Geophysical Journal International

Geophys. J. Int. (2025) 244, 1-17
Advance Access publication 2025 November 18
Research Paper

https://doi.org/10.1093/gji/ggaf468

Inference of the S- to P-wave velocity anomalies ratio and its
uncertainty with an application to South-East Asia

Emile Serra“,' Christophe Zaroli “,! Sophie Lambotte! and Paula Koelemeijer “2

Vnstitut Terre et Environnement de Strasbourg, Université de Strasbourg, EOST, CNRS, UMR 7063, 5 rue Descartes, F-67084 Strasbourg, France. E-mail:
emile.serra@unistra.fr
2 Department of Earth Sciences, University of Oxford, Oxford OX1 34N, United Kingdom

Accepted 2025 November 11. Received 2025 October 10; in original form 2025 May 27

SUMMARY

The ratio R of shear-wave to compressional-wave velocity variations (dIn¥ /dInV),) is a useful
physical parameter to study the thermochemical properties of the Earth’s interior. Several
approaches have been employed to estimate R (or its inverse 1/R), but they either assume the
same local resolution in models of dIn¥; and dInV, or assume the same ray paths for S- and
P-phases, while excluding valuable data and overlooking uncertainties. We overcome these
issues by characterizing both dIn¥; and dInV, through the Backus-Gilbert based subtractive
optimally localized averages (SOLA) method to obtain R including its uncertainties. This
approach enables us to ensure that dIn¥; and dInV, share the same local resolution, making it
possible to compute their ratio through division. In addition, SOLA provides uncertainties on
dIn¥; and dInV,, which we propagate into our estimates of R using the Hinkley distribution
for din¥;/dInV,. When resembling a Gaussian, the Hinkley distribution provides Gaussian
uncertainties for R, enabling us to interpret tomographic features as, for instance, in terms of
slab morphology or partial melt with greater confidence. To illustrate our new approach, we
use a data set of P- and S-phase onset-time residuals from ISC to infer the velocity anomalies
and the ratio R (or 1/R) in South-East Asia between 100 and 800 km depth. As the SOLA
method is driven by data uncertainties, we reassess the provided ISC uncertainties using a
statistical approach before developing models of dIn¥; and dInV), with their uncertainties.
Based on our quantitative model estimates, we argue that a large velocity anomaly below the
Sumatra slab, with a value of R over 2.5, is resolved given our data and their uncertainties.
However, in contrast to previous work, we do not find evidence for a slab hole under Java.
Our proposed approach to obtain R with uncertainties using the Hinkley distribution can be
applied to a large range of tomographic imaging settings.
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1 INTRODUCTION

Seismic tomography is an essential tool to understand the interior
of the Earth, from its surface to depths that we would never be
able to access physically (Aki et al. 1977). Thanks to our knowl-
edge of compressional- (V) and shear-wave (V) velocities through
rock physics and seismology, we are able to test hypotheses about
the structures composing the Earth’s interior (e.g. Crossley 1997;
Karato et al. 2000; Nolet 2008; Ritsema & Lekic¢ 2020; Toyokuni
et al. 2022; Fichtner et al. 2024). Ideally, multiple physical parame-
ters may be jointly interpreted, as this is more effective for constrain-
ing the potential responsible physical phenomena in a quantitative
manner. Indeed, V), is sensitive to the bulk modulus, shear modulus
and density, while V5 is only sensitive to the shear modulus and
density. In this context, comparing the two provides insight into the

relative behaviour of these material properties (e.g. Masters et al.
2000; Gercek 2007). By examining their difference, the V), / V; ratio
provides useful information on the thermochemical structure of the
Earth’s interior (e.g. Karato 1993; Masters et al. 2000; Hernlund &
Houser 2008). The absolute V,/ V5 ratio is mostly used in studies
of the crust (e.g. Hamada 2004; Aryanti ef al. 2018), whereas other
related ratios, such as R = dInV/dInV,, the inverse ratio of rela-
tive velocity anomalies, are preferentially investigated in studies of
the deep mantle (e.g. Masters et al. 2000; Koelemeijer et al. 2015;
Tesoniero et al. 2016; Restelli et al. 2024). For example, the V,/ V
ratio has been employed to unveil traces of liquid, such as partial
melting under volcanoes (e.g. Aryanti et al. 2018), in subduction
zones and ridges (e.g. Conder & Wiens 2006; Reyners et al. 2006;
Audet & Biirgmann 2014). Traces of liquid water saturation can
also be detected near subducted slabs (e.g. Hyndman & Peacock
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2003), or in geothermal contexts (e.g. Mahartha ez al. 2019). This
ratio may help to discriminate between hot, altered or fractured
rocks (e.g. Aryanti ef al. 2018), while it is also used in the oil and
gas industry to discover and monitor hydrocarbons pockets (e.g.
Hamada 2004). In the lower crust, seismic velocities have been
analysed to estimate the volume of serpentinization and the quartz
volume that may be trapped under the crust by rising fluids (e.g.
Ramachandran & Hyndman 2012). At greater depths, the ratio R is
thought to indicate chemical variations and/or phase transitions in
the mantle, for example in the mid-mantle where the spin crossover
in ferropericlase occurs (e.g. Shephard et al. 2021; Trautner et al.
2023; Cobden et al. 2024). Furthermore, Gerya et al. (2006) among
others suggested that variations in R may be used to distinguish
between different subduction-related plumes that lead to a chem-
ical difference in the magma. In the lowermost mantle, variations
in R, possibly due to the phase transition of bridgmanite to post-
perovskite or the chemical composition of the large-low-velocity
provinces, remain the matter of debate (e.g. Hernlund & Houser
2008; Davies et al. 2015; Koelemeijer et al. 2018; Leung et al.
2025). Finally, the ultra-low-velocity-zones (ULVZs), which have
been observed on top of the core—mantle boundary, might be due
to chemically distinct, dense material (e.g. Rost 2013; McNamara
2019). Robust constraints on their R value would provide insights
into their cause (chemical or partial melt). The above examples in-
dicate that our ability to accurately constrain the V,/ V5 ratio and its
variants (e.g. R) is useful in many different applications aimed at
deciphering the Earth’s interior, all the way down to the lowermost
mantle.

In these studies, two main methods are usually employed to in-
fer ratios between seismic velocities: the direct and the division
method. For the direct method, the differential ratio din (¥,/V;) is
inverted for, sometimes jointly with dInV,, using differential S—P
arrival times (e.g. Walck 1988; Zenonos et al. 2020). For the di-
vision method, models for both dIn/, and dIn¥; are obtained, and
then divided ‘cell by cell” (e.g. Masters ef al. 2000; Tesoniero ef al.
2016; Calo & Tramelli 2018; Zenonos et al. 2020). However, each
approach comes with its own drawbacks. For the direct method, one
supposes the same P and S ray path sensitivities in a reference Earth
model. This is often inherently incorrect as the ray paths are only
identical when the ¥,/ V ratio of the reference model is constant
and when the frequency content of the waves is also considered
(e.g. Chaves et al. 2020). It also requires to have successfully mea-
sured both P and S arrival times for each source-receiver pair, thus
potentially discarding valuable individual P or S data. When using
the division method, we assume the local resolution of the dInV),
and dInV; models to be the same, which is not guaranteed and typi-
cally not the case (e.g. Eberhart-Phillips 1990; Hernlund & Houser
2008). Determining velocity anomalies on its own is not sufficient
for further robust geophysical interpretations. Resolution and un-
certainty are also required to assess the reliability of tomographic
models: resolution indicates which structures can be tomographi-
cally imaged given the ray coverage, while uncertainty quantifies
how strongly the data support those structures (e.g. Rawlinson et al.
2014; Fichtner et al. 2024). Traditional inversion methods, such as
those based on damped least squares (DLS) inversions, do not eas-
ily provide this crucial information, especially when dealing with
large-scale inverse problems (e.g. Nolet 2008; Fichtner et al. 2024).
Some probabilistic tomography studies have considered uncertain-
ties on the ratio R, particularly in the deep mantle (e.g. Resovsky &
Trampert 2003; Trampert et al. 2004; Mosca et al. 2012), but these
studies do not provide direct resolution information. Until recently
(Restelli ef al. 2024), there has been, to the best of our knowledge,

no study that formally assessed both the uncertainties and the res-
olution of the ratios of seismically constrained parameters (such

as R = gll::f ) in the case of the division method. Erroneous ratios
13

may arise when directly dividing cell-by-cell dIn¥), and dInV es-
timates without taking this into account. To mitigate this, different
approaches have been developed in previous studies. For example,
Hernlund & Houser (2008) used the R, metric, which compares
the dominant features of the dIn¥), and dInV distributions at each
depth and thus avoids dependence on poorly constrained values. Al-
ternatively, some studies have analysed the depth-dependence of the
ratio by dividing the RMS value of dIn¥; and dInV/,, (e.g. Koelemei-
jer et al. 2015; Tesoniero et al. 2016). The need to further include
model uncertainties and similar resolution in efforts to obtain R
motivates this work.

