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S U M M A R Y
This proof-of-concept study presents a parameter-free, linear Backus–Gilbert inversion
scheme, tractable for seismic tomography problems. It leads to efficient computations of
unbiased tomographic images, accompanied by meaningful resolution and uncertainty infor-
mations. Moreover, as there is no need to parametrize the model space in this parameter-free
approach, it enables numerically accurate data sensitivity kernels to be effectively exploited
in tomographic inversions. This is a major benefit over discrete tomographic methods, for
which data sensitivity kernels are often inaccurate, as they are projected on a given model
parametrization prior to be exploited in the inversion, and these parametrizations are usually
coarse to limit the number of parameters and keep tractable the problems of model estima-
tion and/or appraisal. Therefore, this new tomographic scheme fuels great hopes on better
constraining multiscale seismic heterogeneities in the Earth’s interior by exploiting accurate
data sensitivity kernels, that is, taking full advantage of known wave-propagation physics, and
enabling quantitative appraisals of tomographic features. As a remark, since its computational
cost grows as a function of the total number of data squared, it may be better suited to han-
dle moderate-size data sets, typically encountered in regional-scale tomography. Theoretical
developments are illustrated within a finite-frequency physical framework. A set of 27 070
teleseismic S-wave time residuals is inverted, with focus on imaging and appraising shear-
wave velocity anomalies lying in the mantle below Southeast Asia, in the 350–1410 km depth
range.
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1 I N T RO D U C T I O N

Tomographic images inferred from seismic data can be exploited to
provide constraints within which to frame and answer fundamental
questions on the Earth’s present-day internal structure, composition
and dynamics (e.g. Kennett & Bunge 2008; Nolet 2008; Romanow-
icz 2008). Recently, in an effort to build higher resolution tomo-
graphic models, finite-frequency effects (e.g. wave-front-healing)
present in seismic data have started to be accounted for through the
use of finite-frequency data sensitivity kernels (e.g. Dahlen et al.
2000; Hung et al. 2001; Montelli et al. 2004a; Tromp et al. 2005;
Mercerat et al. 2014; Zaroli et al. 2015). Interest for finite-frequency
tomography has been fuelled by continued evidence for structure-
related dispersion exhibited in local to global scale sets of P- and
S-wave cross-correlation time residuals (e.g. Hung et al. 2004; Yang
et al. 2006; Sigloch & Nolet 2006; Zaroli et al. 2010; Hosseini &
Sigloch 2015; Schuberth et al. 2015). However, despite theoretical
improvement upon the infinite-frequency approximation of ray the-
ory (e.g. Nolet et al. 2005), several studies have questioned on the
actual ability to better constrain small-scale seismic heterogeneities
in finite-frequency tomographic models (e.g. Van der Hilst & de

Hoop 2005; Dahlen & Nolet 2005; Boschi et al. 2006; Chevrot et al.
2012; Maceira et al. 2015; Maguire et al. 2018). Indeed, benefits
from using a finite-frequency wave-propagation physical approach
may be hampered by several factors, such as the data quality and
spatial coverage, and, as further discussed, the inversion scheme.

Most of linear or linearized tomographic inversions to date,
within ray-theory or finite-frequency frameworks, have been car-
ried out through two main technical steps (e.g. Aster et al. 2012):
(1) Parametrizing the model space with a finite number of parame-
ters; (2) Applying damped least-squares (DLS) methods to estimate
these parameters (model estimation), and, though often ignored be-
cause of prohibitive computational costs (e.g. Rawlinson et al. 2010,
2014), their resolution and uncertainty (model appraisal). The first
step implies that data sensitivity kernels have to be projected on a
given parametrization of the model space prior to be effectively ex-
ploited in the inversion (e.g. Nolet 2008). Consequently, in order to
fully exploit them for modelling finite-frequency effects in the data,
it is of crucial importance that finite-frequency data sensitivity ker-
nels remain numerically accurate after such projection. Although
there are various ways for parametrizing models (e.g. Sambridge
et al. 1995; Montelli et al. 2004b; Ritsema et al. 2011; Chevrot
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et al. 2012; Zaroli et al. 2015; Maguire et al. 2018), the num-
ber of parameters often has to be limited to keep computationally
tractable the problems of model estimation and/or appraisal. There-
fore, finite-frequency sensitivity kernels typically are projected on
coarse parametrizations, and thus look like ‘fat’ ray-theoretical sen-
sitivity kernels (i.e. no sensitivity variation all around the ray path).
Those projected sensitivity kernels are then no more suitable for
finite-frequency imaging purposes—a major ‘reason why finite-
frequency theory gave so far results similar to ray theory’ (Chevrot
et al. 2012). Another concern, which links to the second step, is that
amplitudes of DLS models may represent locally biased averages
over the true-model parameters in regions of poor data illumination
(Zaroli et al. 2017). This averaging bias effect is related to adding
ad hoc regularization constraints (different from a priori physical
constraints) on the model, such as L2-norm damping, to remove the
non-uniqueness inherent to the least-squares solution (e.g. Menke
1989; Nolet 2008; Voronin & Zaroli 2018). Since uneven data cov-
erage prevails in local to global scale tomographic experiments,
most DLS models are prone to be locally biased—what may lead to
model misinterpretations.

