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S U M M A R Y 

The ratio R of shear-wave to compressional-wave velocity variations ( dln Vs /dln Vp ) is a useful 
physical parameter to study the thermochemical properties of the Earth’s interior. Several 
approaches have been employed to estimate R (or its inverse 1 /R), but they either assume the 
same local resolution in models of dln Vs and dln Vp or assume the same ray paths for S - and 

P -phases, while excluding valuable data and overlooking uncertainties. We overcome these 
issues by characterizing both dln Vs and dln Vp through the Backus-Gilbert based subtractive 
optimally localized averages (SOLA) method to obtain R including its uncertainties. This 
approach enables us to ensure that dln Vs and dln Vp share the same local resolution, making it 
possible to compute their ratio through division. In addition, SOLA provides uncertainties on 

dln Vs and dln Vp , which we propagate into our estimates of R using the Hinkley distribution 

for dln Vs /dln Vp . When resembling a Gaussian, the Hinkley distribution provides Gaussian 

uncertainties for R , enabling us to interpret tomographic features as, for instance, in terms of 
slab morphology or partial melt with greater confidence. To illustrate our new approach, we 
use a data set of P - and S -phase onset-time residuals from ISC to infer the velocity anomalies 
and the ratio R (or 1 /R) in South-East Asia between 100 and 800 km depth. As the SOLA 

method is driven by data uncertainties, we reassess the provided ISC uncertainties using a 
statistical approach before developing models of dln Vs and dln Vp with their uncertainties. 
Based on our quantitative model estimates, we argue that a large velocity anomaly below the 
Sumatra slab, with a value of R over 2.5, is resolved given our data and their uncertainties. 
However, in contrast to previous work, we do not find evidence for a slab hole under Java. 
Our proposed approach to obtain R with uncertainties using the Hinkley distribution can be 
applied to a large range of tomographic imaging settings. 
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 I N T RO D U C T I O N  

eismic tomography is an essential tool to understand the interior
f the Earth, from its surface to depths that we would never be
ble to access physically (Aki et al. 1977 ). Thanks to our knowl-
dge of compressional- ( Vp ) and shear-wave ( Vs ) velocities through
ock physics and seismology, we are able to test hypotheses about
he structures composing the Earth’s interior (e.g. Crossley 1997 ;
arato et al. 2000 ; Nolet 2008 ; Ritsema & Lekić 2020 ; Toyokuni

t al. 2022 ; Fichtner et al. 2024 ). Ideally, multiple physical parame-
ers may be jointly interpreted, as this is more effective for constrain-
ng the potential responsible physical phenomena in a quantitative
anner. Indeed, Vp is sensitive to the bulk modulus, shear modulus

nd density, while Vs is only sensitive to the shear modulus and
ensity. In this context, comparing the two provides insight into the
C© The Author(s) 2025. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
elative behaviour of these material properties (e.g. Masters et al.
000 ; Gercek 2007 ). By examining their difference, the Vp /Vs ratio
rovides useful information on the thermochemical structure of the
arth’s interior (e.g. Karato 1993 ; Masters et al. 2000 ; Hernlund &
ouser 2008 ). The absolute Vp /Vs ratio is mostly used in studies
f the crust (e.g. Hamada 2004 ; Aryanti et al. 2018 ), whereas other
elated ratios, such as R = dln Vs /dln Vp , the inverse ratio of rela-
ive velocity anomalies, are preferentially investigated in studies of
he deep mantle (e.g. Masters et al. 2000 ; Koelemeijer et al. 2015 ;
esoniero et al. 2016 ; Restelli et al. 2024 ). For example, the Vp /Vs 

atio has been employed to unveil traces of liquid, such as partial
elting under volcanoes (e.g. Aryanti et al. 2018 ), in subduction

ones and ridges (e.g. Conder & Wiens 2006 ; Reyners et al. 2006 ;
udet & Bürgmann 2014 ). Traces of liquid water saturation can

