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Abstract15

How oceanic plates cool and thicken with age remains a subject of debate, with sev-16

eral thermal models supported by apparently contradictory data. Combining a novel imag-17

ing technique that balances resolution and uncertainty with finite-frequency surface-wave18

measurements, we build tomographic model SS3DPacific to revisit the cooling style of19

the oceanic lithosphere beneath the Pacific ocean. Resolution analysis indicates a strong20

vertical smearing that biases estimates of the apparent lithospheric thickness, limiting21

the ability to discriminate between the half space and plate cooling models. Laterally,22

a pattern of anomalous bands in seismic velocity aligned with fracture zones points to23

additional lateral complexities in the lithosphere, complicating simple age-trend anal-24

yses.25

Plain Language Summary26

As the seafloor spreads away from mid-oceanic ridges, material cools down and the27

lithosphere, often defined by a temperature boundary, thickens. However, exactly how28

the lithosphere cools with age remains subject of debate. Some models suggest that it29

continues to cool down and thicken, others propose that the lower boundary of the litho-30

sphere flattens due to secondary processes. Here, we investigate this problem using seis-31

mic imaging of the oceanic lithosphere. Our novel method allows us to assess quantita-32

tively whether imaged structures are real or imaging artefacts. We show that imaging33

limitations do not allow us to discriminate between two widely-used models of the cool-34

ing of the oceanic lithosphere. Our results also show anomalous bands that line up with35

fractures in the oceanic crust. These point to lateral complexities in the cooling style of36

the oceanic lithosphere.37

1 Introduction38

Plate tectonics describes the motions of plates over the Earth’s surface, with oceanic39

lithosphere being created at mid-oceanic ridges and sinking into the mantle in subduc-40

tion zones. As oceanic plates move away from the ridges, they cool down by heat dif-41

fusion, subside, and thicken as evident in global bathymetry, heat flow, and gravity ob-42

servations (Richardson et al., 1995; Richards et al., 2020). However, our understanding43

of the structure and evolution of oceanic plates remains simplified and subject of debate.44

Two heat di↵usion models are often adopted for describing the thermal structure of the45

oceanic lithosphere: the Half-Space-Cooling (HSC) and Plate-Cooling (PC) models. HSC46

simply considers the lithosphere as a half-space cooling with age. While attractive for47

its simplicity, it does not match the apparent flattening of the lithosphere thickness at48

older ages supported by heat flow or bathymetry data. PC includes a boundary condi-49

tion at depth that produces the apparent flattening (McKenzie, 1967; Parsons & Sclater,50

1977). However, this ad hoc constraint assumes the existence of underlying physical pro-51

cesses that remain to be clarified (e.g. small-scale sub-lithospheric convection cells, Ballmer52

et al., 2009). Proponents of the HSC model reconcile it with observations either by adding53

complexity, such as secular cooling (e.g. Korenaga et al., 2021), or by calling attention54

to the inherent limitations of heat flow or bathymetry measurements (e.g. the e↵ect of55

sediment layers, Richards et al., 2020) or uncertainty and resolution artifacts in seismic56

imaging (e.g. Rawlinson et al., 2014). New observations, with better uncertainty quan-57

tification, are required to address this problem.58

Beyond the simple di↵usive cooling of the lithosphere, bathymetry data show that59

oceanic plates are not smooth plates, but include great intraplate complexity (Figure 1),60

such as linear hotspot tracks, sea mounts and fracture zones. The e↵ect of these struc-61

tures on the thermal structure of the lithosphere remains unclear, and is at present poorly62
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accounted for in studies of the cooling of the lithosphere (Wessel & Haxby, 1990; Matthews63

et al., 2011).64

Bathymetry, heat flow, gravity, seismic refraction and reflection data all provide65

crucial information for studying the oceanic lithosphere. However, constraints are either66

local or depth integrated and they are often strongly influenced by shallow Earth struc-67

ture (e.g. crust and sediment cover). Surface-wave tomography is a complementary tech-68

nique: surface waves are sensitive to temperature and o↵er global or basin-scale constraints69