In this study, we aim to present a new tomographic scheme that
overcomes all the drawbacks related to the previous two techni-
cal steps. First of all, a fundamental insight from the pioneering
works by Backus & Gilbert (1967, 1968, 1970) is that tomographic
problems are invariably, at least partly, underdetermined: ‘the col-
lection of Earth models which yield the physically observed values
of any independent set of gross Earth data is either empty or infinite
dimensional’ (Backus & Gilbert 1967). Recognizing this fact, the
linear Backus–Gilbert (B–G) inversion scheme, which belongs to
the class of Optimally Localized Averages (OLA) methods, seeks
not to construct a particular model solution, that is, to estimate
model parameters, but instead to determine spatially localized, un-
biased averages over the continuous true-model properties. Thus,
the B–G approach seems relevant to move toward parameter-free
and unbiased tomography, while enabling to solve all at once the
problems of model estimation and appraisal. However, many au-
thors subsequently found it to be too computationally intensive,
as well as impractical in the presence of data errors (e.g. Menke
1989; Parker 1994; Trampert 1998; Aster et al. 2012). Recently,
following the discrete B–G framework suggested by Nolet (1985),
for which a local parametrization of the model space is assumed,
Zaroli (2016) uncovered an efficient way of adapting a variant of
B–G, namely the SOLA method (Subtractive OLA, proposed by
Pijpers & Thompson (1992) for helio-seismic inversions), to large-
scale, linear and discrete seismic tomography problems, even in
the presence of data errors. The reader is referred to Zaroli et al.
(2017) for a formal comparison of the discrete SOLA and DLS
inversion schemes in terms of model estimation and appraisal, as
well as for a quantitative illustration of averaging bias effects that
may occur in DLS models— both based on synthetic tomographic
experiments.

The goal of this study is then to extend the method of discrete
SOLA tomography to the parameter-free case, so that the model
space can retain its infinite dimensional nature and a specific model
parametrization never be introduced—and accurate data sensitivity
kernels be effectively exploited in the inversion. Section 2 presents
theoretical developments on this new method, named parameter-
free SOLA tomography, within a finite-frequency physical frame-
work (Dahlen et al. 2000). For illustrative purposes, the parameter-
free SOLA approach is applied to a finite-frequency inversion of
27 070 teleseismic S-wave time residuals, with focus on imaging
and appraising shear-wave velocity anomalies lying in the mantle

below Southeast Asia, in the 350–1410 km depth range. In Sec-
tion 3, parameter-free SOLA tomography is discussed against dis-
crete SOLA and DLS, and several perspectives and future applica-
tions are highlighted. Computational aspects involved in parameter-
free SOLA tomography are discussed in Appendix A, including how
to reduce the costs and memory requirements.

Finally, this proof-of-concept paper aims to open a new way for
solving linear tomographic problems, that: (1) allows accurate data
sensitivity kernels to be effectively exploited in tomographic inver-
sions; (2) leads to efficient, embarrassingly parallel, computations of
unbiased tomographic images accompanied by meaningful resolu-
tion and uncertainty informations, enabling quantitative appraisals
of tomographic features; (3) is tractable even with limited compu-
tational resources, provided moderate-size data sets—as frequently
encountered in regional-scale experiments.

2 PA R A M E T E R - F R E E S O L A
T O M O G R A P H Y

2.1 Preamble

We are interested in linear tomographic problems of the form

di =
∫

Ki (r) m (r) d3r + ni , 1 ≤ i ≤ N , (1)

where di is the ith datum, Ki the sensitivity kernel, ni the noise,
and m the ‘true’ model. As a leitmotiv, we consider the case of
finite-frequency S-wave time-residual tomography, aimed at imag-
ing 3-D shear-wave velocity anomalies in the Earth’s mantle. Thus,
m(r) denotes the shear-wave velocity perturbation in r with respect
to a radial velocity model, di represents an S-wave time residual
measured by cross-correlating a pair of observed and synthetic
waveforms filtered around a given central period, and Ki (r) is a
volumetric, S-wave time-residual sensitivity kernel which depends
on the filtering period (Marquering et al. 1998; Dahlen et al. 2000).
In this study, we assume that the noise (ni)1 ≤ i ≤ N has zero mean and
the data covariance matrix is diagonal: Cd = diag(σ 2

di
)1≤i≤N . From

hereon, both the data di and sensitivity kernels Ki are scaled by the
data errors σdi .

In our view, discretizing a finite-frequency sensitivity kernel Ki

on a grid made of 50 km edge-length cubic cells is sufficient to fully
capture its form (i.e. all its characterizing sensitivity variations),
as illustrated in Fig. 1(a) for an SS phase. Discretizing sensitiv-
ity kernels is necessary to perform numerical calculations, but is
fundamentally different from discretizing the model space. That is,
discretizing the model space leads sensitivity kernels to be projected
onto the model parametrization prior to be exploited in the inver-
sion. Fig. 1(b) shows the projection of the same SS sensitivity kernel
on a tomographic grid made of 200 km edge-length cubic cells. One
sees that the projected kernel looks like a ‘fat’ ray-theoretical sen-
sitivity kernel, that is, there is almost no sensitivity variation all
around the ray path. Such a projected kernel is no more suitable for
finite-frequency imaging purposes.

Most tomographic experiments rely on worldwide distributed
earthquakes and/or receivers, for example, see Fig. 2(a), so that sen-
sitivity kernels may sample any part of the mantle, and, therefore,
the entire mantle needs to be parametrized. To fully capture the form
of every finite-frequency sensitivity kernels, one could parametrize
the whole mantle using 50 km edge-length cubic cells, which would
lead to 7.2 million parameters and then make intractable the prob-
lems of model estimation and/or appraisal.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/218/1/619/5454747 by Service C

om
m

un de D
ocum

entation user on 09 M
ay 2019



Parameter-free SOLA tomography 621

Figure 1. (a) 3-D, finite-frequency, SS-phase time-residual sensitivity kernel (120◦ epicentral distance, 22 s central period of a passband Gaussian filter). It is
discretized on a local Cartesian grid made of regularly spaced 50 km edge-length cubic cells, spanning a rectangular parallelepiped region (thick grey solid
line). The Earth’s surface and core–mantle boundary (transition zone) are depicted with thick (thin) black solid lines, respectively, and the earthquake and
receiver with a star and triangle. (b) Same SS sensitivity kernel but after projection on a tomographic grid that consists in regularly spaced 200 km edge-length
cubic cells; note that the projected sensitivity kernel looks like a ‘fat’ ray-theoretical kernel—that is, almost no sensitivity variation all around the geometrical
ray path (black dashed line).

Figure 2. (a) Globally distributed earthquakes (∼ 4000 stars) and receivers (∼ 250 triangles) corresponding to the set of teleseismic S-wave data used in this
study. Tectonic plates are drawn in black–green dashed lines. (b) Zoom-in on the ‘Southeast Asia’ region (black frame).