We present a new method for inferring the ratio R = dInV¥; /dInV/,
(or 1/R) in a robust manner, along with information on its corre-
sponding resolution and uncertainty, by taking advantage of the di-
vision method with (i) the subtractive optimally localized averages
(SOLA)-Backus-Gilbert inversion and (ii) the Hinkley probability
density distribution. For this purpose, we use the SOLA method,
which was initially developed for 1-D helioseismic inversions by
Pijpers & Thompson (1992, 1993) and introduced to seismic to-
mography by Zaroli (2016, 2019). Thanks to it, we can build a pair
of unbiased models for dInV, and dInV; (Zaroli et al. 2017), im-
posing equal local resolution (Restelli et al. 2024) and estimating
their uncertainties (e.g. Latallerie et al. 2022, 2025; Amiri et al.
2023; Freissler et al. 2024; Mag et al. 2025). Therefore, where
the resolution is comparable, the division is physically meaning-
ful. Indeed, a local a priori resolution can be specified by the user
through the target kernels, which represent the resolution we aim
to achieve locally, as well as a trade-off parameter that balances the
fit to the target kernel with the model uncertainties. With SOLA,
the local resolution represents the volume over which the aver-
age of the unknown ‘true’ velocity anomalies is computed, along
with its associated Gaussian uncertainty. We can therefore take full
advantage of the division method by keeping all available, even
unpaired, P and S data. This should in principle lead to a better
resolution and lower uncertainties (e.g. Eberhart-Phillips 1990; Liu
et al. 2023). Instead of simply keeping paths that have both P and §
arrival times (e.g. Kennett et al. 1998; Gorbatov & Kennett 2003),
our SOLA-based strategy allows us to maximize the similarity in
resolution between the dIn¥), and dInV; models, enabling a more
meaningful computation of the ratios. In addition, traditional in-
version methods (such as DLS) invert for all model parameters at
once. To dampen the effect of incomplete and noisy data, especially
in areas with sparse data coverage, model regularization needs to
be applied, which impacts the recovered solution also in regions of
interest. To reduce this effect, many regional studies only keep ray
paths that are fully restricted to the area of interest (e.g. Zenonos
et al. 2019). This greatly restricts the use of data partially outside
the studied zone, hence potentially limiting the resolution of the P
and S models, especially at deeper mantle depths. Yet, this is not a
problem with SOLA, since by construction a model consists of a
collection of independently estimated local averages. It is straight-
forward to deal with both regional and teleseismic data, and to only
focus on the enquiry points of interest, within the study region.
Consequently, with the knowledge of dInV,, and dInV; Gaussian
uncertainties provided by SOLA, the division process now involves
four parameters: instead of just dividing the velocity anomalies, we
must divide two Gaussian distributions. The analytic formula of the
probability density function (PDF) resulting from this division is

9z0z Aenuer /0 uo 1senb Aq £1.69z£8/8914eb6/| /7 1Z/e101e/B/wod dno-olwepese//:sdiy wols pspeojumoq



given by the Hinkley distribution (Hinkley 1969). While this dis-
tribution is used in other fields (e.g. Ruggieri ef al. 2011; Lennox
et al. 2012; Dhanoa et al. 2018), to the best of our knowledge,
this study is the first to formally take advantage of the Hinkley
distribution for inferring the ratio R and its uncertainty in seismic
tomography.

As a test application of our method, we focus on the South-
East Asia region (SE Asia) between 100 and 800 km depth, using
ISC traveltime data within the framework of ray theory, because
of its geological and structural diversity (see e.g. fig. 1 of Hutch-
ings & Mooney 2021). Most existing tomographic studies of SE
Asia have focused on the P-wave structure (e.g. Widiyantoro et al.
2011; Hall & Spakman 2015; Huang et al. 2015; Zenonos et al.
2019; Toyokuni et al. 2022; Wang et al. 2022; Xie et al. 2023).
Some of these have identified a possible hole under Java in the
subducting slab, just below the Madura strait, extending from 280
to 430 km depth (e.g. Widiyantoro ef al. 2011; Hall & Spakman
2015; Zenonos et al. 2019; Toyokuni et al. 2022; Wang et al. 2022;
Xie et al. 2023). Moreover, some studies have claimed to image
a Subslab Hot Mantle Upwelling (SHMU) (Toyokuni et al. 2022),
and Subslab Low Velocity Anomaly (SLVA) (Fan & Zhao 2021)
below the Sumatra slab that may extend down to over 1500 km.
This structure, characterized by large low velocity anomalies (about
—1 per cent) for P (Toyokuni et al. 2022), located below the slab,
is also present in other tomographic studies, even though they have
not specifically interpreted it (e.g. Hall & Spakman 2015; Wang
et al. 2022). There are also some local and shallow P and S to-
mographic studies that aimed to study the volcanoes of the region
(e.g. Okabe et al. 2004; Rosalia et al. 2019; Liu et al. 2021; Sili-
tonga et al. 2023). Unfortunately, these only probe the Earth’s in-
terior down to 100 km depth, which is shallower than the scope of
this study. Some regional S-wave studies, such as Zenonos et al.
(2019) and Wehner et al. (2022), and numerous global S-wave
studies exist (e.g. Montelli ef al. 2006; Koelemeijer ef al. 2015;
Tesoniero et al. 2015; Zaroli 2016; Durand et al. 2017; Lu et al.
2019), though their resolution, if estimated, is usually not as good
as for regional studies, and their uncertainties are barely known.
Directly relevant to this work is the study by Zenonos et al. (2020),
who compared the seismic velocity ratios obtained from the divi-
sion and direct methods. However, they performed no assessment
of uncertainties, and their resolution analysis was qualitative. They
concluded that the division method does not provide satisfactory re-
sults because of a too high dependence on the produced 3-D S-wave
model. However, they did not discuss the difference in resolution
and uncertainty between the P and S-wave tomography models. We
shall explicitly investigate this with our new methodology, and dis-
cuss the value of the division method when obtained following our
approach.

In Section 2, we present how we build our data set for SE Asia,
which consists of P- and S-wave onset-time traveltime residuals
from the International Seismological Center (ISC), and we ex-
plain how we reassess their uncertainties given these are crucial
for SOLA. In Section 3, we explain our new method for infer-
ring the ratio R and its uncertainty. This is based on the division
of two SOLA-based tomographic models of comparable resolu-
tion for both dInV, and dIn¥;, with their (Gaussian) uncertain-
ties taken into account in the Hinkley-based division process. In
Sections 4 and 5, we present the results of our method when ap-
plied to SE Asia in the 100-800 km depth range, as well as further
discussion.

Inferring the ratio R and its uncertainty 3

2 DATA

In the following, we describe how we build our data set, with their
uncertainties, which will serve as inputs for our SOLA-based tomo-
graphic inversion. In this study, we will utilize the ray-theoretical
framework for simplicity. We first select body-wave traveltime resid-
uals from data sets of the International Seismological Centre (ISC),
in order to study the SE Asia region between —5o and 130 latitude
and between 950 and 1300 longitude, from the Earth’s surface down
to 800 km depth. We subsequently regroup these data into summary
rays, which enables us to reassess their uncertainties. Additionally,
we apply a crustal correction, since this is not included in the ISC
data.