(Ritzwoller et al., 2004; Zhou et al., 2006; Maggi et al., 2006; S. French et al., 2013; Auer70

et al., 2014; Isse et al., 2019). However, surface-wave data are contaminated by noise and71

theoretical errors, while seismic imaging is hindered by the heterogeneous source-receiver72

distribution and convoluted depth sensitivities. As a consequence, model resolution and73

uncertainty is often complex, but crucial to assess for robust interpretations (Rawlinson74

et al., 2014; Ritsema et al., 2007; Latallerie et al., 2022; Freissler et al., 2024). In prac-75

tice, resolution and uncertainty are di�cult to control, and computationally expensive76

to obtain for large-scale imaging problems (Fichtner & Trampert, 2011; An, 2012; No-77

let et al., 1999; Ritsema & Lekić, 2020).78

Here, we provide new constraints on the oceanic lithosphere using the 3D imag-79

ing framework of Latallerie et al. (2025). This approach combines the power of finite-80

frequency theory for surface waves (Snieder, 1986; Zhou, 2009a) with the Backus-Gilbert81

based SOLA method (Backus & Gilbert, 1968; Pijpers & Thompson, 1994; Zaroli, 2016)82

for inferring Earth structure. Finite-frequency o↵ers a more accurate and fully three-dimensional83

one-step framework, while SOLA provides control on resolution and uncertainty, also mak-84

ing these readily available by construction. Using this approach, we develop SS3DPacific,85

a new 3D model of the vertically polarised shear-wave velocity (VSV ) for the Pacific up-86

permost mantle. Equipped with SS3DPacific, its 3D resolution and uncertainty, we re-87

visit the age cooling trend of the lithosphere, and discuss our ability to discriminate be-88

tween the HSC and PC models. Beyond the simple age dependence of lithospheric cool-89

ing, we also discuss further complexities in the structure of the lithosphere.90

2 Data and method91

We measure surface-wave phase-delays relative to 1D model STW105 (Kustowski92

et al., 2008) between 6 mHz and 21 mHz adopting the approach of Latallerie et al. (2025).93

To obtain measurement uncertainty estimates, we use a multi-taper technique. We se-94

lect high-quality data based on a set of criteria, including spatial homogeneisation, re-95

sulting in a subset of 44,917 measurements (Figure 2a-b). The crustal signature is re-96

moved from the data using crustal model CRUST1.0 (Bassin et al., 2000).97

We combine 3D finite-frequency theory and SOLA inferences, relating fundamental-98

mode Rayleigh-wave phase-delays measured on the vertical component to perturbations99

in VSV , as described by Latallerie et al. (2025). Finite-frequency theory is more accu-100

rate than the great-circle approximation, and the volumetric nature of sensitivity ker-101

nels (Figure 2c) helps to stabilize the inversion (Zhou et al., 2004; Zhou, 2009a). Addi-102

tionally, it allows us to image 3D structure in a single inversion step. We solve the in-103

verse problem using the SOLA method (Zaroli, 2016; Zaroli et al., 2017), which provides104

control on resolution and uncertainty. The combination of finite-frequency theory with105

SOLA makes it possible to obtain resolution information in 3D, in contrast with earlier106

methods (e.g. Latallerie et al., 2022). We design a homogeneous target resolution through-107

out the model domain, aiming for a laterally isotropic resolution of 200 km in radius and108

25 km vertically (e.g. pancake shape targets). We use a local parameterisation with vox-109

els of 2o ⇥ 2o ⇥ 25 km and invert only for cells where the data sensitivity (Figure 2d)110

is su�ciently large. For example, at 112 km depth, we invert only for voxels in which111

the data sensitivity is above ⇠10 rad.km�3.112

–3–



manuscript submitted to Geophysical Research Letters

Figure 1. Map of the Pacific ocean and surrounding regions, showing the bathymetry

(shaded background, from GEBCO Bathymetric Compilation Group 2024, 2024), lithospheric

age (colormap, from Seton et al., 2020), hotpot locations (yellow crosses, from Jackson et al.,

2021), fracture zones (black lines, from Matthews et al., 2011), and plate boundaries (green lines,

from Bird, 2003). The size of the cross scales with the likelihood for the hotspot to have a deep

plume origin, consistent with the scoring approach of Koppers et al. (2021). Fracture zones are

labeled in blue (MD: Mendocino, MR: Murray, ML: Molokai, CR: Clarion, CP: Clipperton, GL:

Galapagos, MQ: Marquesas, AT: Austral); and hotspots in yellow (BO: Bowie, GU: Guadeloupe,

YE: Yellowstone, BA: Baja, GA: Galapagos, SA: San Felix, JU: Juan Fernandez, EA: Easter,

FO: Foundation, LO: Louisville, ER: Erebus, BA: Baleny, AU: Australia, TC: Tasmanid Central,

TE: Tasmanid Easter, MA: Manus, CA: Caroline, HA: Hanai, SA: Samoa, RA: Rarotonga, AR:

Arago, TA: Tahiti, MD: Mac Donald, PI: Pitcairn, MA: Marquesas, H: Hawaii).
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Figure 2. Data geometry and setup: a) Source and receiver distribution, b) Example ray dis-

tribution at 12 mHz, c) Example sensitivity kernel at 12 mHz including a cross-section along the

purple line, d) Overall data sensitivity defined as Sj = log 10
P

i
Gij , where G is the sensitivity

matrix, with cross-section below. Maps of c) and d) are plotted at 112 km depth.
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3 Structure, resolution and uncertainty of the Pacific uppermost man-113

tle according to SS3DPacific114

By construction, the SOLA method provides model uncertainty and resolution to-115

gether with the model estimate of � lnVSV (Figure 3 and 4). Counter-intuitively, uncer-116

tainty is higher in regions with good data coverage, balanced by a good fit to the tar-117

get resolution in these areas. High uncertainty spikes co-locate with isolated stations where118

data sampling di↵erent paths contradict one another. Resolution is generally well-focused119

laterally and circular. The resolution length, defined here as the 1-� contour of the Gaus-120

sian that best fits the resolving kernel, is around 300-500 km in radius. Vertically, the121

resolution tends to be smeared down to greater depths for shallow targets, or to shal-122

lower depths for deeper targets, with the optimal resolution found around 87-112 km depth.123

This strong vertical smearing, sometimes referred to as ‘depth leakage’, is expected to124

have strong implications for interpretations of the depth of structures in the tomographic125

model, and should therefore be taken into account.126

SS3DPacific agrees well with other recent tomography models (detailed in Table S1)127

in terms of large-scale velocity anomalies, such as the location of cratons, mid-oceanic128

ridges and the velocity gradient with distance from ridges (Figure S1). We also observe129

a good correlation between hotspot locations and low-velocity anomalies that stand out130

after we remove the lithosphere cooling trend and mask velocity anomalies that are not131

significant (see Figure S2), following the approach of Latallerie et al. (2022).132

4 Age cooling trend133

To investigate the cooling trend of the uppermost mantle, we interpolate the litho-134

spheric age model of Seton et al. (2020) onto the tomographic grid (Figure 3d) and use135

this to compute the averaged � lnVSV of SS3DPacific and other tomography models in136

2 Ma age bins (Figure 5). To avoid any complexities in the analysis, we analyse only cool-137

ing trends within the Pacific plate, far from plate boundaries, hotspots, and fracture zones138

(Figure S3). Following this procedure, we observe a wedge-like low-velocity region near139

the ridge that gradually deepens with age, before flattening (Figure 5), consistent with140

several other tomographic models.141

We compare the trends of model SS3DPacific with predictions based on the HSC142

and PC models. For HSC, we compute the thermal structure using the analytical ex-143

pression and constants from Stein and Stein (1992), whereas for PC we use the model144

of Richards et al. (2018). We apply the same age binning process as for the tomogra-145

phy. We do not convert temperatures to velocity to avoid assumptions in the conversion,146

and therefore only analyse the overall shape of the age trend and the impact of tomo-147

graphic resolution on this. Throughout this analysis, we assume the 1175oC isotherm148

represents the base of the lithosphere-asthenosphere boundary, as suggested by Richards149

et al. (2018).150

To directly compare the observed and predicted age trends, we need to account for151

the limited tomographic resolution, e.g. ‘tomographically filter’ the temperature predic-152

tions. Our study is unique in that we can apply the resolution provided by SOLA to the153

HSC and PC predictions (solid lines in Figure 5 and Figure S4). This allows us to ac-154

count for the vertical resolution smearing, which is crucial for interpreting structures such155

as the lithosphere-asthenosphere boundary. Figure 5 demonstrates that the filtering of156

HSC and PC predictions produces a similar isotherm ‘wedge’ shape as observed in the157

velocity structure of SS3DPacific. The filtering thus completely changes the geometry158

of the isotherms (i.e. cooling). Since this wedge-shape geometry of low-velocities is also159

present in other tomography models, these may also su↵er from similar vertical resolu-160

tion smearing. However, we cannot investigate this in detail, given full 3D resolution in-161

formation is generally not available for other models.162
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Figure 3. Model SS3DPacific at 112 km depth, showing a) Model uncertainty; b) Example

resolution kernels for 3 selected locations; c) Model estimates of � lnVSV ; and d) Age of the

lithosphere in Ma. For the resolution kernels in b), the blue ellipses indicate the 1-� contour of

the best fitting Gaussian. The purple line indicates the location of the cross-sections shown in

Figure 4.
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Figure 4. Model SS3DPacific compared to lithospheric age. a) Cross-sections through

SS3DPacific along the purple line in Figure 3 showing i) Model estimate of � lnVSV , ii) Model

uncertainty, iii-v) Example resolution kernels for target kernels centered at 37 km, 112 km, and

187 km depth respectively, at the same locations as in Figure 3b) as represented by blue dots.