lso be detected near subducted slabs (e.g. Hyndman & Peacock
oyal Astronomical Society. This is an Open Access
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2003 ), or in geothermal contexts (e.g. Mahartha et al. 2019 ). This 
ratio may help to discriminate between hot, altered or fractured 
rocks (e.g. Aryanti et al. 2018 ), while it is also used in the oil and 
gas industry to discover and monitor hydrocarbons pockets (e.g. 
Hamada 2004 ). In the lower crust, seismic velocities have been 
analysed to estimate the volume of serpentinization and the quartz 
volume that may be trapped under the crust by rising fluids (e.g. 
Ramachandran & Hyndman 2012 ). At greater depths, the ratio R is 
thought to indicate chemical variations and/or phase transitions in 
the mantle, for example in the mid-mantle where the spin crossover 
in ferropericlase occurs (e.g. Shephard et al. 2021 ; Trautner et al. 
2023 ; Cobden et al. 2024 ). Fur ther more, Ger ya et al. ( 2006 ) among 
others suggested that variations in R may be used to distinguish 
between different subduction-related plumes that lead to a chem- 
ical difference in the magma. In the lowermost mantle, variations 
in R, possibly due to the phase transition of bridgmanite to post- 
perovskite or the chemical composition of the large-low-velocity 
provinces, remain the matter of debate (e.g. Hernlund & Houser 
2008 ; Davies et al. 2015 ; Koelemeijer et al. 2018 ; Leung et al. 
2025 ). Finally, the ultra-low-velocity-zones (ULVZs), which have 
been observed on top of the core–mantle boundary, might be due 
to chemically distinct, dense material (e.g. Rost 2013 ; McNamara 
2019 ). Robust constraints on their R value would provide insights 
into their cause (chemical or partial melt). The above examples in- 
dicate that our ability to accurately constrain the Vp /Vs ratio and its 
variants (e.g. R) is useful in many different applications aimed at 
deciphering the Earth’s interior, all the way down to the lowermost 
mantle. 

In these studies, two main methods are usually employed to in- 
fer ratios between seismic velocities: the direct and the division 
method. For the direct method, the differential ratio dln 

(
Vp /Vs 

)
is 

inverted for, sometimes jointly with dln Vp , using differential S–P 

arrival times (e.g. Walck 1988 ; Zenonos et al. 2020 ). For the di- 
vision method, models for both dln Vp and dln Vs are obtained, and 
then divided ‘cell by cell’ (e.g. Masters et al. 2000 ; Tesoniero et al. 
2016 ; Calò & Tramelli 2018 ; Zenonos et al. 2020 ). However, each 
approach comes with its own drawbacks. For the direct method, one 
supposes the same P and S ray path sensitivities in a reference Earth 
model. This is often inherently incorrect as the ray paths are only 
identical when the Vp /Vs ratio of the reference model is constant 
and when the frequency content of the waves is also considered 
(e.g. Chaves et al. 2020 ). It also requires to have successfully mea- 
sured both P and S arrival times for each source–receiver pair, thus 
potentially discarding valuable individual P or S data. When using 
the division method, we assume the local resolution of the dln Vp 

and dln Vs models to be the same, which is not guaranteed and typi- 
cally not the case (e.g. Eberhart-Phillips 1990 ; Hernlund & Houser 
2008 ). Determining velocity anomalies on its own is not sufficient 
for further robust geophysical interpretations. Resolution and un- 
certainty are also required to assess the reliability of tomographic 
models: resolution indicates which structures can be tomographi- 
cally imaged given the ray coverage, while uncertainty quantifies 
how strongly the data support those structures (e.g. Rawlinson et al. 
2014 ; Fichtner et al. 2024 ). Traditional inversion methods, such as 
those based on damped least squares (DLS) inversions, do not eas- 
ily provide this crucial information, especially when dealing with 
large-scale inverse problems (e.g. Nolet 2008 ; Fichtner et al. 2024 ). 
Some probabilistic tomography studies have considered uncertain- 
ties on the ratio R, particularly in the deep mantle (e.g. Resovsky & 