In the following, we aim at showing from theory to practice that
parameter-free SOLA tomography: (1) provides an efficient way to
circumvent the need for parametrizing the model space, enabling
numerically accurate sensitivity kernels to be exploited in tomo-
graphic inversions; (2) leads to efficient, all-at-once, computations
of unbiased tomographic images, accompanied by resolution and
uncertainty informations.

2.2 Theory

In the B–G approach, one explicitly seeks an estimate, m̂(k), that rep-
resents a weighted average over the continuous true-model proper-
ties, m(r). This averaging process takes place through an averaging
kernel, A(k)(r), that we wish to be spatially localized around a given
query point, r(k). This leads to writing:

m̂(k) =
∫

A(k) (r) m (r) d3r (+ propagated noise) . (2)

We wish that the integral
∫

A(k)m yields unbiased averages over the
true model m. The averaging kernel A(k) should then satisfy to the
following ‘unimodular condition’:∫

A(k) (r) d3r = 1 ; (3)

and also be non-negative. As a remark, the model estimate m̂(k) is
said to be biased (Nolet 2008) if the averaging kernel A(k) does not
meet (3). Zaroli et al. (2017) show (though in a discrete frame-
work) that if

∫
A(k) is larger (smaller) than one, then m̂(k) may be

biased toward higher (lower) amplitude values, respectively, and
thus not represent anymore a true averaging over the true model.
They demonstrate that this averaging bias effect may occur in DLS
models, especially in regions with poor data coverage. Since B–G
(or SOLA) estimates are explicitly constrained to meet (3), they
are expected to be unbiased. Averaging kernels, also referred to as
resolving kernels, inform us on the local resolving length in tomo-
graphic images, that is, the minimum size of velocity anomalies
that could be locally detected. For example, if a resolving kernel
A(k) was constant-valued inside a 3–D ball centred on a query point
r(k) and zero elsewhere, then the ball’s radius would correspond to
the resolving length that one could, at best, expect to reach in r(k).
Since the forward problem (1) is linear, one can seek the estimate
m̂(k) as a linear combination of the data:

m̂(k) =
N∑

i=1

x (k)
i di , (4)

where the N unknown, real-valued coefficients

x(k) =
(

x (k)
i

)
1≤i≤N

(5)
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represent a generalized inverse operator that maps the data to the
estimate. From eqs (1), (2) and (4), one can write the estimate as:

m̂(k) =
∫ (

N∑
i=1

x (k)
i Ki (r)

)
︸ ︷︷ ︸

A(k)

m (r) d3r +
N∑

i=1

x (k)
i ni︸ ︷︷ ︸

propagated
noise

, (6)

and the resolving kernel A(k) can be formally expressed as a linear
combination of the sensitivity kernels:

A(k) (r) =
N∑

i=1

x (k)
i Ki (r) . (7)

The term
∑

i x (k)
i ni in (6) represents the amount of data noise that

propagates into m̂(k). The variance in the model estimate m̂(k) can
be expressed as:

σ 2
m̂(k) =

N∑
i=1

(
x (k)

i

)2 (
σdi

)2 =
N∑

i=1

(
x (k)

i

)2
, (8)

since the data were scaled by their errors. The uncertainty σm̂(k)

informs us on the level of propagated noise in the ‘weighted average’
estimate m̂(k). As a remark, σm̂(k) cannot inform us on how much
m̂(k) may differ from the true-model value m(r(k))—at least when
the spatial variations of m are non-smooth and/or the spatial extent
of A(k) is far from a Dirac delta function. Both the resolving kernels
and uncertainties are needed for quantitative model appraisals, to
apprehend whether emerging structures in tomographic images are
resolved given the data and their errors (see Section 2.4). Once the
generalized inverse x(k) is known, one can directly infer the estimate
m̂(k), resolving kernel A(k) and uncertainty σm̂(k) :

x(k) =⇒

⎧⎪⎨
⎪⎩

∑N
i=1 x (k)

i di −→ m̂(k)∑N
i=1 x (k)

i Ki (r) −→ A(k)(r)
(
∑N

i=1(x (k)
i )2)1/2 −→ σm̂(k) .

(9)

The B–G approach consists in directly solving for the generalized
inverse x(k), such that x(k) leads to the most peak-shaped resolving
kernel A(k) around the query point r(k), while moderating at most
the propagated noise, that is, minimizing the variance σ 2

m̂(k) . Zaroli
(2016) has introduced and adapted to large-scale, linear and discrete
seismic tomography problems the SOLA method, an alternative B–
G formulation which retains all its advantages but is more efficient
and versatile in the explicit construction of resolving kernels (Pi-
jpers & Thompson 1992). We aim at extending the discrete SOLA
tomographic method to the parameter-free case, named parameter-
free SOLA tomography. The key idea of SOLA is to specify an a
priori target form T(k) for each resolving kernel A(k). Those ‘target’
resolving kernels, T(k), are referred as target kernels for short. In
the parameter-free case, a target kernel T(k) is formally defined as
follows:

T (k)(r) =
{

1/
∫
r∈S(k) d3r if r ∈ S

(k)

0 elsewhere ,
(10)

where S
(k) is a volumetric region well localized in the model space

(e.g. a ball or a spheroid), which is centred on r(k) and whose size
represents an a priori estimate of the local resolution. Note that (10)
implies that target kernels also satisfy to the unimodular condition:∫

T (k) (r) d3r = 1 . (11)

Rather than minimizing the spread of each resolving kernel, SOLA
aims at minimizing the integrated squared difference between each

resolving kernel and its associated target kernel. That is, for every
query point, r(k), the parameter-free SOLA minimization problem
consists in finding the coefficients x(k) ∈ R

N such that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ [
A(k)(r) − T (k)(r)

]2
d3r︸ ︷︷ ︸

resolution
misfit

+ η2 σ 2
m̂(k)︸︷︷︸

model
variance

= min

s.t.
∫

A(k)(r)d3r = 1︸ ︷︷ ︸
unimodular
condition

.
(12)