Blue ellipses indicate in each case the 1-� contour of the best fitting Gaussian. The blue lines

represent the depth of the 1175oC isotherm in the PC model. b) Lithospheric age (purple) com-

pared to model estimate of � lnVSV at 112 km depth (black line with grey bands representing the

1-� uncertainty). The vertical grey lines show the location of the main fracture zones, labeled in

blue (see Figure 1).
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Figure 5. VSV structure of SS3DPacific compared to other seismic tomography models, av-

eraged in 2 Ma age bins. Purple and red dashed lines represent the 1175oC isotherm of the HSC

and PC models, respectively. For SS3DPacific, we also include the filtered versions that account

for the limited resolution (solid lines). We include tomography models SS2DPacific (Latallerie

et al., 2022), SGLOBE-rani (Chang et al., 2015), REVEAL (Thrastarson et al., 2024), FFSW1

(Zhou et al., 2006), S362ANI (Kustowski et al., 2008), SEMUCB-WM1 (S. W. French & Ro-

manowicz, 2014), and GLAD-M35 (Cui et al., 2024).

While the di↵erence between the original predictions of the HSC and PC models163

(dashed lines) is small, filtering makes them appear even more similar (solid lines). This164

implies that discriminating between them using surface-wave tomography is di�cult (Fig-165

ure S4). In particular, the flattening with age of the PC model appears weaker after fil-166

tering, diminishing the diagnostic di↵erence between the HSC and PC models. There-167

fore, vertical resolution smearing in surface-wave tomography is vital to take into account168

when interpreting imaged structures in terms of lithospheric cooling.169

5 Fracture zones170

Besides the main features in SS3DPacific (see Section 3), we observe an interest-171

ing pattern of anomalous bands aligned with major fracture zones in the North West and172

Equatorial Pacific (see Figures 3 and 4i). This is most pronounced around the depth of173

the lithosphere-asthenosphere boundary as predicted by the 1175oC isotherm of the PC174

model. The peak-to-peak di↵erence in � lnVSV between the bands is ⇠3%, which is above175

the average model uncertainty in this region of ⇠0.7% (Figure 4ii). The bands are spaced176

roughly ⇠800 km apart, thus resolvable given the lateral resolution length of ⇠450 km177

in this region (Figure 4iii-v). The resolution is laterally also very isotropic here (Figure 3b),178

implying that these bands do not arise from a lateral resolution smearing e↵ect. As we179

applied crustal corrections on the data, it is also unlikely to arise from a leakage of crustal180

structure down to the upper mantle. To further reinforce this argument, we repeat our181
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SOLA inferences for � lnVSV structure without the crustal correction, as well as for � lnVSV182

structure that only arises from the crustal correction term (Figure S5). The banded pat-183

tern is already visible in the model without crustal correction (Figure S5a). Our tests184

indicate that the banded pattern is not introduced or reinforced by the crustal correc-185

tion (Figure S5b). However, the crust could still cause the bands if the crustal model,186

or the crustal correction strategy, is insu�cient for removing the crustal e↵ect.187

To the best of our knowledge, this banded pattern at lithosphere-asthenosphere bound-188

ary depths has not been seen or interpreted in existing tomography models (Figure S1).189

We argue that we can resolve it in SS3DPacific thanks to the combined use of finite-frequency190

theory and SOLA inferences. The detailed sensitivity in the volumetric sensitivity ker-191

nels (Figure 2c) adds physical information, explaining why we are able to obtain a co-192

herent Pacific-wide model with only 44,917 measurements, compared with state-of-the-193

art surface-wave tomography studies that typically use millions of measurements. The194

SOLA method is also able to extract relevant information from the data at every tar-195

get location. Particularly, by designing the target kernels, we have prioritized a larger,196

but isotropic resolution over a smaller, but highly anisotropic and complex resolution.197

Models for the cooling of the lithosphere usually assume a laterally infinite plate,198

only accounting for vertical di↵usion of heat. Scaling analysis indicates that lateral dif-199

fusion in the direction of plate motion can be neglected (Parsons & Sclater, 1977), and200

that no di↵usion is expected perpendicular to this if the temperature is constant. How-201

ever, fracture zones produce lateral o↵sets in lithospheric age and thus thermal struc-202

ture that are likely incompatible with these assumptions. This may explain the bands203

of low and high velocity that we observe in SS3DPacific. Further investigation of this204

would require a numerical model of the thermal structure including o↵sets in the litho-205

spheric age, and a comparison of predictions from this model to the banded pattern ob-206

served in SS3DPacific. In turn, the tomographic observations could be used as new con-207

straints on the parameters of such modeling of the oceanic lithosphere.208

In the southern part of the cross-section (Figure 4), the anomalous bands appear209

to follow a consistent, expected relationship between age and wavespeed (younger litho-210

sphere being slower and older lithosphere being faster). However, in the northern part211