Trampert 2003 ; Trampert et al. 2004 ; Mosca et al. 2012 ), but these 
studies do not provide direct resolution information. Until recently 
(Restelli et al. 2024 ), there has been, to the best of our knowledge, 
no study that formally assessed both the uncertainties and the res- 
olution of the ratios of seismically constrained parameters (such 
as R = dln Vs 

dln Vp 
) in the case of the division method. Erroneous ratios 

may arise when directly dividing cell-by-cell dln Vp and dln Vs es- 
timates without taking this into account. To mitigate this, different 
approaches have been developed in previous studies. For example, 
Hernlund & Houser ( 2008 ) used the Rσ metric, which compares 
the dominant features of the dln Vp and dln Vs distributions at each 
depth and thus avoids dependence on poorly constrained values. Al- 
ternatively, some studies have analysed the depth-dependence of the 
ratio by dividing the RMS value of dln Vs and dln Vp (e.g. Koelemei- 
jer et al. 2015 ; Tesoniero et al. 2016 ). The need to further include 
model uncertainties and similar resolution in efforts to obtain R
motivates this work. 

We present a new method for inferring the ratio R = dln Vs /dln Vp 

(or 1 /R) in a robust manner, along with information on its corre- 
sponding resolution and uncertainty, by taking advantage of the di- 
vision method with (i) the subtractive optimally localized averages 
(SOLA)–Backus-Gilbert inversion and (ii) the Hinkley probability 
density distribution. For this purpose, we use the SOLA method, 
which was initially developed for 1-D helioseismic inversions by 
Pijpers & Thompson ( 1992 , 1993 ) and introduced to seismic to- 
mography by Zaroli ( 2016 , 2019 ). Thanks to it, we can build a pair 
of unbiased models for dln Vp and dln Vs (Zaroli et al. 2017 ), im- 
posing equal local resolution (Restelli et al. 2024 ) and estimating 
their uncertainties (e.g. Latallerie et al. 2022 , 2025 ; Amiri et al. 
2023 ; Freissler et al. 2024 ; Mag et al. 2025 ). Therefore, where 
the resolution is comparable, the division is physically meaning- 
ful. Indeed, a local a priori resolution can be specified by the user 
through the target kernels, which represent the resolution we aim 

to achieve locally, as well as a trade-off parameter that balances the 
fit to the target kernel with the model uncertainties. With SOLA, 
the local resolution represents the volume over which the aver- 
age of the unknown ‘true’ velocity anomalies is computed, along 
with its associated Gaussian uncertainty. We can therefore take full 
advantage of the division method by keeping all available, even 
unpaired, P and S data. This should in principle lead to a better 
resolution and lower uncer tainties (e.g. Eberhar t-Phillips 1990 ; Liu 
et al. 2023 ). Instead of simply keeping paths that have both P and S 
arrival times (e.g. Kennett et al. 1998 ; Gorbatov & Kennett 2003 ), 
our SOLA-based strategy allows us to maximize the similarity in 
resolution between the dln Vp and dln Vs models, enabling a more 
meaningful computation of the ratios. In addition, traditional in- 
version methods (such as DLS) invert for all model parameters at 
once. To dampen the effect of incomplete and noisy data, especially 
in areas with sparse data coverage, model regularization needs to 
be applied, which impacts the recovered solution also in regions of 
interest. To reduce this effect, many regional studies only keep ray 
paths that are fully restricted to the area of interest (e.g. Zenonos 
et al. 2019 ). This greatly restricts the use of data partially outside 
the studied zone, hence potentially limiting the resolution of the P 

