,764±3,206 19,83±2,046	36,895±3,207 22,437±2,009
	KC2-78	31,04	81,18	5106	4	q	b	1	22.385±0.261	LLNL3000	247,422±23,082	176,054±21,806	167,549±20,615	162,967±16,852	203,159±18,195
	KC2-80 KC2-82	31,04 31,03	81,18 81,17	5117 5131	4	q q	b b	1	3.408±0.06 2.457±0.06	LLNL3000 KNSTD	35,581±3,183 26,835±2,439	29,18±3,505 23,018±2,788	28,889±3,455 23,06±2,782	27,818±2,805 21,991±2,246	32,203±2,796 25,06±2,214
16b*: Manikala M2E	KC2-83 WG1-1	31,04	81,18 80,02	5132 4490	4	q	b c	1	2.246±0.08 13.341±0.226	LLNL3000 LLNL3000	23,223±2,195 187,045±17,352			19,436±2,049 129,472±13,377	22,012±2,027 157,349±14,074
	WG1-2 WG1-3	32,04 32,04	80,02 80,02	4492 4494	3 3	q q	c c	1 1	15.473±0.114 23.292±0.255	KNSTD LLNL3000	229,053±21,156 338,193±32,259			159,837±16,447 231,783±24,371	191,361±16,99 282,252±25,764
	WG1-4 WG1-5	32,04 32,04	80,02 80,02	4496 4498	3	q q	c c	1	19.057±0.321 13.722±0.186	LLNL3000 LLNL3000	272,019±25,782 191,875±17,705	199,602±25,002	192,189±23,922	188,304±19,744 132,555±13,635	226,433±20,608 161,721±14,38
	WG1-5 WG1-6 WG1-7	32,04 32,04 32,04	80,02 80,02 80,02	4500 4520	3 3	q	с	1	11.18±0.291 22.911±0.172	LLNL3000 KNSTD	154,771±14,593 344,185±32,743	115,879±14,407	112,012±13,853	109,454±11,47 235,758±24,733	129,242±11,778 287,017±26,115
	WG1-8	32,04	80,02	4540	3	q q	c c	1	11.776±0.194	LLNL3000	160,142±14,741	119,01±14,599	114,906±14,019	112,354±11,549	133,586±11,864
	WG1-9 WG1-10	32,04 32,04	80,02 80,01	4550 4555	3 3	q q	c c	1	10.637±0.094 14.438±0.123	KNSTD KNSTD	150,217±13,621 206,24±18,96	152,925±18,788	145,897±17,812	106,334±10,808 141,968±14,555	125,492±10,976 174,262±15,424
16a: Manikala M1	WG1-11 WG1-12	32,05 32,05	80 80	4760 4760	3 3	q q	c c	1 1	3.468±0.06 3.357±0.059	LLNL3000 LLNL3000	41,273±3,696 39,945±3,577	33,745±4,057 32,825±3,947	33,19±3,972 32,323±3,869	32,159±3,246 31,291±3,159	36,774±3,195 35,824±3,114
	WG1-13 WG1-14	32,05 32,05	80 80	4760 4760	3 3	q q	c c	1 1	3.813±0.095 1.763±0.044	LLNL3000 LLNL3000	45,43±4,155 20,879±1,897	36,431±4,433 18,874±2,286	35,782±4,334 19,096±2,303	34,82±3,573 18,116±1,851	39,686±3,526 20,037±1,77
	WG1-15 WG1-16	32,05 32,05	80 80	4760 4760	3 3	q	c c	1	4.085±0.1 1.748±0.044	LLNL3000 LLNL3000	48,702±4,452 20,695±1,883	38,36±4,666 18,728±2,27	37,641±4,558 18,955±2,287	36,713±3,765 17,979±1,838	42,005±3,728 19,873±1,758
	WG1-17	32,05	80	4760	3	q q	с	1	3.454±0.103	LLNL3000	41,109±3,818	33,631±4,127	33,084±4,042	32,052±3,33	36,657±3,311