(between the Mendocino and Clipperton fracture zones), we note a more complex rela-212

tionship. While uncertainty and resolution limit our ability to interpret these trends, it213

suggests that additional non-negligible physical processes may occur at the fracture zones214

themselves. This is supported by other work that suggests that important changes in the215

structure of the lithosphere might occur at fracture zones. For example, the nature of216

volcanism along volcanic arcs has been observed to vary above subducted fracture zones217

(Manea et al., 2014), fracture zones appear to be more seismically active than thought218

(Bohnenstiehl et al., 2004), and may have higher heat flow than the average oceanic do-219

main (Gregory et al., 2023). More relevant to this work, they may be subject to fluid220

movements, hydration, metasomatism and water induced melting (Schmeling et al., 2017),221

potentially leading to local thinning of the lithosphere (Wang et al., 2022). While these222

processes occur on shorter spatial scales than SS3DPacific can resolve, the observed banded223

pattern in � lnVSV also hints at complexities in the structure of the lithosphere across224

fracture zones.225

6 Discussion and concluding remarks226

The availability of resolution and uncertainties allows us to quantitatively assess227

the robustness of di↵erent features and to compare SS3DPacific to model predictions of228

lithospheric cooling. Resolution analysis shows that it is impossible to discriminate be-229

tween the HSC and PC models due to strong vertical resolution smearing, a limitation230

that is likely shared with other surface-wave tomography models. A clear step forward231

would be the inclusion of overtones in our methodology, to better illuminate deeper man-232
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tle structure and thus potentially reduce the vertical resolution smearing. While some233

other tomography models do include overtone data (see Table S1), in the absence of res-234

olution information for these, it is di�cult to assess at present whether these data re-235

duce the vertical resolution smearing su�ciently to discriminate between the two cool-236

ing models.237

Laterally, SS3DPacific features a pattern of anomalous bands aligned with oceanic238

fracture zones that produce o↵sets in the age of the lithosphere. These bands do not show239

the expected relationship between age and wavespeed everywhere, suggesting that lat-240

eral heat transfer may occur. Thermal modeling including lateral heat di↵usion across241

fracture zones would help to understand these observations better, which in turn could242

provide new constraints on the physical characteristics of the lithosphere. Particularly,243

not all fracture zones have the same seismic signature; some align with velocity lows, oth-244

ers with velocity highs, reflecting possibly that di↵erent mechanisms occur at the frac-245

ture zones themselves. If fracture zones represented pathways for fluids, such as melt or246

water, the lithosphere along fracture zones may reheat and be rejuvenated or undergo247

cooling and metasomatism, respectively.248

To better investigate the processes occurring at fracture zones, new seismic con-249

straints could be derived using the same approach as presented here. In particular, map-250

ping both Vp and Vs with the same local resolution (Serra et al., 2025; Restelli et al.,251

2024) to obtain robust VP /VS ratios could provide constraints on enrichment in serpen-252

tine along fracture zones. Imaging radial anisotropy through joint inversion of Love and253

Rayleigh waves would also provide constraints on fracture alignments along fracture zones.254

Finally, mapping attenuation would make it possible to map melt migration across the255

fracture zones.256

The age-dependent structure of the oceanic lithosphere remains to be explored. Lat-257

eral complexities in lithospheric structure indicate that lateral di↵usion of heat may play258

a significant role across fracture zones. Detailed seismological images with better res-259

olution (laterally and vertically) will be needed to unravel the complex cooling history260

of the oceanic lithosphere. Such images will have to be accompanied by robust uncer-261

tainty and resolution information to ensure interpretations are free from methodolog-262

ical biases.263
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Tables and figures

Table 1. Details of tomography models shown in Figure 5 and Figure 11

Name Forward Inverse Parameters Parameterisation Data Domain

SS3DPacific Born FF SOLA 3D Vsv Local R fund. phase Uppermost-mantle

SS2DPacific Ray Data-misfit + SOLA 2D Vsv Local R multi. phase Upper-mantle

FFSW1 Born FF Data-misfit Vsv, Vsh Local R/G fund. phase Upper-mantle

REVEAL Adjoint Data-misfit Vsv, Vsh, Vp Local Full-waveform Whole-mantle

GLAD-M35 Adjoint Data-misfit Vsv, Vsh, Vp, eta Local Full-waveform Whole-mantle

SEMUCB-WM1 SEM-NACT Data-misfit Vs, Vsh/Vsv Local Full-waveform Whole-mantle

SGLOBE-RANI Ray Data-misfit Vs,
V sh2�V sv2

2V s2
, ⇢ Global R/G multi. phase/group, TT Whole-mantle

S362ANI Ray Data-misfit Vs, Vsh-Vsv, Vph-Vpv Global R/G fund. phase, body waveform, TT Whole-mantle