and S models, especially at deeper mantle depths. Yet, this is not a 
problem with SOLA, since by construction a model consists of a 
collection of independently estimated local averages. It is straight- 
forward to deal with both regional and teleseismic data, and to only 
focus on the enquiry points of interest, within the study region. 
Consequently, with the knowledge of dln Vp and dln Vs Gaussian 
uncertainties provided by SOLA, the division process now involves 
four parameters: instead of just dividing the velocity anomalies, we 
must divide two Gaussian distributions. The analytic formula of the 
probability density function (PDF) resulting from this division is 
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iven by the Hinkley distribution (Hinkley 1969 ). While this dis-
ribution is used in other fields (e.g. Ruggieri et al. 2011 ; Lennox
t al. 2012 ; Dhanoa et al. 2018 ), to the best of our knowledge,
his study is the first to formally take advantage of the Hinkley
istribution for inferring the ratio R and its uncertainty in seismic
omography. 

As a test application of our method, we focus on the South-
ast Asia region (SE Asia) between 100 and 800 km depth, using

SC traveltime data within the framework of ray theory, because
f its geological and structural diversity (see e.g. fig. 1 of Hutch-
ngs & Mooney 2021 ). Most existing tomographic studies of SE
sia have focused on the P -wave structure (e.g. Widiyantoro et al.
011 ; Hall & Spakman 2015 ; Huang et al. 2015 ; Zenonos et al.
019 ; Toyokuni et al. 2022 ; Wang et al. 2022 ; Xie et al. 2023 ).
ome of these have identified a possible hole under Java in the
ubducting slab, just below the Madura strait, extending from 280
o 430 km depth (e.g. Widiyantoro et al. 2011 ; Hall & Spakman
015 ; Zenonos et al. 2019 ; Toyokuni et al. 2022 ; Wang et al. 2022 ;
ie et al. 2023 ). Moreover, some studies have claimed to image
 Subslab Hot Mantle Upwelling (SHMU) (Toyokuni et al. 2022 ),
nd Subslab Low Velocity Anomaly (SLVA) (Fan & Zhao 2021 )
elow the Sumatra slab that may extend down to over 1500 km.
his structure, characterized by large low velocity anomalies (about
1 per cent) for P (Toyokuni et al. 2022 ), located below the slab,

s also present in other tomographic studies, even though they have
ot specifically interpreted it (e.g. Hall & Spakman 2015 ; Wang
t al. 2022 ). There are also some local and shallow P and S to-
ographic studies that aimed to study the volcanoes of the region

e.g. Okabe et al. 2004 ; Rosalia et al. 2019 ; Liu et al. 2021 ; Sili-
onga et al. 2023 ). Unfortunately, these only probe the Earth’s in-
erior down to 100 km depth, which is shallower than the scope of
his study. Some regional S -wave studies, such as Zenonos et al.
 2019 ) and Wehner et al. ( 2022 ), and numerous global S -wave
tudies exist (e.g. Montelli et al. 2006 ; Koelemeijer et al. 2015 ;
esoniero et al. 2015 ; Zaroli 2016 ; Durand et al. 2017 ; Lu et al.
019 ), though their resolution, if estimated, is usually not as good
s for regional studies, and their uncertainties are barely known.
irectly relevant to this work is the study by Zenonos et al. ( 2020 ),
ho compared the seismic velocity ratios obtained from the divi-

ion and direct methods. However, they performed no assessment
f uncertainties, and their resolution analysis was qualitative. They
oncluded that the division method does not provide satisfactory re-
ults because of a too high dependence on the produced 3-D S -wave
odel. However, they did not discuss the difference in resolution

nd uncertainty between the P and S -wave tomography models. We
hall explicitly investigate this with our new methodology, and dis-
uss the value of the division method when obtained following our
pproach. 