2.1 Data selection from the ISC-EHB and ISC-reviewed
data sets

We select onset-time residuals of direct phases (P, S) and their
depth phases (pP, sS). As recently discussed by Nolet (2023), PP
and SS phases may be affected by a huge bias, because they are often
picked late in the presence of noise and we therefore do not include
them in this study. Other phases could be used, but for simplicity
and to restrict the total number of data, we limit ourselves to these
four phases (P, S, pP and sS). We use a mix of two ISC data sets:
the ISC-Reviewed (‘ISC-Rev’, International Seismological Centre
2023a), and the ISC-EHB (‘EHB’, International Seismological Cen-
tre 2023b). The latter is of better quality since a relocation procedure
was applied to each event (Engdahl ez al. 1998, 2020; Weston et al.
2018). Specifically, we extract data from the entire EHB data set,
between 1964 and 2019, but this unfortunately lacks data for the sS
phase. Thus, we add these data using the recent ISC-Rev data set,
between 2002 and 2019. While both data sets have been entirely
‘reviewed’, only the EHB data set has been explicitly relocated for
events after 1964. Thus, we decide to only keep recent data (since
2002) from the ISC-Rev data set to ensure a similar overall quality
in our data set. If an event is present in both the EHB and ISC-
Rev selected data subsets, we fix the event location according to
the EHB catalogue, and recompute the corresponding traveltime
residuals for the sS depth phase, using the ISCLOC software (see
Bondar & Storchak 2011) for consistency. We do not take uncer-
tainties in the source into account, but their effects are accounted
for by using summary rays (see below). From these data sets, we
only keep data with ray paths crossing the larger SE Asia region
of interest [see the black box in Fig. 1(a)]. Nolet & van der Lee
(2022) recomputed data uncertainties of two subsets of ISC P-wave
data, the first containing all data, and the second being composed
of data with pick uncertainties lower than 0.1 s. They found that the
second subset resulted in smaller data uncertainties. We assume that
a similar outcome is to be expected for all phases. Consequently,
our data set is only composed of data with pick uncertainties lower
than 0.1 s. To avoid issues due to phase triplications, we only keep
data in epicentral distances ranges of 29°-96° for P and 28°-97° for
S. These intervals are similar to those used by Lei & Zhao (2006)
and Hosseini ef al. (2019). For the pP and sS depth phases, due to
additional complexity in the associated triplications, we also define
a minimal epicentral distance based on each event’s depth, to retain
as many depth phases as possible. For pP, we set the minimal epi-
central distance to 30°, 32°, 35°, 38°, 40°, 42° and 43°, respectively
for event depths lower than 200, 350, 500, 550, 600, 650 and 700
km, while we always keep a maximal epicentral distance of 96°.
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Figure 1. Details of the data used in this study. (a) Map of sources (red stars) and receivers (blue triangles). Source locations correspond to the barycentre of
each summary ray. We select data that sample the large black box around South-East Asia. To avoid any border effects, we only perform the SOLA inversion
and interpret results in the smaller, yellow, rectangular region. (b) Data uncertainties estimated using the method by Morelli & Dziewonski (1987) and Nolet
(2023). For each phase, we represent the Morelli-Dziewonski fit, f(og, o¢), for summary rays (SR) related to crustal events only. For the P phase, we show
example data for the lower mantle range. Plus symbols represent groups of SRs not used in the fitting procedure, contrarily to circles. The higher the log of the
number of SRs (X) used in the computation of a,%,(N ), the more weight they are given in the fit. See Section 2.4 for the definition of o, 0. and oy.

For the sS phase, we fix the minimal epicentral distance at 31°,
34°,37°,39°, 40° and 41°, respectively for event depths lower than
150, 180, 550, 600, 620 and 700 km, each with a maximal distance
of 970. It results in a total of 3922 340 P, 223 006 S, 120 045 pP and
27 840 sS onset-time residuals.

2.2 Summary rays

In order to reduce the number of data while retaining all information
contained in the data, we group adjacent rays into summary rays
(SR) (e.g. Nolet 2023). To build the SRs, we group rays departing
from all sources contained in a cube of size 30x30x30 km’ to-
wards the same receiver. To remove the outliers within each SR,

we define two types of outliers: spatial and temporal. We consider
these separately as the different rays could be travelling through
slightly different structures, thus leading to significant differences
in the time domain. In this case, these anomalous data should not
be removed as they still yield precious information on 3-D Earth
structure. To detect spatial outliers, we make use of the DBSCAN
algorithm (Ester et al. 1996) based on the spatial coordinates of the
sources. Temporal outliers are identified by combining the Double
MAD and Dixon-Q tests, applied to the traveltime residuals. The
Dixon-Q test (Dixon 1950) is particularly efficient for finding sin-
gular outliers in small distributions. Following Rorabacher (1991),
who improved Dixon’s method, we develop an algorithm that can
detect 0 to 4 outliers in a small distribution containing up to 20
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members. However, Dixon’s test works poorly when the temporal
distribution is too narrow. We therefore also test whether the dif-
ference between the two most extreme values is larger than twice
the phase uncertainty estimated by Bolton & Masters (2001), that
is, 1.27 and 2.38 s for P and S phases, respectively. For more pop-
ulated distributions, we successfully detect temporal outliers using
a Double MAD algorithm (Leys ef al. 2013). Having found both
spatial and temporal outliers, each class identified by DBSCAN is
closely inspected: if all the elements are temporal outliers, they are
kept and regrouped as a separate SR. Otherwise, temporal outliers
are simply discarded. Spatial outliers that are not temporal outliers
are kept within the SR. Finally, the SR source location is computed
as the barycentre of all the sources composing the SR, and the cor-
responding time residual is computed as the mean of all associated
data. The procedure described above has resulted in 2 149 360 P,
169690 S, 94317 pP and 19319 sS summary rays.

2.3 Crustal corrections

In our ray-theoretical framework, we assume that crustal corrections
(CC) for the ISC data only depend on the ray path in the crust. We
use the 1 o x1o crustal model CRUST1.0 (Laske et al. 2013) to
compute the corrections. Having most of our data located between
600S and 600N, where 10 longitude is larger than 60 km, CRUST1.0
patches are at least six times larger than the SR discretization, and
up to 11 times larger near the equator. Therefore, we decide to
only compute the crustal correction for the SR, and not for all rays
composing each SR, as most of the rays likely lead to the same
correction. We compute the CC using the algorithm raydyntrace
of Tian et al. (2007), using CRUST1.0 and the 1-D reference model
AK135 (Kennett e al. 1995) for consistency with the ISC data set.
We discard data for which the CC could not be computed, which is
mostly due to phase incompatibilities when adding the CRUST1.0
model and occurs primarily for rays too close to the bounds of
the considered epicentral distances. These incompatibilities only
represent less than 0.447 per cent of the original P data set, and less
than 2.821 per cent of the S data set.

2.4 Reassessment of ISC data uncertainties

Using a new diagnostic approach, Nolet & van der Lee (2022) and
Nolet (2023) concluded that data uncertainties reported in the ISC
catalogue appear underestimated overall, and proposed that they can
be reassessed using the Morelli & Dziewonski (1987) method. The
principle of the Morelli-Dziewonski algorithm is that the variance
o} of all SR residuals, being composed of N rays, should be written

asof = % + o, with oz the uncertainty of the data to be estimated
(e.g. due to the measurement process, source mislocation, etc.) and
o the uncertainty of the SR itself, provided that the locations of all
the rays composing the SR are slightly different.