Since the value of the trade-off (resolution versus uncertainty) pa-
rameter η is free to differ for every query point r(k), one should rather
write it as η(k). In this study, we choose it to be constant-valued and
then drop the k subscript. Indeed, as suggested by Zaroli (2016)
and Zaroli et al. (2017), a constant trade-off parameter η may lead
to ‘globally coherent’ tomographic images when the size of target
kernels is set to spatially vary as ray density, that is, a proxy for the a
priori local resolution (see Section 2.4). The parameter-free SOLA
minimization problem (12) can be written in the matrix form:{

F(η)x(k) = u(k)

s.t. cTx(k) = 1 ,
(13)

where elements of the symmetric matrix F(η) = (F (η)
i i ′ )1≤i,i ′≤N , and

vectors c = (ci )1≤i≤N and u(k) = (u(k)
i )1≤i≤N are given by⎧⎨

⎩
F (η)

i i ′ = ∫
Ki (r) Ki ′ (r) d3r + η2δi i ′

ci = ∫
Ki (r) d3r

u(k)
i = ∫

T (k) (r) Ki (r)d3r ,

(14)

with δ the Kronecker symbol. Though systems as (13) are usually
solved using Lagrange multipliers, we rather follow Nolet (1985)
and Zaroli (2016) and use an LSQR-based approach. Let us consider
the three column vectors (assuming c1 
= 0):

x̂(k) =
(

x (k)
i

)
2≤i≤N

, ĉ =
(

ci

c1

)
2≤i≤N

, e1 = (δi1)1≤i≤N . (15)

We wish the resolving kernel A(k) to satisfy to the unimodular con-
dition (3), which may also be written as follows:

cTx(k) = 1 . (16)

The first element of x(k) can be expressed in terms of the others:

x (k)
1 = c−1

1 − ĉTx̂(k)
, (17)

and the vector x(k) be written in function of x̂(k), that is,

x(k) = Bx̂(k) + c−1
1 e1 , (18)

where the matrix B is defined as:

B =
(−ĉT

IN−1

)
, (19)

with IN − 1 the identity matrix of order N − 1. The parameter-free
SOLA problem (13) consists in solving for x̂(k) the system:

H(η)x̂(k) = v(k,η) , (20)

and then inferring the generalized inverse solution x(k) from x̂(k),
where the matrix H(η) and vector v(k,η) are defined as:{

H(η) = F(η)B
v(k,η) = u(k) − F(η)c−1

1 e1 .
(21)
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We use LSQR (Paige & Saunders 1982) to numerically solve (20);
for a given η, it iteratively converges to the solution:

x̂(k,η) = arg min
x̂(k)∈RN−1

: ||v(k,η) − H(η)x̂(k)||2 , (22)

where || · || denotes the L2-norm.

2.3 Numerical considerations

Since a constant-valued trade-off parameter η is assumed, there are
P parameter-free SOLA tomographic systems (20) to be set up, and
solved, where P is the total number of query points r(k). First, one
needs to compute P vectors v(k,η) = (v(k,η)

i )1≤i≤N , with

v
(k,η)
i =

∫
T (k) Ki︸ ︷︷ ︸
u

(k)
i

−
[∫

Ki K1 + η2δi1

]
︸ ︷︷ ︸

F
(η)
i1

c−1
1 . (23)

This task mainly consists in calculating, at most, P × N integrals∫
T(k)Ki; it is cheap to compute the small fraction of non-zero in-

tegrals
∫

KiK1 (see Appendix A5). In this study, we assume that
there are much more data than query points, that is, P/N � 1 (e.g.
P/N � 16 per cent in Section 2.4). Our view is that there is no need
to consider too many query points, that is, not more than required
to fit the spatial variations of the a priori local resolution; the same
argument holds for data-driven, irregular tomographic grids (e.g.
Sambridge et al. 1995; Nolet & Montelli 2005; Zaroli et al. 2015).
Concerning the application in Section 2.4, we report that it is not
costly to compute, in parallel, all those, at most, P × N � N2 inte-
grals

∫
T(k)Ki. Numerical details for calculating them are discussed

in Appendix A. Second, one has to compute the matrix H(η), of size
N × (N − 1), whose elements are given by

H (η)
μν =

∫
KμKν+1 + η2δμ,ν+1︸ ︷︷ ︸

F
(η)
μ,ν+1

−
[∫

KμK1 + η2δμ1

]
︸ ︷︷ ︸

F
(η)
μ1

cν+1

c1︸︷︷︸
ĉν

, (24)

where 1 ≤ μ ≤ N and 1 ≤ ν ≤ N − 1. Since the matrix H(η)

does not depend on the query point, it does not need to be recom-
puted P times. This nice property is due to the SOLA formulation
itself—a crucial advantage compared to the B–G approach (e.g.
Pijpers 1997). The matrix H(η) can be easily derived from the sym-
metric matrix F(η) of order N. The main computational difficulty
of parameter-free SOLA tomography, compared to discrete SOLA,
arises from the calculation of F(η). Though it is not costly to compute
its N diagonal elements, F (η)

i i = ∫
K 2

i + η2, it may be expensive to

compute its N(N − 1)/2 off-diagonal elements, F (η)
i i ′ = ∫

Ki Ki ′ . In-
deed, as the number of integrals

∫
Ki Ki ′ grows as a function of

N2, this may be a computational burden when facing large data sets
(see Section 3), especially if one aims at fully capturing the form
of finite-frequency sensitivity kernels (see Section 2.1). Numerical
details for calculating F(η) are given in Appendix A. It is straight-
forward to calculate H(η) and v(k,η) for different η values. Last, but
not least, it is worth of noting that parameter-free SOLA tomog-
raphy is well suited for parallel computations, since the problem
can be easily separated into a number of independent computa-
tional tasks, for example, to calculate all the P vectors v(k,η), the
∼N2/2 integrals

∫
Ki Ki ′ , and the P LSQR-solution vectors x̂(k,η).