In Section 2 , we present how we build our data set for SE Asia,
hich consists of P - and S -wave onset-time traveltime residuals

rom the International Seismological Center (ISC), and we ex-
lain how we reassess their uncertainties given these are crucial
or SOLA. In Section 3 , we explain our new method for infer-
ing the ratio R and its uncertainty. This is based on the division
f two SOLA-based tomographic models of comparable resolu-
ion for both dln Vp and dln Vs , with their (Gaussian) uncertain-
ies taken into account in the Hinkley-based division process. In
ections 4 and 5 , we present the results of our method when ap-
lied to SE Asia in the 100–800 km depth range, as well as further

iscussion. 
 DATA  

n the following, we describe how we build our data set, with their
ncer tainties, which will ser ve as inputs for our SOLA-based tomo-
raphic inversion. In this study, we will utilize the ray-theoretical
ramework for simplicity. We first select body-wave traveltime resid-
als from data sets of the International Seismological Centre (ISC),
n order to study the SE Asia region between −5 ◦ and 13 ◦ latitude
nd between 95 ◦ and 130 ◦ longitude, from the Earth’s surface down
o 800 km depth. We subsequently regroup these data into summary
ays, which enables us to reassess their uncertainties. Additionally,
e apply a crustal correction, since this is not included in the ISC
ata. 

.1 Data selection from the ISC-EHB and ISC-reviewed 

ata sets 

e select onset-time residuals of direct phases ( P , S ) and their
epth phases (pP, sS). As recently discussed by Nolet ( 2023 ), PP
nd SS phases may be affected by a huge bias, because they are often
icked late in the presence of noise and we therefore do not include
hem in this study. Other phases could be used, but for simplicity
nd to restrict the total number of data, we limit ourselves to these
our phases ( P , S , pP and sS). We use a mix of two ISC data sets:
he ISC-Reviewed (‘ISC-Rev’, International Seismological Centre
023a ), and the ISC-EHB (‘EHB’, International Seismological Cen-
re 2023b ). The latter is of better quality since a relocation procedure
as applied to each event (Engdahl et al. 1998 , 2020 ; Weston et al.
018 ). Specifically, we extract data from the entire EHB data set,
etween 1964 and 2019, but this unfortunately lacks data for the sS
hase. Thus, we add these data using the recent ISC-Rev data set,
etween 2002 and 2019. While both data sets have been entirely
reviewed’, only the EHB data set has been explicitly relocated for
vents after 1964. Thus, we decide to only keep recent data (since
002) from the ISC-Rev data set to ensure a similar overall quality
n our data set. If an event is present in both the EHB and ISC-
ev selected data subsets, we fix the event location according to

he EHB catalogue, and recompute the corresponding traveltime
esiduals for the sS depth phase, using the ISCLOC software (see
ondár & Storchak 2011 ) for consistency. We do not take uncer-

ainties in the source into account, but their effects are accounted
or by using summary rays (see below). From these data sets, we
nly keep data with ray paths crossing the larger SE Asia region
f interest [see the black box in Fig. 1 (a)]. Nolet & van der Lee
 2022 ) recomputed data uncertainties of two subsets of ISC P -wave
ata, the first containing all data, and the second being composed
f data with pick uncertainties lower than 0.1 s. They found that the
econd subset resulted in smaller data uncertainties. We assume that
 similar outcome is to be expected for all phases. Consequently,
ur data set is only composed of data with pick uncertainties lower
han 0.1 s. To avoid issues due to phase triplications, we only keep
ata in epicentral distances ranges of 29◦–96◦ for P and 28◦–97◦ for
 . These intervals are similar to those used by Lei & Zhao ( 2006 )
nd Hosseini et al. ( 2019 ). For the pP and sS depth phases, due to
dditional complexity in the associated triplications, we also define
 minimal epicentral distance based on each event’s depth, to retain
s many depth phases as possible. For pP, we set the minimal epi-
entral distance to 30◦, 32◦, 35◦, 38◦, 40◦, 42◦ and 43◦, respectively
or event depths lower than 200 , 350 , 500 , 550 , 600 , 650 and 700
m, while we always keep a maximal epicentral distance of 96◦.
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Figure 1. Details of the data used in this study. (a) Map of sources (red stars) and receivers (blue triangles). Source locations correspond to the barycentre of 
each summary ray. We select data that sample the large black box around South-East Asia. To avoid any border effects, we only perform the SOLA inversion 
and interpret results in the smaller, yellow, rectangular region. (b) Data uncertainties estimated using the method by Morelli & Dziewonski ( 1987 ) and Nolet 
( 2023 ). For each phase, we represent the Morelli-Dziewonski fit, f ( σE , σC ) , for summary rays (SR) related to crustal events only. For the P phase, we show 