FF: Finite-frequency, R: Rayleigh, G: Love, fund.: fundamental, multi.: multimode, TT: Body-wave traveltimes, ⇢: density.
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Figure 1. Comparison of the absolute Vsv structure of SS3DPacific compared to a selec-2

tion of tomography models at 112 km depth. We include SS2DPacific (Latallerie et al., 2022),3

SGLOBE-rani (Chang et al., 2015), REVEAL:(Thrastarson et al., 2024), FFSW1 (Zhou et al.,4

2006), S362ANI (Kustowski et al., 2008), SEMUCB-WM1 (French & Romanowicz, 2014), and5

GLAD-M35 (Cui et al., 2024).6
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Figure 2. Significant lateral features in SS3DPacific, obtained by removing the age-7

dependence trend and normalising by the model uncertainty (std). We include a) all features,8

or mask values below b) the 1-� or c) the 2-� level. Yellow crosses indicate hotspot locations, see9

the caption of Figure 1 in the main text.10

Figure 3. Mask used to calculate the trends of the average velocity with age. Grey cells indi-11

cate regions that are included, while regions near hotspots (yellow crosses), fracture zones (black12

lines), and plate boundaries (green lines) are excluded. See the caption of Figure 1 in the main13

text for more details.14
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Figure 4. Thermal structure according to models HSC (first row) and PC (second row),15

as well as their di↵erences (last row). The left column shows the original, non-filtered thermal16

structure and the second column shows the filtered version using the SS3DPacific tomographic17

filter.18

Figure 5. Assessment of influence of crustal structure on the model solution, showing results19

for SOLA inference of a) data without crustal corrections applied, b) only predictions for crustal20

structure, and c) data with crustal corrections (i.e. SS3DPacific). We use a di↵erent colorscale21

for the cross-sections to better represent the range of velocities shown.22
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Citations for seismic networks used in this study

We list here the network codes (in bold) for stations analysed in this study
followed by the full citation as per the FDSN website, where available.

• IP: Anya Reading and Nick Rawlinson (2011); Ritter et al. (2014); Douglas
Wiens and Maria Beatrice Magnani (2018); Sarah Mader et al. (2022)

• 6E James Conder (2013); John Louie (2018); Pieter-Ewald Share and Frank
Vernon (2019); Elnaz Seylabi et al. (2021); Dahm et al. (2023); Susan Bilek
(2024)

• 7A Ryberg and Haberland (2008); Ramon Carbonell (2012); Maureen Long
and Paul Wiita (2013); Nicholas Schmerr (2017); Christopher W Johnson et
al. (2018); Yuan et al. (2019); Marcelo Rocha (2021); Neil Harbison and Craig
O’Neill (2024)

• 7C Vergne et al. (2014); Rufus Catchings (2014); Derek Schutt and Rick Aster
(2015); Costanzo et al. (2022)

• 7D Brian Kennett (1997); Wes Thelen and Paul Bodin (2009); IRIS OBSIP
(2011); Wenyuan Fan et al. (2018); Calum Chamberlain (2022)

• AE Arizona Geological Survey (2007)
• AI Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (1992)
• AK Alaska Earthquake Center, Univ. of Alaska Fairbanks (1987)
• AR No DOI
• AT NOAA National Oceanic and Atmospheric Administration (USA) (1967)
• AU Geoscience Australia (2021)
• AV Alaska Volcano Observatory-USGS (1988)
• AZ Frank Vernon (1982)
• BK Northern California Earthquake Data Center (2014)
• C No DOI
• C1 Universidad de Chile (2012)
• CB Institute of Geophysics China Earthquake Administration (IGPCEA) (2000)
• CC Cascades Volcano Observatory/USGS (2001)
• CI California Institute of Technology and United States Geological Survey
Pasadena (1926)

• CM Servicio Geológico Colombiano (1993)
• CN Natural Resources Canada (1975)
• CU Albuquerque Seismological Laboratory (ASL)/USGS (2006)
• DK GEUS Geological Survey of Denmark and Greenland (1976)
• G Institut de physique du globe de Paris (IPGP) and École et Observatoire des
Sciences de la Terre de Strasbourg (EOST) (1982)