Finally, we show in Appendix A how to reduce the computational
costs and memory requirements involved in setting up and solving
parameter-free SOLA tomographic systems, tailored to teleseismic
finite-frequency body-wave mantle tomography.

2.4 Application

We aim at applying the parameter-free SOLA tomographic method,
within a finite-frequency physical framework (Dahlen et al. 2000),
to the problem of imaging and appraising isotropic variations of
shear-wave velocities in the mantle region below Southeast Asia,
with respect to the reference radial velocity model iasp91 (Kennett
& Engdahl 1991). The Southeast-Asia region, depicted in Fig. 2(b),
is chosen without any particular purpose, except that it is charac-
terized by several deep subduction systems, and because of a large
amount of data available in that region, making it worth for first
time testing parameter-free SOLA tomography.

Our data set consists in N = 27 070 teleseismic S and SS time
residuals, measured by cross-correlation technique at 22 s central
period (passband Gaussian filter) (Zaroli et al. 2010). The asso-
ciated, globally distributed earthquakes and receivers are shown
in Fig. 2(a). These data are a subset of those used in previous,
global-scale, discrete SOLA and DLS tomographic experiments
(Zaroli 2016). To generate it, a selection criterion was applied to
ensure that every data sensitivity kernels sample the mantle region
of interest. Estimates of data errors include earthquake-location and
measurement-process errors (Zaroli et al. 2010, 2013); these orig-
inal errors were additionally increased by 30 per cent by Zaroli
(2016) to have unit reduced chi-square for a global DLS model.
Each finite-frequency sensitivity kernel is calculated at 22 s period
on a grid made of 50 km edge-length cubic cells (see Fig. 1a and
Appendix A1), using analytical formulae (Zaroli et al. 2013) for
which is assumed a Gaussian source power spectrum (Hung et al.
2001).

Each target kernel T(k) is a spheroid centred on a query point.
We follow Zaroli (2016) to specify the locations and sizes of tar-
get kernels. We use the ray density as a first-order proxy for the
spatial variations of the a priori local resolution, make an educated
guess about the a priori resolving-length bounds, and then interpo-
late to determine the sizes of target kernels at given locations. To
limit the number of query points, their locations are chosen such
that they fit the spatial distribution of the a priori local resolving
length. Fig. 3 displays lateral views of all the P = 4310 target ker-
nels. They are spanning the region of interest at eight depths in the
350–1410 km range, where our data coverage is the most relevant.
The lateral radius of target kernels is driven by ray density; it ranges
from 200 to 1000 km and represents the a priori, isotropic, local,
lateral resolving length. Their radial radius gradually varies from
130 to 200 km in the 350–1410 km depth range, respectively, and
represents the a priori, local, radial resolving length. A constant
value is chosen for the trade-off parameter η, after having tested
a few different values. Note that SOLA solutions depend on tun-
able inversion parameters (target kernels and trade-off parameter),
so that different choices would result in different, unbiased model
estimates and appraisals—leading to different, fully quantitative
and thus meaningful (at least in a mathematical sense) model in-
terpretations. As a remark, in the case of a synthetic tomographic
problem, Zaroli et al. (2017) illustrate the variability of SOLA so-
lutions (i.e. model, resolution, uncertainty) as a function of the
trade-off parameter η.

Conventional tomographic images can be built, for plotting pur-
poses, from linear interpolations among the model estimates, m̂(k).
Fig. 4 shows the resulting images in the upper mantle (350 km
depth), transition zone (465, 595 km depth) and mid lower man-
tle (735, 885, 1035, 1210, 1410 km depth). Some features seem to
be worth of further investigations. For example, those character-
ized by strongly positive velocity anomalies (bluish); some of them
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624 C. Zaroli

Figure 3. Drawn circles represent lateral, 2–D views of all the 4310 parameter-free SOLA target kernels spanning Southeast Asia at eight different depths in
the mantle (350 to 1410 km). Note that a query point lies at the centre of each circle, whose radius is colour coded and ray-density driven (see Section 2.4).

Figure 4. Parameter-free SOLA tomographic images (see Section 2.4).

correspond to major deep subducted slabs, as in the Sumatra and
Java regions (indicated in Fig. 2b). Even more interesting are the
negative anomalies (reddish) appearing on west–southwest side of
the Sumatra slab in the 350–1035 km depth range (see Figs 4a–f),
while none are showing up nearby on the south side of the Java slab.
Quantitatively interpreting these complex structural features would

require to analyse them in the light of resolving kernels and uncer-
tainties, which is beyond the scope of this work (see Section 3). As
a remark, Zaroli et al. (2017) report that for their synthetic tomo-
graphic experiments, the discrete SOLA models do fit the data at
the same level as the DLS models—while the SOLA method is not
specifically aimed at minimizing the data misfit. In this study, one
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Parameter-free SOLA tomography 625

Figure 5. Parameter-free SOLA uncertainties (see Section 2.4).

cannot compute the data misfit because the parameter-free SOLA
model is calculated in a limited region (Southeast Asia), while the
data coverage spans almost the whole mantle.

Fig. 5 shows interpolated maps of uncertainties, σm̂(k) . They
merely represent the amount of data noise that propagates into the
model estimates, and come with some underlying assumptions on
the noise itself (which is assumed to follow uncorrelated, zero-mean,
Gaussian statistics). While the amplitudes of the model estimates
are within ±3 per cent, one sees that their uncertainties may reach
at most 0.4 per cent. As expected, the spatial variations of uncer-
tainties are similar to those of the ray-density driven target kernels
(see Fig. 3). In the regions where the size of target kernels is large
(small), that is, the a priori local resolution is poor (good), the
uncertainty is low (high), respectively—the unavoidable trade-off
between resolution and uncertainty (e.g. Menke 1989).