example data for the lower mantle range. Plus symbols represent groups of SRs not used in the fitting procedure, contrarily to circles. The higher the log of the 
number of SRs (X) used in the computation of σ 2 

N ( N ) , the more weight they are given in the fit. See Section 2.4 for the definition of σe , σc and σN . 
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For the sS phase, we fix the minimal epicentral distance at 31◦, 

34◦, 37◦, 39◦, 40◦ and 41◦, respectively for event depths lower than 
150 , 180 , 550 , 600 , 620 and 700 km, each with a maximal distance 
of 97 ◦. It results in a total of 3922 340 P, 223 006 S, 120 045 pP and
27 840 sS onset-time residuals. 

2.2 Summary rays 

In order to reduce the number of data while retaining all information 
contained in the data, we group adjacent rays into summary rays 
(SR) (e.g. Nolet 2023 ). To build the SRs, we group rays departing 
from all sources contained in a cube of size 30 ×30 ×30 km 

3 to- 
wards the same receiver. To remove the outliers within each SR, 
we define two types of outliers: spatial and temporal. We consider 
these separately as the different rays could be travelling through 
slightly different structures, thus leading to significant differences 
in the time domain. In this case, these anomalous data should not 
be removed as they still yield precious information on 3-D Earth 
structure. To detect spatial outliers, we make use of the DBSCAN 

algorithm (Ester et al. 1996 ) based on the spatial coordinates of the 
sources. Temporal outliers are identified by combining the Double 
MAD and Dixon-Q tests, applied to the traveltime residuals. The 
Dixon-Q test (Dixon 1950 ) is particularly efficient for finding sin- 
gular outliers in small distributions. Following Rorabacher ( 1991 ), 
who improved Dixon’s method, we develop an algorithm that can 
detect 0 to 4 outliers in a small distribution containing up to 20 

art/ggaf468_f1.eps
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embers. However, Dixon’s test works poorly when the temporal
istribution is too narrow. We therefore also test whether the dif-
erence between the two most extreme values is larger than twice
he phase uncertainty estimated by Bolton & Masters ( 2001 ), that
s, 1.27 and 2.38 s for P and S phases, respectively. For more pop-
lated distributions, we successfully detect temporal outliers using
 Double MAD algorithm (Leys et al. 2013 ). Having found both
patial and temporal outliers, each class identified by DBSCAN is
losely inspected: if all the elements are temporal outliers, they are
ept and regrouped as a separate SR. Otherwise, temporal outliers
re simply discarded. Spatial outliers that are not temporal outliers
re kept within the SR. Finally, the SR source location is computed
s the barycentre of all the sources composing the SR, and the cor-
esponding time residual is computed as the mean of all associated
ata. The procedure described above has resulted in 2 149 360 P,
69 690 S, 94 317 pP and 19 319 sS summary rays. 

.3 Crustal corrections 

n our ray-theoretical framework, we assume that crustal corrections
CC) for the ISC data only depend on the ray path in the crust. We
se the 1 ◦ ×1 ◦ crustal model CRUST1.0 (Laske et al. 2013 ) to
ompute the corrections. Having most of our data located between
0 ◦S and 60 ◦N, where 1 ◦ longitude is larger than 60 km, CRUST1.0
atches are at least six times larger than the SR discretization, and
p to 11 times larger near the equator. Therefore, we decide to
nly compute the crustal correction for the SR, and not for all rays
omposing each SR, as most of the rays likely lead to the same
orrection. We compute the CC using the algorithm raydyntrace

f Tian et al. ( 2007 ), using CRUST1.0 and the 1-D reference model
K135 (Kennett et al. 1995 ) for consistency with the ISC data set.
e discard data for which the CC could not be computed, which is
ostly due to phase incompatibilities when adding the CRUST1.0
odel and occurs primarily for rays too close to the bounds of

he considered epicentral distances. These incompatibilities only
epresent less than 0.447 per cent of the original P data set, and less
han 2.821 per cent of the S data set. 