• GG IRIS HQ (DC) (2012)
• GS Albuquerque Seismological Laboratory (ASL)/USGS (1980)
• GT Albuquerque Seismological Laboratory (ASL)/USGS (1993)
• IC Albuquerque Seismological Laboratory (ASL)/USGS (1992)
• II Scripps Institution of Oceanography (1986)
• IM Various Institutions (1965)
• IU Albuquerque Seismological Laboratory/USGS (1988)
• JP No DOI
• KS No DOI
• LB No DOI
• LD Lamont Doherty Earth Observatory (LDEO), Columbia University (1970)
• MI USGS Alaska Anchorage (2000)
• MM Department of Meteorology and Hydrology - National Earthquake Data
Center (2016)
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• MX Servicio Sismológico Nacional, Instituto de Geof́ısica, Universidad Nacional
Autónoma de México, México (2017)

• MY No DOI
• N4 Albuquerque Seismological Laboratory/USGS (2013)
• NA KNMI (2006)
• NE Albuquerque Seismological Laboratory (ASL)/USGS (1994)
• NM No DOI
• NN University of Nevada, Reno (1971)
• NR Utrecht University (UU Netherlands) (1983)
• NU Instituto Nicaraguense de Estudios Territoriales (INETER) (1975)
• OO NSF Ocean Observatories Initiative (2013)
• PB No DOI
• PE Penn State University (2004)
• PN No DOI
• PR University of Puerto Rico (1986)
• PS No DOI
• PY Frank Vernon (2014)
• RM Regional Integrated Multi-Hazard Early Warning System (RIMES Thai-
land) (2008)

• RV Alberta Geological Survey / Alberta Energy Regulator (2013)
• S1 Michelle Salmon et al. (2011)
• SC New Mexico Tech (1999)
• SV No DOI
• TA IRIS Transportable Array (2003)
• TM No DOI
• TW Institute of Earth Sciences, Academia Sinica, Taiwan (1996)
• TX Bureau of Economic Geology, The University of Texas at Austin (2016)
• UO University of Oregon (1990)
• US Albuquerque Seismological Laboratory (ASL)/USGS (1990)
• UW University of Washington (1963)
• WI Institut De Physique Du Globe De Paris (IPGP) (2008)
• XF Frank Vernon and Jon Fletcher (1987); Steve Day and Frank Vernon (1994);
Sridhar Anandakrishnan (1995); Frank Vernon and Ken Dueker (2000); John
Nabelek (2002); Steve Grand and Jim Ni (2006); Chris Larsen and Michael West
(2009); Douglas Wiens (2012); Meredith Nettles (2014); S. De Angelis and A.
Diaz-Moreno (2017); Tiberi et al. (2020); Haberland et al. (2021); Anne Meltzer
et al. (2021); Pilz et al. (2023); Paul et al. (2024)

• XZ Rick Aster and Philip Kyle (1999); Anthony Qamar (2001); Sylvie Leroy
(2003); Roger Hansen and Gary Pavlis (2005); Chris Hayward (2014); Christian
Poppeliers (2015); Frank Kruger et al. (2016); Silvio De Angelis (2018); Andy
Nyblade (2019); SOCQUET et al. (2020)

• Y6 Ian Joughin et al. (2006); Keir et al. (2016); Jamie Farrell et al. (2018);
John Louie and Ronald Breitmeyer (2019); Tilmann et al. (2021); Weisen Shen
(2023)

• YP Steve Grand and Jim Ni (2009); Zhao et al. (2016); Cornou et al. (2014);
Gordon Hamilton (2016); Doubre et al. (2021); Amanda Bustin (2019)

• Z7 Dan Klinglesmith (2008); Robert White (2010); Paul Bedrosian et al. (2017);
Vergne and RESIF (2021); Tulane University et al. (2019); Dietrich Lange and
Marcos Moreno (2023); Noah Finnegan and Susan Schwartz (2023)
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Kustowski, B., Ekström, G., & Dziewoński, A. M. (2008, June). Anisotropic shear-

wave velocity structure of the Earth’s mantle: A global model. Journal of Geo-
physical Research, 113 (B6), B06306. Retrieved 2022-10-03, from http://doi

.wiley.com/10.1029/2007JB005169 doi: 10.1029/2007JB005169
Lamont Doherty Earth Observatory (LDEO), Columbia University. (1970). Lamont-

doherty cooperative seismographic network. International Federation of Digi-
tal Seismograph Networks. Retrieved from https://www.fdsn.org/networks/

detail/LD/ doi: 10.7914/SN/LD
Latallerie, F., Zaroli, C., Lambotte, S., & Maggi, A. (2022, April). Analysis of to-

mographic models using resolution and uncertainties: a surface wave example
from the Pacific. Geophysical Journal International , 230 (2), 893–907. Re-
trieved 2022-04-20, from https://academic.oup.com/gji/article/230/2/