	WG1-18 WG1-19	32,04 32,05	80 80	4760 4760	3	q q	c c	1	3.62±0.095 3.156±0.069	LLNL3000 LLNL3000	43,102±3,954 37,533±3,396	34,978±4,263 31,138±3,765	34,363±4,169 30,734±3,699	33,347±3,43 29,699±3,022	38,042±3,391 33,974±2,986
16c*: Manikala M2W	WG1-20 WG1-21	32,04 32,05	80,01 80,01	4645 4645	3 3	q q	c c	1 1	13.225±0.167 11.802±0.233	LLNL3000 LLNL3000	171,544±15,722 152,36±14,103	113,219±13,927	120,796±14,701 109,366±13,381	118,245±12,104 106,91±11,04	143,477±12,677 127,225±11,372
	WG1-22 WG1-23	32,05 32,05 32,05	80,01 80,01	4645 4645	3	q	c c	1	8.657±0.152 11.569±0.1	LLNL3000 KNSTD	110,612±10,079 156,383±14,199	85,543±10,42	82,726±10,025 111,772±13,53	80,169±8,19	95,803±8,449 130,513±11,427
	WG1-24	32,05	80,01	4640	3	q q	с	1	14.825 ± 0.202	LLNL3000	193,812±17,893	141,921±17,458	135,258±16,536	132,302±13,609	163,341±14,53
	WG1-25 WG1-26	32,05 32,05	80,01 80,01	4640 4640	3 3	q q	c c	1 1	11.647±0.147 9.582±0.128	LLNL3000 LLNL3000	150,649±13,735 123,1±11,158	94,704±11,509	91,816±11,1	105,932±10,811 89,21±9,074	125,825±11,069 104,996±9,199
16d*: Manikala M3	WG1-27 WG1-28	32,05 32,04	80,01 80,03	4640 4393	3 3	q q	c c	1 1	11.358±0.21 4.959±0.118	LLNL3000 LLNL3000	146,773±13,526 70,822±6,493	109,695±13,459 56,154±6,851	106,056±12,943 54,392±6,604	103,637±10,668 52,22±5,365	122,745±10,924 61,989±5,515
	WG1-29 WG1-30	32,04 32,04	80,03 80,033	4445 4445	3	q	c c	1 1	3.016±0.053 7.653±0.227	LLNL3000 LLNL3000	41,698±3,735 107,537±10,142	34,648±4,167 84,389±10,481	34,127±4,086 81,799±10,11	33,074±3,339 79,17±8,314	37,08±3,223 93,453±8,55
	WG1-31	32,04	80,032	4445	3	q	с	1	7.062±0.131	LLNL3000	99,032±9,02	77,669±9,455	75,293±9,12	72,987±7,457	86,263±7,61
	WG1-32 WG1-33	32,04 32,04	80,03 80,03	4467 4467	3	q q	c c	1	12.613±0.172 14.702±0.157	LLNL3000 LLNL3000	178,452±16,411 209,613±19,339	156,595±19,285	149,934±18,351	124,021±12,731 145,764±14,99	149,893±13,289 177,202±15,741
17a*: CK M3	WG1-34 CK-40	32,04 32,49	80,03 79,67	4467 4320	3 7	q q	c b	1	16.249±0.205 8.174±0.157	LLNL3000 KNSTD	233±21,69 130,941±12,039	101,797±12,477	98,948±12,066	163,013±16,877 96,703±9,95	194,086±17,37 111,382±9,903
	CK-43 CK-44	32,48 32,48	79,66 79,66	4390 4400	2 4	q q	b b	1 1	8.065±0.186 11.297±0.238	KNSTD KNSTD	119,411±11,061 171,431±16	93,856±11,547	$91,078 \pm 11,149$		102,645±9,206 144,172±12,989
	CK-45 CK-46	32,48 32,48	79,66 79,66	4410 4425	9 7	ч q q	b b	1	9.201±0.18 11.972±0.144	KNSTD KNSTD	143,812±13,278 184,574±16,956	109,639±13,471	106,173±12,977	103,766±10,703 128,931±13,224	121,048±10,798 155,882±13,803