Resolving kernels, A(k), have to be calculated in a consistent way
with respect to the discretization of data sensitivity kernels. In this
study, each resolving kernel is then computed on a grid which con-
sists in 50 km edge-length cubic cells surrounding the considered
query point (see Appendix A4), enabling us to fully capture its
form. Fig. 6 shows three examples of resolving kernels, associated
to three query points located below Sulawesi Island at 350, 595
and 1035 km depth. Horizontal and vertical cross-sections through
those resolving kernels are shown. As expected for teleseismic S-
wave tomography, their lateral (radial) extent is smaller (larger) in
the upper than lower mantle, respectively. That is, vertical smear-
ing (horizontal leaking) mainly occurs in the upper (lower) mantle,
respectively. As a remark, one possible artefact that SOLA could
be prone to arises when resolving kernels are significantly nega-
tive, since they cannot be considered as truly averaging kernels.
This does not appear to be the case in this study; for example, only
weak negative values are observed in Fig. 6. Pijpers & Thompson
(1994) and Zaroli et al. (2017) discuss how to avoid such artefacts
by enlarging the size of target kernels. Note that the target kernels

may differ from the actual resolving kernels (see Fig. 6). This sim-
ply means that the a priori local resolving length was chosen too
optimistically. However, as long as the resolving kernels are mostly
non-negative and spatially well localized, they can be exploited for
appraising the actual local resolution in tomographic images.

Finally, to illustrate the appraisal of tomographic features with
the parameter-free SOLA approach, we discuss whether is resolved
the lateral flattening of the Sumatra–Java slabs in mid lower mantle.
Indeed, the lateral extent of these slabs appears to be much smaller
in the upper mantle (see Fig. 4a) and transition zone (see Figs 4b and
c), compared to mid lower mantle (see Figs 4d–g). To have a clue
on the variations with depth of the lateral resolving length in this
region, let us consider the three resolving kernels shown in Fig. 6 and
estimate their lateral extent, that is, the local lateral resolving length.
We report that, below Sulawesi Island, the lateral resolving length
is, at most, 200 km (300, 500) at a depth of 350 km (595, 1035),
respectively. In particular, Fig. 6(c) indicates that the lateral extent of
these slabs around Sulawesi Island at 1035 km depth is much larger
than the local lateral resolving length. Moreover, model estimates
are 0.95, 0.92 and 1.03 per cent for the corresponding query points
below Sulawesi Island at 350, 595 and 1035 km depth, while their
uncertainties are three times smaller, that is, 0.33, 0.30 and 0.29,
respectively. Thus, one can argue that the slab lateral flattening that
takes place in mid lower mantle, at least below Sulawesi Island, is
resolved given our data and their errors.

3 D I S C U S S I O N A N D P E R S P E C T I V E S

First, we aim to discuss when parameter-free SOLA tomogra-
phy should be preferred to discrete SOLA tomography, and vice
versa. Let M∞ be the minimum number of parameters required to
parametrize the entire model space, so that every projected sen-
sitivity kernels are accurate. In the context of teleseismic, finite-
frequency, S-wave mantle tomography, it leads to M∞ � 106–107
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Figure 6. Visualization of horizontal and vertical cross-sections across three parameter-free SOLA resolving kernels (see Section 2.4). The associated three
query points are highlighted with green dots; they are located at three selected depths (350, 595 and 1035 km) below the Sulawesi island. Tomographic images
are also displayed. Each drawn black circle (ellipse) represents the horizontal (vertical) spatial extent of the corresponding spheroid-shape target kernel,
respectively.

(see Section 2.1). If one aims at fully exploiting finite-frequency
theory, but cannot handle discrete SOLA inversions with M∞ pa-
rameters, then one should definitely use the parameter-free SOLA
approach. However, if the total number of data is too high, for ex-
ample, N � 105, it may not be tractable to compute the ∼N2/2
elements of the matrix F(η) (see Section 2.3, Appendix A). Hence,
one may have no choice but to move back to discrete SOLA with
a total number of parameters M � M∞ (and thus simply have to
project N sensitivity kernels on a given, coarse tomographic grid).
Consequences would be that some, if not all, projected sensitiv-
ity kernels would become unsuitable for finite-frequency imaging
purposes (see Fig. 1b). Note that parameter-free SOLA tomogra-
phy is particularly well suited for regional-scale experiments, for
which moderate-size data sets are typically encountered, enabling
to take full advantage of finite-frequency theory even with modest
computational resources (see Appendix A6).

As an additional comparison of parameter-free SOLA versus
other tomographic schemes, let us reconsider the standard, discrete
DLS approach, and focus on the problem of imaging and appraising
deep mantle plumes, a topic of high interest, recently revisited by
Maguire et al. (2018). In their study, various plume models and
earthquakes–receivers settings are considered to generate synthetic
sets of teleseismic body-wave time residuals, inverted using DLS
and finite-frequency sensitivity kernels. Relying on powerful com-
putational facilities, they are able to parametrize the entire mantle
using a Cartesian cubed sphere approach (e.g. Ronchi et al. 1996),
which consists in ∼3.5 million roughly cubic cells (∼65 km edge
length), enabling projected finite-frequency sensitivity kernels to
be accurate. As a remark, other recent studies (e.g. Charléty et al.
2013; Nolet et al. 2019) were able to derive teleseismic, DLS-based
tomographic images when using so many parameters. However,
handling millions parameters makes prohibitive to compute the full
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DLS generalized inverse (e.g. Bogiatzis et al. 2016). Hence, resolu-
tion and uncertainty informations cannot be fully taken into account
to quantitatively analyse, for example, plume-like, features in DLS
images. Note that the typical size of Maguire et al. (2018)’s data
sets is N � 5. 104, what parameter-free SOLA can handle with rel-
atively modest resources and while solving all at once both the
imaging and appraising problems. Moreover, DLS images may be
locally biased in regions with poor data illumination, due to ad hoc
regularization, such as below isolated receivers where ray paths are
quasi-vertical (Zaroli et al. 2017)—while SOLA solutions are ex-
plicitly constrained to be unbiased. Maguire et al. (2018) identify
part of this bias effect. Assuming an hypothetical vertical conduit
of ‘slow’ anomalies in the mantle below Hawaii, they show that the
recovered plume may contain prominent ‘fast’ anomalies—what
is a reminder that DLS-based tomographic images could lead to
physical misinterpretations.