893/6544670 doi: 10.1093/gji/ggac095
Marcelo Rocha. (2021). Carajás mineral province seismic network. Interna-

tional Federation of Digital Seismograph Networks. Retrieved from https://

www.fdsn.org/networks/detail/7A 2021/ doi: 10.7914/SN/7A 2021
Maureen Long, & Paul Wiita. (2013). Mid-atlantic geophysical integrative collabo-

ration. International Federation of Digital Seismograph Networks. Retrieved

–12–



manuscript submitted to Geophysical Research Letters

from https://www.fdsn.org/networks/detail/7A 2013/ doi: 10.7914/SN/
7A 2013

Meredith Nettles. (2014). Understanding precambrian to present assembly of green-
land. International Federation of Digital Seismograph Networks. Retrieved
from https://www.fdsn.org/networks/detail/XF 2014/ doi: 10.7914/SN/
XF 2014

Michelle Salmon, Natalie Balfour, Malcolm Sambridge, Sima Mousavi, & Robert
Pickle. (2011). Australian seismometers in schools. AusPass. Retrieved from
https://www.fdsn.org/networks/detail/S1/ doi: 10.7914/SN/S1

Natural Resources Canada. (1975). Canadian national seismograph network. Nat-
ural Resources Canada. Retrieved from https://www.fdsn.org/networks/

detail/CN/ doi: 10.7914/SN/CN
Neil Harbison, & Craig O’Neill. (2024). Georgetown seismic traverse, north queens-

land. International Federation of Digital Seismograph Networks. Retrieved
from https://www.fdsn.org/networks/detail/7A 2024/ doi: 10.7914/3V05
-SW22

New Mexico Tech. (1999). New mexico tech seismic network. International Fed-
eration of Digital Seismograph Networks. Retrieved from https://www.fdsn

.org/networks/detail/SC/ doi: 10.7914/0ABK-1345
Nicholas Schmerr. (2017). Geodes san francisco volcanic field active seismic ex-

periment 2017. International Federation of Digital Seismograph Networks.
Retrieved from https://www.fdsn.org/networks/detail/7A 2017/ doi:
10.7914/TYZX-JN40

NOAA National Oceanic and Atmospheric Administration (USA). (1967). National
tsunami warning center alaska seismic network. International Federation
of Digital Seismograph Networks. Retrieved from https://www.fdsn.org/

networks/detail/AT/ doi: 10.7914/SN/AT
Noah Finnegan, & Susan Schwartz. (2023). Nodal seismometer deployment at oak

ridge earthflow near san jose, ca. International Federation of Digital Seismo-
graph Networks. Retrieved from https://www.fdsn.org/networks/detail/

Z7 2023/ doi: 10.7914/PNFW-J315
Northern California Earthquake Data Center. (2014). Berkeley digital seismic net-

work (bdsn). Northern California Earthquake Data Center. Retrieved from
https://ncedc.org/bk doi metadata.html doi: 10.7932/BDSN

NSF Ocean Observatories Initiative. (2013). Ocean observatories initiative. Interna-
tional Federation of Digital Seismograph Networks. Retrieved from https://

www.fdsn.org/networks/detail/OO/ doi: 10.7914/SN/OO
Paul, A., Mordret, A., Aubert, C., Chevrot, S., Sylvander, M., Pauchet, H., &

RESIF. (2024). Maciv-profiles temporary experiment of seismic imag-
ing of the lithospheric structure of the french massif central along 3 profiles
to complete the maciv-bb broadband network to be deployed in 2024, france
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Retrieved from http://www.ssn.unam.mx doi: 10.21766-ssnmx-sn-mx

Silvio De Angelis. (2018). Experiment in fuego. International Federation of Digi-
tal Seismograph Networks. Retrieved from https://www.fdsn.org/networks/

detail/XZ 2018/ doi: 10.7914/SN/XZ 2018
SOCQUET, A., BAEZ, J. C., MORENO, M., LANGLAIS, M., DEEP-Trigger Team,

Geophysics Technical Service At ISTerre, & RESIF. (2020). Deep trigger
temporary experiment in the subduction zone peru/chile, chile (resif-
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from https://seismology.resif.fr/networks/\#/7C 2009 doi: 10.15778/
RESIF.7C2009

Vergne, J., & RESIF. (2021). Rittersho↵en (bas-rhin, france) dense nodal seismic
array temporary experiment (resif-sismob). RESIF - Réseau Sismologique
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