Here, we follow this approach and assume that data uncertainties
(o) merely represent standard deviations of Gaussian distributions.
In practice, to estimate these uncertainties (ox), we group the SRs
composed of N rays, compute the variance (o) of each group, and

find the values of oz and o¢ for the function f(og, o¢) = % +
that best fits the points o (N) (Fig. 1b). For all four seismic phases,
we weigh the fitting function f with the log of the number of SRs
with N rays, as the fit is more reliable when o%(N) is computed
in larger groups of SRs, thus usually for a small N. We only use
groups with at least four SRs. Moreover, we subdivide the residuals
of each seismic phase as a function of the event depth to separate

Inferring the ratio R and its uncertainty 5

events occurring in the crust (shallower than 40 km) or in the mantle
(deeper than 40 km), since data associated with deep earthquakes
are expected to be less uncertain due to sharper onsets (Nolet &
van der Lee 2022). We further divide the P phase data, as they are
more numerous, based on the depth of the SR’s turning point into
the following ranges: 600—-1200, 1200-2600 and 2600-2891 km,
respectively representing the mid, lower and lowermost mantle. As
a remark, our data set does not contain SR with turning points
shallower than 600 km depth. We remove outliers by removing any
data with residuals larger than three times the standard deviation of
the median values for the phase from our final data set.

We note that there could be other sources of uncertainties not
taken into account in this work, such as uncertainties in the source
parameters or a systematic bias related to the inaccuracy of the
crustal model used to compute the crustal correction. Rays from a
particular SR could also be sampling different cells of the crustal
model compared to our 30 x 30 x 30 km® discretization cubes,
while we consider all rays of the SR to have the same CC. To estimate
the effect of this, one could look at the CC obtained using different
crustal models. Moreover, there might be additional uncertainties
related to the focal mechanism, but we expect these to be weak when
dealing with onset-time residuals, as these are only weakly sensitive
to source complexities. Finally, there may be an influence from
radial and azimuthal anisotropy and attenuation, but we also expect
these to have a small effect on onset-times. To take these additional
sources of uncertainty into account in an informal way, we could
deliberately inflate our data uncertainties by some percentage (e.g.
Latallerie et al. 2025). This is what we indirectly do by investigating
the sensitivity of the ratio R to a small change in the estimated data
uncertainties (see Section 4.2).

To reduce the computational cost of the inversion, we only keep
SRs composed of at least 2 rays for the more numerous P phase
data set, while we keep all data for pP, S and sS. Our final data set
is thus composed of 574 009 P, 166892 S, 85838 pP and 17513
sS residuals (Fig. 1a), with their reassessed uncertainties, which are
used directly in the SOLA inversions. Note that if we had kept only
non-unique P and S data for the same source—event combination, as
required by the direct inversion method, our final data set would only
have contained around 160 000 couples for P/S residuals and 5000
for pP/sS. Using our procedure, we have thus gained a significant
number of data, 18 000 for S phases, and 494 000 for P phases.

3 METHODS

In the following sections, we explain how we proceed to invert the
data set we have constructed with the reassessed uncertainties in
three steps: (1) performing discrete SOLA inversions (Zaroli 2016)
ofboth P and S data subsets; (2) determining where the P and Slocal
resolution is comparable using three similarity metrics; (3) utilizing
the Hinkley-based division of dInV, and din¥; model estimates
(if their resolution is similar) and inferring the ratio R with its
corresponding uncertainty, provided that Hinkley is Gaussian-like.

3.1 SOLA tomography setup

A main advantage of SOLA is that it produces the uncertainty and
resolution of the model estimate in each cell (i.e. each enquiry
point), with some control over the resolution we aim to achieve
through the use of target kernels (Zaroli 2016). Indeed, SOLA cal-
culates the local average of the computed parameters around the

9z0z Aenuer /0 uo 1senb Aq £1.69z£8/8914eb6/| /7 1Z/e101e/B/wod dno-olwepese//:sdiy wols pspeojumoq



6 E. Serra et al.

target cell (for dInV, and dInVj). That is, it finds N generalized-
inverse coefficients xfk), i being the i-th data and N the number of
(P or S) data. For each enquiry point %, those coefficients minimize
the misfit between the local resolution, or averaging kernels (4%
when considering the enquiry point k), of the model and some user-
defined a priori resolution, or target kernels (similarly, 7®)). The
trade-off with the output model uncertainty is represented by the
trade-off parameter n (eq. 1). Mathematically, this corresponds to
(Zaroli 2016):

M
2
. (%) (k) 02 2
argmin { 7 (4P = 7°) + (1) o2
sbery |2

(M
M

subject to Z Vin.k) =1,

Jj=1
with V; the volume of the j-th cell and M the number of cells in the
tomographic grid. At each enquiry point £, A(].k) and oy are the M
values of the averaging kernel and uncertainty of the output model.
They depend on the N generalized-inverse coefficients x,.(k) :

k) _ 1 N (k)
Aj = Zi:lxi Gy,
2 2)
N k
Oy = Z,-:1 (x,( )G(Ji) >

where o, denotes the uncertainty of the i-th datum. Each row of
the matrix G contains the projection of the sensitivity onto the
tomographic grid, in this case the ray-theoretical sensitivity. To
quantify how close the resolving kernels resemble the target kernels,
we define the resolution misfit, RM, as (Zaroli 2016):

M
2
RM =¥, (49— 1) . 3)
j=I

SOLA’s resolution-uncertainty trade-off'is influenced by the density
of data. For instance, in a data-sparse area, we typically do not have
enough information to allow for a small uncertainty. Because of its
trade-off with the resolution misfit (RM, see eq. 3), a small value
of n will force a small RM, thus increasing the uncertainty, while a
large value of 1 will lead to a larger RM. This will lead to resolving
kernels A® that are hard to interpret despite the small uncertainty.
Thus, a large target kernel size 7® is needed to counteract this effect
and we typically end-up having low resolution and low uncertainty.
On the contrary, a large 7™ in a data-dense area will usually lead
to a small RM with a small uncertainty. Therefore, the 7® can
be made smaller, allowing us to probe smaller scale structures,
which then leads to an increase in the uncertainty (with a higher
resolution). This is the reason for using the ray count as a proxy
for designing the T® (a priori resolution). In our application of
SE Asia, we choose these to be 3-D spheroids, to achieve the best
resolution-uncertainty compromise. The target kernel size varies
from the cells’ circumscribed spheroids to 6 times this size laterally,
proportional with the inverse of the ray count, to allow for smaller
T® volumes. We add an upper limit for the ray count to handle
cells with very large numbers of rays (with the limit larger for the
P-wave inversion due to the presence of more data compared to S).
The resulting lateral radii of the target kernels are shown in Fig. 2(c).

Thanks to SOLA (see eq. 1), we can control the dInV, and dIn/
local resolutions (4®) and aim for them to be as close as possible
to each other. To achieve this, we use the same target kernel size
for both at each enquiry point, taking the largest size based on
the P- and S-phase ray counts. This approach is similar to that in
Restelli e al. (2024), who also aimed to obtain similar P and §

resolution kernels in SOLA inversions, but in a 1-D application of
normal-mode data. Finally, the localized averaged velocity anomaly
estimate is computed from the generalized-inverse coefficients and
the data:

N
m® =>"x"d, . “4)
i=1

With SOLA, we only need to invert for chosen enquiry cells, within
the region of study. This allows for the use of teleseismic data
travelling outside the region as well. For this reason, our tomo-
graphic grid consists of two grids with different cell sizes: we
have an inner grid [black rectangle in Fig. 1(a)], which covers
more than the whole region of study, within [900, 1360] longi-
tude, [—180, 100] latitude and [0 km, 1000 km] depth, with fine
cell sizes of 0.5 0 x0.5 0 x50 km. This covers a larger area than
the region of interest [yellow rectangle in Fig. 1(a)] to study po-
tential smearing on the edge of the region. We use a coarser grid
(outer grid) to cover the rest of the Earth’s mantle, using coarser
cells of 2 0 x2 0 x100 km. A summary of the tomography setup is
displayed in Fig.2

3.2 Metrics to assess the similarity of resolution for P and
S

In addition to using identical P and S target kernels, we use three
metrics to evaluate the similarity of the 3-D resolving kernels for
the P- and S-wave inversions (A(,{‘) and A(Sk) , respectively), with the
overall aim to achieve these at a comparable resolution: the misfit
of the A(If) to the A(Sk) kernel (Rdiff), the peak signal to noise ratio
(PSNR) and the Jaccard ratio metric.