	CK-47 CK-48	32,48	79,66	4435	8	q	b b	1	7.373±0.107	KNSTD	112,035±10,15	88,136±10,706	$85,288{\pm}10,307$	82,801±8,423	97,225±8,522
1		32,48	79,66	4440	6	q		1	9.765±0.277	KNSTD	146,856±13,924		107,811±13,377 15,317±1,852	105,391±11,099 14,462±1,483	123,386±11,318
17b**: CK M2 inner	CK-50 CK-52	32,49 32,49	79,65 79,65	4440 4460	10 7	q q	ь b	1	1.041±0.028 6.286±0.11	KNSTD KNSTD	15,664±1,431 93,139±8,45	14,957±1,816 73,144±8,882	70,879±8,564	68,794±7,008	15,376±1,366 81,387±7,152

17e: CK M2 outer	CK-53 CK-54 CK-55 CK-56 CK-57 CK-58 CK-60 CK-61 CK-63	32,49 32,49 32,49 32,49 32,49 32,49 32,49 32,49 32,49 32,49	79,65 79,65 79,65 79,65 79,65 79,65 79,65 79,65 79,65	4470 4490 4485 4480 4475 4470 4440 4425 4390	7 6 5 8 6 6 7	q q q q q q q q	Ե Ե Ե Ե Ե Ե	1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 4.655\pm 0.092\\ 3.841\pm 0.091\\ 2.706\pm 0.054\\ 3.352\pm 0.08\\ 5.209\pm 0.106\\ 1.655\pm 0.045\\ 2.567\pm 0.094\\ \textbf{5.214\pm 0.14}\\ 4.709\pm 0.183 \end{array}$	KNSTD KNSTD KNSTD KNSTD KNSTD KNSTD KNSTD KNSTD	68,224±6,184 55,584±5,077 38,775±3,489 47,85±4,364 75,045±6,824 24,191±2,216 37,571±3,579 77,647±7,199 71,819±6,964	$\begin{array}{c} 53,482{\pm}6,482\\ 43,29{\pm}5,264\\ 32,526{\pm}3,922\\ 38,466{\pm}4,674\\ 59,522{\pm}7,23\\ 21,799{\pm}2,653\\ 31,748{\pm}3,954\\ 61,763{\pm}7,586\\ 57,178{\pm}7,205\end{array}$	$\begin{array}{c} 51,682{\pm}6,233\\ 42,338{\pm}5,125\\ 32,075{\pm}3,85\\ 37,791{\pm}4,571\\ 57,861{\pm}6,995\\ 21,913{\pm}2,655\\ 31,349{\pm}3,888\\ 60,225{\pm}7,363\\ 55,439{\pm}6,954 \end{array}$	49,807±5,071 41,226±4,224 31,073±3,149 36,863±3,774 55,644±5,68 20,934±2,152 30,341±3,217 58,091±6,022 53,277±5,724	$\begin{array}{c} 59,96{\pm}5,271\\ 47,71{\pm}4,229\\ 35,041{\pm}3,062\\ 41,55{\pm}3,679\\ 65,681{\pm}5,791\\ 22,972{\pm}2,047\\ 34,095{\pm}3,164\\ 67,824{\pm}6,103\\ 63,049{\pm}5,95\\ \end{array}$
We used Cronus 2.2 with ^a Uncertainties are report ^b ¹⁰ Be isotope ratios for 0 [*] Moraines not taken into ^{**} Moraines not taken in	CK-65 52,49 // y66 4.590 // q p 1 4.709±0.185 KNS1D // 1,819±6,964 57,178±7,205 55,459±6,954 55,27/±5,724 65,049±5,955 Sample density is 2.7 g/cm ³ , No crossion rate was applied. We used Cronus 2.2 with constant file 2.2.1. * 65,049±5,956 57,178±7,205 55,459±6,954 55,27/±5,724 65,049±5,956 * Uncertainties are reported at the 1,5 confidence level. * * * 7 * 7 * 7 * 7 * 7 * 7 * 7 *														
Samples T7C-62 on M and	nd KC2-78 on	AQu are o	utliers bec	ause twice	as old as	the next	odest age	е.							