In the following, we aim to highlight some perspectives related
to parameter-free SOLA tomography. First, since it yields unbiased
images with resolution and uncertainty informations, one could nat-
urally aim at evaluating in a fully quantitative way whether specific
features of interest (e.g. mantle plumes, slabs) are resolved, or not.
Future work could consist in designing algorithms aimed at better
apprehending and visualizing this new wealth of available informa-
tions (model, resolution, uncertainty), enabling to quickly identify
resolved features. Since reliable estimates of model uncertainties
σm̂(k) require reliable estimates of data errors σdi , one could aim at
better evaluating the noise contributions in various data sets, and
also to investigate the impact of assuming a wrong noise model on
the SOLA results.

In a similar line to earlier tomographic filtering studies (e.g.
Ritsema et al. 2007; Schuberth et al. 2009; Davies et al. 2012; Zaroli
et al. 2017), one could investigate how user-defined input features
(e.g. mantle plumes, subducted slabs, whole-mantle geodynamical
models) are seen through SOLA resolving kernels, that is, analysing
the term ‘filtered input model’ in eq. (25). Furthermore, with the
explicit knowledge of the SOLA generalized inverse, one could also
investigate the amount of data noise which is expected to propagate
into the recovered tomographic features. That is, the output model
estimate m̂(k)

out for a specific query point can be related to a given
input model min as follows:

m̂(k)
out = ∑

i x (k)
i

(∫
Ki m in + nsynth

i

)
︸ ︷︷ ︸

synthetic data, d
synth
i

=
∫

A(k)m in︸ ︷︷ ︸
filtered

input model

+
∑

i

x (k)
i nsynth

i︸ ︷︷ ︸
propagated

synthetic noise

(25)

where the ith synthetic noise component nsynth
i is randomly drawn

from a zero-mean normal distribution with unit standard deviation
[since the original tomographic system (1) was scaled by the data
errors], and the generalized inverse components x (k)

i and the re-
solving kernel A(k) are those from the actual SOLA tomographic
experiment. Therefore, as in the discrete SOLA case (Zaroli et al.
2017), the parameter-free SOLA framework provides an efficient
and fully quantitative way for comparing input and output features,
by means of analysing the filtered input model and the propaga-
tion of synthetic noise into the tomographic model solution. Note
that the parameter-free SOLA ‘filtered input model’ can also be
indirectly computed as

∫
A(k)m in = ∑

i x (k)
i

∫
Ki m in. This may be

useful if it is cheaper to compute the N integrals
∫

Kimin compared

to the P integrals
∫

A(k)min (requiring all the resolving kernels to be
explicitly calculated).

The parameter-free SOLA approach could also be exploited to in-
vert onset-time data for which sensitivity kernels are infinitesimally
narrow rays. Since one expects less pairs of crossing rays, compared
to crossing finite-frequency kernels, it should be cheaper to com-
pute the integrals

∫
K ray

i K ray
i ′ . Onset-time and correlation-time data,

modelled by rays and finite-frequency sensitivity kernels (e.g. Mon-
telli et al. 2004b; Obayashi et al. 2013; Hosseini 2016), could also
be jointly inverted with SOLA. In addition, since fully accurate data
sensitivity kernels are exploited in parameter-free SOLA inversions,
one could revisit comparisons of ray-theory versus finite-frequency
versus multifrequency tomography, while comparing differences in
terms of the images and their appraisals. Finally, parameter-free
SOLA tomography could be applied to other linear problems, such
as, for example, finite-frequency surface-wave tomography (e.g.
Zhou et al. 2005; Nolet 2008).

4 C O N C LU S I O N

We have presented a parameter-free, linear B–G inversion scheme,
tractable for seismic tomography problems—named parameter-free
SOLA tomography. Theoretical and numerical developments have
been illustrated for teleseismic body-wave mantle tomography, in a
finite-frequency physical framework. This new tomographic scheme
leads to efficient, embarrassingly parallel, computations of unbi-
ased images, accompanied by meaningful resolution and uncer-
tainty informations. Furthermore, since it does not assume any
parametrization of the model space, it enables numerically accurate
data sensitivity kernels to be effectively exploited in tomographic
inversions. This is a key advantage over discrete tomographic meth-
ods for which data sensitivity kernels are often inaccurate, as they
are projected on coarse parametrizations. The most costly task of
parameter-free SOLA tomography is the calculation of ∼N2/2 volu-
metric integrals of the form

∫
Ki Ki ′ , where (Ki , Ki ′ ) is a pair of data

sensitivity kernels and N the total number of data, what could make
intractable very large data sets (e.g. N � 105). Nevertheless, using
modest computational facilities, we have successfully inverted a set
of 27 070 teleseismic, finite-frequency, S-wave time residuals, with
focus on imaging and appraising shear wave velocity anomalies ly-
ing in the mantle below Southeast Asia, in the 350–1410 km depth
range.

To conclude, parameter-free SOLA tomography is particularly
well suited for regional-scale experiments, for which moderate-size
data sets are frequently encountered, so that limited computational
resources are sufficient—while enabling quantitative appraisals of
tomographic features, and to take full advantage of finite-frequency
data sensitivity kernels.
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A P P E N D I X A : C O M P U TAT I O NA L
A S P E C T S

We show how to reduce the computational costs and storage re-
quirements involved in setting up and solving the parameter-free
SOLA systems (see Section 2.2), tailored to teleseismic body-wave
mantle tomography within a finite-frequency physical framework.

A1 Sensitivity kernel discretization

Each finite-frequency data sensitivity kernel Ki is discretized on a
local Cartesian grid that consists in regularly spaced, 50 km edge-
length, cubic cells spanning a rectangular parallelepiped region sur-
rounding Ki as illustrated in Fig. 1(a). This avoids using a global
grid spanning the whole mantle, which would lead to consider and
store much more cells, that is, several millions versus a few hun-
dreds thousands (see Section 2.1), with most cells zero-valued. It
is straightforward to transform these local Cartesian coordinates to
the global Cartesian coordinates (Zaroli 2010), which is useful, for
example, when evaluating whether two sensitivity kernels Ki and
Ki ′ are simultaneously non-zero valued at the same location (see
Appendix A2).