e The ‘Rdiff” metric (see eq. 5) is the misfit between A(,f) and
A(Sk) normalized by the volume of A(Sk) :

2 2
(k k) M (k k
P A v (- A8)
0\ 0\
Y ()

For similar A(,f) and Ag{), the Rdiff value should be small, and ideally
close to zero.

e The PSNR (see eq. 6) is generally used in the context of image
compression to measure the similarity between two images. In our
case, because 4 contains many values close to zero, the PSNR
effectively only provides information on how voluminous A® is.
While the PSNR resembles the Rdiff value since both rely on misfits

2
of the form (A(,i“?/ — A(Sk)j> (e.g. Nasrabadi et al. 2014), it is not
normalized:

Rdiff® = 3)

2 ’

\/mean ( mean (V4% —A(S")j]z))
all layers \ jeone layer > ’

Unlike Rdiff, the PSNR is sensitive to the size of 4% as [ A® = 1.
As a result, misfits tend to be larger for smaller kernels. With most
cells zero, the few non-zero misfit values strongly influence the
PSNR as we consider averages in eq. (6). For voluminous 4®,
these misfits are small, leading to high PSNR values. Conversely,
confined 4® produce large misfits and lower PSNR values.

e The Jaccard metric (see eq. 7), commonly used in mathematics,
states how two sets spread over the same volume, by dividing their
intersection over their union. To define the volumes of 4}’ and 4%’
to be used in such a metric, we only consider cells with significant

PSNR® = 201og,, . (6)
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Figure 2. Summary of the tomography setup using SOLA. (a) and (b) show the P and S ray counts at 475 km depth, respectively, while (c) indicates the lateral
radius of each 7™, computed from the inverse of the ray counts. The T7® are adapted to have similar sizes, even though the S-wave subset is smaller. Examples
of target kernels are shown in (c). Stations used in both P and S subsets are represented by inverted red triangles. (d) 3-D scheme of the tomography grid, with
a fine mesh of 0.5 o x0.5 o x50 km within the black rectangle of Fig. 1(a), down to 1000 km depth, and a coarser mesh of 2 o x2 o x 100 km covering the

remaining mantle of the Earth.

amplitudes, that is, greater than 15 per cent of the maximum of either
A(F’f) or A(Sk). This 15 per cent threshold was found by trial-and-error.
This metric can be written as:

Vol PNS
Jaccard = Youmetr 11o) ume ( ) N (7)
Volume (P U S)

where P = {cellsj | A(flf,)j > 0.15max A(If))} and likewise for §

with A(Sk). When the two sets A(,f) and A(Sk) become more similar, the
Jaccard value gets closer to one.

The combination of the three metrics offers a robust way to
compare the A® for the P- and S-wave models. Particularly, it is
useful to consider the Rdiff and PSNR jointly. For confined 4%,
even small volumetric differences in A(,],‘) and A(Sk) could yield large
Rdiff values, but their overall impact is limited due to the size
of the volume. In this case, less weight should be given to Rdiff.
Voluminous 4% tend to easily span different grid cells, so a small
Rdiff is needed to achieve similarity. In other words, more weight
should be given to Rdiff in that case. To ensure similar A(flf) and
Agk), we therefore define thresholds for a combination of the PSNR
and Rdiff values as well as for the Jaccard metric. We consider A(,l,‘)
and A(Sk) to be comparable when two thresholds are achieved:

Jaccard > 0.45 ,

8
Rdiff < —2.24e—2 x PSNR +2.353. ®

These threshold values are obtained after visual inspection of a
subset of 600 cells, with the aim to eliminate more false negatives
than false positives, and to be conservative on the final selection of
comparable P and S resolving kernels. We illustrate the results of
this visual inspection for the combined PSNR and Rdiff metric in
Fig. 3(a), which confirms that the PSNR or Rdiff could not have
been used individually, while we show the threshold for the Jaccard
in Fig. 3(b). Strictly similar 4 and 4% should lead to a high
PSNR value by definition, but the Rdiff will be tiny, such that this
is not an issue for the threshold. We tried out circa 20 different

metrics, but the PSNR-Rdiff combination seems to work best for
this study, given that we have cells of rather similar volume across
the region of interest. Yet, other metrics or combinations could be
used, for example using the resolution misfit—eq. (3). In studies
with different geometries, this could be normalized by the integral
of the T™® (e.g. Restelli et al. 2024).

To illustrate different metrics combinations, Fig. 3(c) shows slices
of A(}f) and A(Sk) for different cells (k). The Jaccard metric only
relates to the volume of the resolution kernels that have signifi-
cant values, without giving importance to the potential differences
in amplitude. On the contrary, the two misfit metrics (PSNR and
Rdiff) only reflect the amplitude differences in the resolving ker-
nels. Consequently, we observe that when the Jaccard threshold is
not reached, but the misfit one is (second column), the low am-
plitudes are generally spread over different volumes even if the
maximum amplitudes are relatively similar. On the contrary, when
the Jaccard criterion is satisfied, but the misfit one is not (third
column), the amplitudes are rather different even if the volume of
both resolution kernels is similar. When both criteria are met (first
column), or not (last column), we observe the best or worse of
all metrics: we either have similar amplitudes over similar volumes
(comparable P and S resolution), or different amplitudes over differ-
ent volumes (very different resolution), respectively. Thus, we use
these metrics to compute a first mask, which serves to only display
the P and S-wave models where their resolution is deemed to be
comparable.

3.3 The Hinkley distribution

We aim to compute the ratio R® = ¥ /m' for all cells k with
comparable resolving kernels 4%’ and 4{’. Since in the SOLA
framework, r?z(sk) and r?z(lf) are local-average estimates with corre-
sponding Gaussian uncertainties, 0 and Tyh)s their division (i.e.

R™) results into the Hinkley distribution, H. This distribution is
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Figure 3. Illustration of the metrics used to assess the similarity of P and S resolution applied to a subset of random cells. (a) Combination of the PSNR and
Rdiff metrics and (b) the Jaccard metric for the similarity assessment of the resolving kernels (4%)). A subset of 600 cells were visually inspected to define the

similarity of 4

Sf) and A(Sk). The straight blue lines represent the Rdiff = —2.24e—2 x PSNR + 2.353 (a) and the Jaccard = 0.45 (b) equations, respectively. A

plus corresponds to a cell that is deemed to differ in terms of the P and S resolution, because of either the Jaccard or the PSNR/Rdiff metrics (the combination is

named ‘Ak_Misfit’). Cells having similar P and S resolution are represented by circles. (c) Slices of normalized resolving kernels Agf) (top) and A(Sk) (bottom)
at four different locations k. These were chosen to illustrate several scenarios for the metrics, that is, a location (from left to right) where both conditions are
respected; only one condition is respected (Ak_Misfit is, but Jaccard is not); only the other condition is respected (Jaccard); none of the conditions are respected.

computed analytically (Hinkley 1969):

Ni(p1, 01)
NZ(H’Za )

where 1, and o, represent the mean and standard deviation of
the two uncorrelated Gaussians (i.e. din¥; and dInV), in each cell).
The complete analytic equation can be found in the Supplementary
Materials section Ss1, eq. (Sel).

For further interpretation of the ratio R, we are only interested in
cells where the Hinkley distribution resembles a Gaussian, as Gaus-
sian uncertainties are easier to interpret. To assess when the Hinkley
distribution is close to a Gaussian, we compute the following misfit:

Misfit = /
wel~15.15]

H(w) ~ (w), ©

(H(w) — BGF(w))’

oy dw , (10)

with BGF the Gaussian function (Best-fitting Gaussian Function)
that best fits the Hinkley distribution (H). We do not consider w
with absolute values larger than 15, as these likely result from
a division with a denominator close to zero. The BGF is found
using a Nelder-Mead simplex algorithm (Nelder & Mead 1965), by
determining the mean y and variance o of a normal distribution
N that minimize the L, norm of the function f(w)= H(w) —
N(w, i1, 0?). We consider Hinkley to be Gaussian-like when the
misfit (see eq. 10) is smaller than 10 per cent. In that case, the values
of u and o represent our estimates of the ratio R = dIn¥; /dInV,
and its uncertainty, respectively. We illustrate the determination of
the ratio R using Hinkley in Fig. 4, where we show examples for
cells £ with a misfit above and below the 10 per cent limit. Based on
this misfit, we set up a second mask, with the aim to only interpret
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Figure 4. Examples of the Hinkley distributions for three different cells (a,b,c). For each example, we show: (i) the dIn¥), (dotted blue) and dIn¥; (orange)
SOLA distributions; (ii) the dIn¥s /dIn¥), Hinkley distribution (green) and its best-fitting Gaussian function (BGF, here in purple) and (iii) the dInV’, /dInV
Hinkley distribution (blue) with its BGF (red). In the top example, both ratios are considered Gaussian; in the middle, only dInV, /dIn¥; and in the bottom
example, only dInV /dInV), is Gaussian. In panels of R and 1/R, we also indicate the misfit between the Hinkley distribution and the BGF defined in eq. (10).

cells k for which the division of r?z(sk) with rh(lf) results in a Gaussian-

like distribution of R®. The same approach is also applied to the
dInV, /dInV; ratio (1/R).

4 RESULTS AND DISCUSSION

We present hereafter the SPRUM-Indo model, which describes
dInVj, dInV, and their ratio (R) beneath Indonesia along with the
uncertainties using SOLA with body wave data in ray theory. To en-
sure a meaningful joined interpretation of din¥; and dIn/, and their
ratio R [see Fig. 5(a) for 475 km depth and Fig. S2— S5 for other
depths], we first combine the two masks discussed in the Methods
to create a final mask [Fig. 5(c) and Fig. S1]. This allows us to infer
maps of R = (danS/danp) and 1/R = (danp/dans), with their
associated uncertainties on the remaining cells, using the Hinkley
distribution [Fig. 5(d)—(e) for 475 km depth and Fig. S6— S9 for
additional depths].

4.1 Resolution and Hinkley masks

While the resolution mask (Fig. 5¢) is correlated with the data
coverage distribution (Fig. 2), the Hinkley mask is linked to the ratio
between the anomaly values in the denominator (either dIn¥), or
dinV¥; for R or 1/R, respectively) and their uncertainties, o /m®
(Fig. 4). When this ratio is high—meaning the amplitude of the
uncertainty is comparable to the amplitude of the anomaly itself—
the Gaussian distribution of the denominator may cross zero. In that
case, the division is likely to become unstable, leading to a loss of
normality in the R (or 1/R) ratio and a failure of the Hinkley test.
However, we typically find that our inversion results in relatively low
uncertainties for both dInV, and dInV. As a result, the resolution
mask is typically the most restrictive.

For the division method, when uncertainties are not available,
the preferred approach is to discard grid cells where one of the

parameters is close to zero, since Hinkley fails when the Gaussian
distribution of the denominator crosses zero (as done, for instance,
by Della Mora et al. 2011; Koelemeijer et al. 2015; Tesoniero et al.
2016; Lu et al. 2019). However, our analysis of the R ratio us-
ing Hinkley shows that it is sufficient to discard only dIn¥), values
close to zero, increasing the number of potentially computable ra-
tios. Moreover, the use of more independent data reduces the final
uncertainties. Therefore, inverting all available P-wave data, as is
possible with the SOLA method, is more beneficial than reduc-
ing the data set to match the number of S-wave data. In fact, the
ratio of model uncertainty over model amplitude (o, /m®) is typ-
ically lower for dIn¥,, making the inference of dInV /dInV,—the
R ratio popularized by Masters et al. (2000)—more reliable than
dInV, /dInV;, thus resulting in fewer masked cells (Fig. 5c). Un-
fortunately, computing Hinkley using absolute velocity values that
are never zero to bypass these issues is not feasible. Supplementary
Materials section Ss2 demonstrates that this approach leads to a
nonlinear problem that cannot be easily solved, as it involves local
averages over multiple depths that have different reference model
values.

When Hinkley does not follow a perfect Gaussian distribution,
the value of its ratio R differs from the ratio obtained by directly
dividing dInV; by dInV,. However, when Hinkley is Gaussian,
both ratios are equal. This may explain artefacts observed in other
studies when dividing dIn¥; and dIn¥, in regions with seemingly
similar resolution (e.g. Fang et al. 2018; Zenonos et al. 2020).
Setting aside the fact that their resolution assessment is purely
based on resolution tests, these studies also did not include un-
certainties on the velocity distributions. As a result, the division
may be unreliable, leading to differences in the computed R val-
ues (with and without Hinkley). Moreover, when only one of R
or 1/R can be obtained using Hinkley, it is not possible to ob-
tain the other ratio by simply taking the inverse of the ratio that
works. Indeed, if we assume the R Hinkley distribution is non-
Gaussian, while 1/R is Gaussian, we can reproduce the expected
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Figure 5. Results of the SOLA inversion at 475 km depth for dInV/,, dInV, dIn¥s /dInV), and dInV, /dIn¥, shown in (a), (b), (d) and (e), respectively, including
their uncertainties. The standard deviation indicated in the uncertainty maps represents the mean uncertainty of all cells present in a given map. (c) The dinV/,
and dInV; maps are used to compute the resolution and Hinkley masks, showing where dIn¥), and dInV have similar local resolution and where their ratios
are interpretable. The combination of both indicates where the ratios can be interpreted. SM: Sumatra, JV: Java, RR: Roo Rise, SB: Sumbawa, BS: Banda Sea,

MS: Molucca Sea.

non-Gaussian Hinkley pdf of R by randomly drawing samples from
the Gaussian Hinkley distribution of 1/R and creating a histogram
of their inverses. Therefore, both R and 1/R must be computed
using Hinkley, and we should only interpret the distribution that is
Gaussian.

We define R’ = #, as the inverse of the Hinkley value for 1/R,
which should be equal to the R value. When both ratios (R and 1/R)
are Gaussian, we observe a correlation between |R — R’| and the
misfit between the Hinkley distribution of R and its BGF (eq. 10).
However, no correlation is found between |R — R’| and the misfit
of the 1/R Hinkley distribution and its BGF. This further confirms
that when only R is non-Gaussian, the Gaussian distribution of 1/R
(through R’) cannot be used to compute R —in other words, R # R'.
It is therefore crucial to obtain a reliable PDF using Hinkley and
to determine precisely when it follows a Gaussian distribution, in
order to obtain reliable R (or 1/R) values and their uncertainties
for meaningful interpretations. To summarize, the two ratios are
only interchangeable when both follow a Gaussian distribution.
Indeed, for all cells where both ratios follow a Gaussian distribution,
the median of {|R — R’|} is about 0.17 times the median of the
uncertainties in R ratio—i.e. the uncertainty in R is much larger
than the difference between R and R’, but only if both ratios are
Gaussian.

4.2 Sensitivity of Hinkley to data uncertainties

Estimating data uncertainties is a complex task that directly affects
model uncertainties and, consequently, the computation of the ratio
using Hinkley. Here, we investigate the sensitivity of the ratio to the
data uncertainties by simulating their perturbation while keeping the
velocity values fixed. We then compute many Hinkley distributions
with different uncertainty combinations and assess whether they are
Gaussians. We use the proportion of Gaussian-like distributions we
obtain in this process as a way to quantify the sensitivity and the
potential errors in the data uncertainty estimation that may be due
to the crustal model or errors in source parameters.