A2 Parameter-free SOLA systems

In this study, each sensitivity kernel Ki is stored in a self-balancing
B-tree structure (Bayer & McCreight 1972). Stored informations
are non-zero kernel values Ki(x, y, z) and associated local Cartesian
coordinates (x, y, z). We report that this B-tree approach enables us
to efficiently, and elegantly, numerically compute all the integrals
encountered in our parameter-free SOLA tomographic problem (see
Section 2.2), that is:

∫
T(k)Ki,

∫
Ki,

∫
K 2

i ,
∫

Ki Ki ′ .
Computing the symmetric matrix F(η) is by far the most costly

task in parameter-free SOLA tomography (see Section 2.3, Ap-
pendix A6). Thus, we aim to explain how are evaluated all the
integrals of the form

∫
Ki Ki ′=i+1 ··· N , where i is fixed. These (N − i)

integrals correspond to all the elements of the ith row of the upper-
right half part of F(η). We proceed as follows: 1) All the non-zero
values of Ki and their locations (with respect to the local Cartesian
grid, tailored to Ki), that is, {Ki(x, y, z), x, y, z}, are computed and
stored in a B-tree structure referred as Bt[Ki]; 2) All the non-zero
values of Ki ′ and their locations, that is, {Ki ′ (x ′, y′, z′), x ′, y′, z′},
are computed on the fly; 3) Each triplet (x′, y′, z′) is searched for in

Bt[Ki]; if it is found, that is, if there is a triplet (x, y, z) such that
(x, y, z) ≡ (x′, y′, z′) (meaning that (x, y, z) and (x′, y′, z′) stand
for the same global Cartesian coordinates, and that both Ki(x, y,
z) and Ki ′ (x ′, y′, z′) are non-zero), then the integral value is up-
dated:

∫
Ki Ki ′ ← ∫

Ki Ki ′ + Ki (x, y, z)Ki ′ (x ′, y′, z′)�V , where
�V = 503 km3; 4) Repeat 2) and 3) with i ′ = i + 1 · · · N .

A few additional remarks. The search time of (x′, y′, z′) in Bt[Ki]
is independent of whether (x′, y′, z′) is found or not. This nice
property is due to the self-balancing structure itself of B-trees.
Since there is at most Bt[Ki] and Ki ′ to be stored at the time, our
approach is not costly in terms of memory footprint. We choose to
separate the calculation of all the rows of the upper-right half part
of F(η) into parallel tasks, such that the first N1 contiguous rows
are computed on a first processor, the next N2 rows are computed
on a second processor, etc. When using the previous algorithm to
compute the first N1 rows, one actually has to compute once K1,
twice K2, three times K3, etc. Therefore, to further speed-up the
calculation of the first N1 rows (and so on) of the upper-right half
part of F(η), all the sensitivity kernels Ki are i-index sorted such
that their computational costs (or a proxy for it, e.g. the total ray
path distance) are in decreasing order. The numbers of contiguous
rows (N1, N2, etc.) may be chosen such that the work load on every
processors is almost identical. Finally, note that new data sets can
be easily embedded in existing matrix F(η) and vectors u(k).

A3 Non-crossing sensitivity kernels

To alleviate the computational burden of building the matrix F(η),
one may try to reduce the number of integrals

∫
Ki Ki ′ to be effec-

tively calculated. That is, to identify a priori some pairs of body-
wave sensitivity kernels (Ki , Ki ′ ) that do not cross each other; in
which case

∫
Ki Ki ′ = 0. Different strategies could be designed for

that purpose. For example, let assume that each sensitivity kernel
spans a planar region within the mantle, geometrically defined by
the earthquake–receiver great-circle arc. Then, from our ability to
identify non-crossing great-circle arcs, one could infer at least some
pairs of non-crossing sensitivity kernels. We have adapted this ge-
ometrical criterion to take into account volumetric finite-frequency
sensitivity kernels, by simply considering ‘fat’ great-circle
arcs.

A4 Resolving kernels

In parameter-free SOLA tomography, each resolving kernel A(k) has
to be computed from eq. (7) in a consistent way with respect to the
discretization of data sensitivity kernels (see Appendix A1). Thus,
A(k) is calculated on a grid which consists in regularly spaced, 50 km
edge-length, cubic cells spanning a volumetric region surrounding
the query point (see Fig. 6). In practice, to speed-up the computation
of A(k), we proceed as follows: (1) Storing A(k) itself in a B-tree; (2)
Identifying a priori whether a given sensitivity kernel Ki will not
cross the volumetric region where we aim at calculating A(k), in
which case Ki would not contribute to A(k). Step (2) is based on a
geometrical criterion similar to Appendix A3.

A5 Matrix sparsity

Preserving the sparsity of the matrix H(η) is crucial in terms of
storage, efficiency of LSQR solver, memory footprint, etc. From
eq. (24) one sees that the sparsity of H(η) can be optimized, by
selecting the first-indexed sensitivity kernel K1 such that it leads
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to minimizing the number of non-zero integrals
∫

KμK1, that is,
maximizing the number of pairs of non-crossing kernels (Kμ, K1).
The kernel K1 is found using a brute-force (computationally cheap)
search to count the number of crossing kernels for each individual
kernel using the geometrical criterion mentioned in Appendix A3.
We report that, in the case of our application (see Section 2.4), H(η)

is ∼2 per cent dense.

A6 Computational cost

Concerning our experiment (see Section 2.4), for which the number
of data is N = 27 070, it takes ∼1 wk (CPU time) to compute in
parallel using 70 processors (Intel Xeon E5-4657L 2.40 GHz) all
the ∼N2/2 elements of the symmetric matrix F(η) – by far the most
costly task faced in parameter-free SOLA tomography.
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