To determine the extent of data uncertainty perturbations, we
define an amplification factor «; for each data based on its seismic
phase: 1.2 for the direct P and S phase and 1.5 for the pP and sS
phase, meaning that o; p or o; ;s could be up to 1.2 or 1.5 times
larger. This is similar to the upscaling factor of Latallerie et al.
(2025) for instance. We then compute the quadratic average o of
these factors for the entire P and S data sets as follows:

N 2
a=,/¥, (11)

where i is the data index and N the number of data. Using this
quadratic average, 1.24 for P and 1.23 for S phase, we define a new,
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larger model uncertainty for the k-th cell o,
Gr;:(k> =0 X Opk). (12)

Assuming that the difference between this new model uncertainty
and the estimated SOLA model uncertainty represents the error in
the uncertainty estimation, we have:

Gr/h(k) — ok = o0 X (@ —1). (13)

Thus, Hinkley’s sensitivity of data uncertainties is the proportion of
Gaussian-like Hinkley distributions within the ranges of uncertainty
04k £ 0m X (@ — 1) [shown by the red rectangles in Figs 6(a) and
(c) for two cells], because the true model uncertainties o, (for P
and S) are expected to fall in those ranges. At the example depth of
475 km (Fig. 6b), we observe that the proportion of Gaussian-like
Hinkley distributions is close to 100 per cent for R, except near
the edges of the unmasked area, while for 1/R, we find large areas
where the Hinkley distribution is Gaussian-like only 20 per cent
of the time. This further suggests that the determination of the
R ratio is more stable than the determination of 1/R. Interesting
patterns are observed when we examine slices of the Hinkley—
BGF threshold maps, where we mask areas where the misfit is
above 10 per cent (Figs 6a and c). Most of what we observe is
expected; Hinkley becomes non-Gaussian as the dIn//, (panels ii)
orthe dIn//; (panels i) distribution crosses zero. However, sometimes
the distribution crosses zero and yet still results in a Gaussian ratio.
This further highlights the instability of Hinkley and underscores
the fact that confidence in the model uncertainties is very important
for reliable inferences of the ratio. As the sensitivity approaches
100 per cent, Hinkley is stable and robust to variations in data
uncertainty. However, if the sensitivity is close to zero, accurate
data uncertainty estimation is crucial to trust the computed ratio.
Based on this sensitivity analysis, it would be possible to define
a third mask to exclude regions with Hinkley ratios that are less
stable. However, as we would need to choose a threshold, we did
not apply such a mask in this study to avoid introducing another
subjective choice.

4.3 Structural interpretation of SPRUM-Indo

The complexity of the SE Asia region is clearly visible in our results,
for instance in the dIn¥/, and dIn¥; models [see Figs 5(a) and (b) for
475 km depth and Figs S2, S4 for other depths]. While we present
our results as depth slices, we want to stress that the structure at each
location represents a local average over a larger region (defined by
the resolution). To interpret the velocity anomalies, we thus always
need to consider also the model uncertainty and resolving kernel
(see Figs S3, S5 for dInV, and dInV; uncertainties respectively, for
other depths).

Multiple subducting slabs stand out, such as the Java-Sumatra
slabs, the spoon-shaped slab in the Banda region and the two slabs
with opposing subduction in the Molucca Sea. At shallow depths,
the slabs appear relatively thin, widening from the mantle transition
zone (MTZ) down to the lower boundary of our model (800 km
depth). The continuity of the slabs is also clearly visible. In addition,
well-defined low-velocity regions are observed, such as the one
between the Molucca Sea slabs and another beneath the Sumatra
slab. While a detailed interpretation of the region is beyond the
framework of this study, we will briefly discuss below two distinctive
features: the Java slab hole and the Sumatra subslab hot mantle
upwelling (SHMU).
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4.3.1 The Java slab hole

The Java slab hole was first discussed by Widiyantoro et al.
(2011) and Hall & Spakman (2015). Widiyantoro et al. (2011)
did not specify its size, but their models suggest it is sim-
ilar to the description of Hall & Spakman (2015): a 250—
500 km deep, 400500 km wide reduction in the fast velocity
anomaly between 109 and 1150E (indicated by the target kernel in
Fig. 7).

Hall & Spakman (2015) proposed that a buoyant structure in the
slab caused subduction to pause about 8 Myr ago, supported by
high-K alkalic backarc volcanism of the same age. While Zenonos
et al. (2019) and Toyokuni et al. (2022) agree with this origin, their
models show smaller sizes for the slab hole: 350-500 km (Zenonos
et al. 2019) or 280430 km (Toyokuni et al. 2022). Toyokuni et al.
(2022) also found that the subslab mantle and mantle wedge mate-
rials could be connected between 310 and 400 km depth. Further
studies by Wang et al. (2022) and Xie et al. (2023) agree on the
size, but they suggest that the velocity estimates are uncertain due
to a lack of data. They could therefore also be interpreted as a thin-
ning of the slab, instead of a hole (Wang et al. 2022). A second
hole beneath East Sumbawa has also been suggested by some stud-
ies (e.g. Widiyantoro et al. 2011; Hall & Spakman 2015; Zenonos
et al. 2019; Wehner et al. 2022). Yet, none of these studies analysed
their tomographic model uncertainty or resolution. While they did
perform sensitivity tests, these do not provide reliable information
on the true model resolution.

In our model [Fig. 7, where the supposed Java and Sumbawa holes
are respectively indicated with ‘JV’ and ‘SB’ in the dIn/V/, slice (b)],
we observe a slight reduction in the P-wave velocity amplitudes,
consistent with the results of Zenonos et al. (2020) [see the mod-
els for Central Java in Fig. S10(b)], though Toyokuni ef al. (2022)
(Fig. S10c) shows a stronger positive anomaly and slab deflection
northward. At the locations of both suggested holes, dIn¥; /dInV),
anomalies (Fig. 8 and Figs S6-S9 for other depths) largely exceed
values of 2.5, with uncertainties around 1. This is again rather con-
sistent with Zenonos et al. (2020) (Fig. S12), but in their model the
anomaly is less pronounced at the location of the main hole. While
these regions have slightly higher ratio uncertainties compared to
their surroundings, they show no significant changes in their dln¥’,
and dInV uncertainties.

Seismicity data indicate no earthquakes at the location of the
supposed holes (Fig. 7b). However, we observe no overall corre-
lation between seismicity and the R values of the SOLA model.
Since 250-500 km is the least seismogenic depth range (e.g. Tsam-
pas et al. 2017), this may not be relevant. Furthermore, the A%® is
well contained within the area with reduced P-wave velocity am-
plitudes (Fig. 7b), indicating a good resolution. At the same time,
the amplitude reduction is significant given the model uncertainty,
indicating reliable results. However, the main hole is absent in the
S-wave model, similar as in the results of Zenonos et al. (2019) and
Wehner et al. (2022) [see Fig. S11(b) and (c) for their respective
S-wave models]. We note a slight amplitude reduction in our S-wave
model near the location of the second hole near Sumbawa between
300 and 400 km depth, even though it is 100 km deeper than seen in
the models of Widiyantoro ef al. (2011) and Wehner et al. (2022).
If the proposed slab holes exist, they must therefore be smaller
than the resolution of our model. Alternatively, the subduction of
structures like the Roo Rise could affect the thermochemical prop-
erties of the slab, serving as alternative explanation of the reduced
dInV, amplitudes, unaffected din¥; amplitudes and the lack of
seismicity.
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above 10 per cent, respectively, that is, whether the Hinkley can be considered Gaussian or not. (b) Maps of the sensitivity computed for all cells in the 475 km
depth layer. For each cell, we express the proportion of Gaussian-like Hinkley distributions that are obtained for the possible velocity—uncertainty combinations
we consider. The velocity values are fixed, and the uncertainties are linearly chosen in the range (1 £ 0.24) x o for the P phases and (1 = 0.23) x o for the §
phases (where the value is determined by the relative number of direct and depth phases).

4.3.2 The Sumatra subslab hot mantle upwelling (SHMU)

Underneath the Java-Sumatra slab at 200 km depth, a strong and
large negative velocity anomaly is present. This so-called sub-
slab hot mantle upwelling (SHMU) might have different causes:
it could be due to a return flow rising along the slab as it is
subducting in the lower mantle (e.g. Toyokuni et al. 2022) or
could represent flow due to the retreat of the Indo-Australian
plate (e.g. Long & Silver 2008; Fan & Zhao 2021). It has been
suggested that these low-velocity anomalies may trigger megath-
rust earthquakes, because their buoyancy increases the normal
and/or shear stress in nearby areas (e.g. Fan & Zhao 2021;
Toyokuni et al. 2022). Additionally, Nugraha et al. (2019) found
a link between earthquake production zones and unusual V,/V
values.

In our models (see Fig. 9 for slices at 475 km depth and Figs S2—
S5 for other depths), the SHMU structure appears in both P- and
S-wave models, a feature that is also seen in the S model of Zenonos
et al. (2019), but absent in the S model of SASSY21 (Wehner
et al. 2022) and the P model of Zenonos et al. (2019). It is well
resolved as the resolving kernels are clearly focused with a lateral
extent smaller than the SHMU itself. In addition, the uncertainties
are lower than the velocity amplitudes, though they are slightly
higher than in nearby areas. In both P- and S-wave models, the
negative anomalies seem to arise from deeper than the model’s
lower boundary. However, in the P-wave model the low-velocity
anomaly is only observed up to 175 km depth, while in the S-wave
model, it continues to the surface. This discrepancy could arise
from differences in the crustal corrections that are applied to P and
S rays, particularly if 7, and V are not equally well constrained in
the crustal models.

The dInV;/dInV, anomaly varies with depth (see Fig. 10 for
slices at 475 km depth and Figs S6-S9 for other depths). At 275 km
depth, R is strongly positive (around 3—4), but at 475 km, it is
closer to 1. The uncertainties at these depths are relatively high
(1 at 275 km and 0.3 at 475 km) albeit still lower than the model
values, while at greater depth the ratio cannot be interpreted due to
being masked. Near the surface, the SHMU shows large variations
in dIn¥;/dInV,, with very negative values due to positive dInV’,
and negative dInV; values. These unusual R values may lead to
more megathrust earthquakes (Nugraha et al. 2019), which seem to
occur more frequently in the Sumatra slab than the Java slab. This
remains a hypothesis, as the difference in megathrust frequency
could also be due to the fact that the Sumatra megathrust fault is
longer (e.g. Hutchings & Mooney 2021). Perhaps coincidentally, the
SHMU is only visible below Sumatra in our models. This may be
because upwelling mantle material passes through the hole under
Java, enters the mantle wedge, thus encouraging local volcanism
(e.g. Hall & Spakman 2015; Toyokuni ez al. 2022) and weakening
the SHMU in the upper mantle under Java (e.g. Fan & Zhao 2021).
Alternatively, if no slab holes are present, geothermal processes
due to the subduction of the Roo Rise could disrupt the mantle
upwelling. An aborted ridge is also being subducted in northern
Sumatra, leading to a difference in lithospheric structure beneath
Sumatra and Java. It is younger and thinner under Sumatra (e.g.
Conrad & Lithgow-Bertelloni 2006; Miiller ef al. 2008), which
may also partly explain why the SHMU is located only beneath
Sumatra.

Our model results appear consistent with the different volcanic
rocks observed in Indonesia, with typically more felsic lavas found
in Sumatra, while Java has more mafic lavas (see for instance Fig. 7b)
(e.g. Romero ef al. 2021). The subducting slab under Sumatra may
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Figure 7. The region of the potential Java slab hole in the dIn¥, model (b) with its uncertainties (c), represented by vertical (along the green line) and
horizontal (at 375 km depth) slices. Seismic events reported by the ISC and volcanoes (Neumann van Padang & Association 1951) are represented by black
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Figure 8. Same as Figs 7(b)—(f), but showing the dInV/dInV), (a, b) and dInV, /dIn¥ (c, d) ratios.

thus be releasing more silica compared to Java, enriching the sur-
rounding mantle and giving rise to felsic lava in the forearc vol-
canism. Since the SHMU appears spatially linked to the slab over
a long distance, it may also be enriched with silica. This could ex-
plain the large negative anomaly of the SHMU and the differences
between dInV, and dIn¥; at shallower depths, as silica would in-
crease ¥, more than V; (e.g. Matsushima 1981). Above 200 km,
slab dehydration might favour partial melting of the SHMU due

to adiabatic decompression, reducing ¥ more than V,. This would
reverse the sign between dIn/, and dIn’¥;. Finally, the enrichment in
light silicates could explain the high dIn¥; /dInV, ratios as well as
the buoyancy of the SHMU. This enrichment might increase grad-
ually with greater depths, supported by the decrease in the ratio R
from 200 to 700 km depth (Fig. 10a).

‘We note that it is complicated to perform a thorough interpretation
of our results because of the nature of dIn¥; /dIn¥, and the fact this
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Figure 10. Same as Figs 9(b)—(f) for the dInV;/dInV), (a, b) and dIn¥), /dInV (c, d) ratios.

is quite different from dln (V,/ ;). The latter is well studied by
other fields, especially in rock mechanics. Interpreting dIn¥; /dInV,
in terms of din (¥,/V;) helps to better understand the physical
processes responsible for the observed seismic velocity variations.
To this end, we have explored a new approach for interpreting
models of dInV, dIn¥,, R, 1/R and their uncertainties. As this is
beyond the scope of this work, we will introduce this in a future
study.

5 CONCLUSION

In this paper, we propose an approach to obtain estimates of the ratio
R (dIn¥;/dIn¥),) and its uncertainties, which enable quantitative in-
terpretations of Earth’s interior structure. Using the SOLA-Backus-
Gilbert method, we are able to construct models of relative velocity
anomalies (dIn¥), and dIn¥}) and their ratios (dIn¥),/dInV; (1/R)
and dInV;/dInV, (R)), along with their uncertainties. We assess the
similarity of the P and S-wave model resolutions using three metrics
(Jaccard, PSNR and Rdiff) and use these to mask out regions where
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the local model resolution is dissimilar. This approach allows us to
use all data and to obtain individual models with better resolution
and smaller uncertainties that propagate into the estimates of the
ratio. Our approach using SOLA also enables us to include tele-
seismic data in regional models as the inversion is performed on a
point-by-point basis.

We compute the velocity ratio using the Hinkley distribution,
which accounts for the Gaussian uncertainties in dInV, and din/;.
For easier geophysical interpretations, we assess whether the Hink-
ley distribution of R (and 1/R) are Gaussian, and mask regions of
the models where this is not the case. When the Hinkley distribution
of R (or 1/R) deviates too much from a Gaussian, the distribution of
the inverse ratio is typically Gaussian-like. Therefore, it is essential
to analyse which ratio is Gaussian after computing both Hinkley
distributions, before making model interpretations.

We apply our methodology to study the mantle down to 800 km
depth beneath Indonesia using a combination of the ISC-EHB and
ISC-Reviewed data sets. Specifically, we develop models of dInV/,,,
dInV; as well as R and 1/ R with resolution and uncertainty informa-
tion. We find that the region of similar resolution for dIn, and dIn Vg
roughly follows the region with good data coverage, emphasizing
the need to use all possible data. Our models enable us to quan-
titatively confirm the presence of a subslab hot mantle upwelling
beneath the Sumatra slab, but we found no conclusive evidence of
slab holes under Java or East Sumbawa given the model resolution.
From this application of our methodology to SE Asia, we note that
the similarity in resolution is the most limiting factor for computing
the ratio. It may therefore be possible to develop an algorithm to
optimize the resolution-uncertainty trade-off by adjusting the target
kernel size to increase the number of cells with similar resolution.
Finally, with the four developed models for dInV,, dInV, R and
1/R, it is possible to interpret the structures in terms of the true
V,/ Vy ratio. We propose an approach for this in a future study.
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DATA AVAILABILITY

The discrete SOLA tomography code consists in running the LSQR
code with specific, study-dependent, input matrices and vectors,
corresponding to personal choices (e.g. data kernels, model dis-
cretization, target kernels), as detailed in appendix A of Zaroli
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(2016). LSQR is available at (Stanford’s Systems Optimization Lab-
oratory): https://web.stanford.edu/group/SOL/software/lsqr/. Seis-
mic events and code (ISCLOC) from the International Seismolog-
ical Centre (ISC) are available at: http://www.isc.ac.uk/index.php.
The code raydyntrace is available at: https://www.geoazur.ft/GLO
BALSEIS/Soft.html. We use TauP (Crotwell et al. 1999) for ray
tracing, as implemented in ObsPy (Beyreuther ef al. 2010). All
the tomographic results produced in this study are available at:
https://doi.org/10.5281/zenodo.15480510.
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