.4 Reassessment of ISC data uncertainties 

sing a new diagnostic approach, Nolet & van der Lee ( 2022 ) and
olet ( 2023 ) concluded that data uncertainties reported in the ISC

atalogue appear underestimated overall, and proposed that they can
e reassessed using the Morelli & Dziewonski ( 1987 ) method. The
rinciple of the Morelli-Dziewonski algorithm is that the variance
2 
N of all SR residuals, being composed of N rays, should be written

s σ 2 
N = σ 2 

E 
N + σ 2 

C , with σE the uncertainty of the data to be estimated
e.g. due to the measurement process, source mislocation, etc.) and

C the uncertainty of the SR itself, provided that the locations of all
he rays composing the SR are slightly different. 

Here, we follow this approach and assume that data uncertainties
 σE ) merely represent standard deviations of Gaussian distributions.
n practice, to estimate these uncertainties ( σE ), we group the SRs
omposed of N rays, compute the variance ( σ 2 

N ) of each group, and

nd the values of σE and σC for the function f ( σE , σC ) = σ 2 
E 

N + σ 2 
C 

hat best fits the points σ 2 
N ( N ) (Fig. 1 b). For all four seismic phases,

e weigh the fitting function f with the log of the number of SRs
ith N rays, as the fit is more reliable when σ 2 

N ( N ) is computed
n larger groups of SRs, thus usually for a small N . We only use
roups with at least four SRs. Moreover, we subdivide the residuals
f each seismic phase as a function of the event depth to separate
vents occurring in the crust (shallower than 40 km) or in the mantle
deeper than 40 km), since data associated with deep earthquakes
re expected to be less uncertain due to sharper onsets (Nolet &
an der Lee 2022 ). We further divide the P phase data, as they are
ore numerous, based on the depth of the SR’s turning point into

he following ranges: 600–1200, 1200–2600 and 2600–2891 km,
espectively representing the mid, lower and lowermost mantle. As
 remark, our data set does not contain SR with turning points
hallower than 600 km depth. We remove outliers by removing any
ata with residuals larger than three times the standard deviation of
he median values for the phase from our final data set. 

We note that there could be other sources of uncertainties not
aken into account in this work, such as uncertainties in the source
arameters or a systematic bias related to the inaccuracy of the
rustal model used to compute the crustal correction. Rays from a
articular SR could also be sampling different cells of the crustal
odel compared to our 30 × 30 × 30 km 

3 discretization cubes,
hile we consider all rays of the SR to have the same CC. To estimate

he effect of this, one could look at the CC obtained using different
rustal models. Moreover, there might be additional uncertainties
elated to the focal mechanism, but we expect these to be weak when
ealing with onset-time residuals, as these are only weakly sensitive
o source complexities. Finally, there may be an influence from
adial and azimuthal anisotropy and attenuation, but we also expect
hese to have a small effect on onset-times. To take these additional
ources of uncertainty into account in an informal way, we could
eliberately inflate our data uncertainties by some percentage (e.g.
atallerie et al. 2025 ). This is what we indirectly do by investigating

he sensitivity of the ratio R to a small change in the estimated data
ncertainties (see Section 4.2 ). 

To reduce the computational cost of the inversion, we only keep
Rs composed of at least 2 rays for the more numerous P phase
ata set, while we keep all data for pP, S and sS. Our final data set
s thus composed of 574 009 P , 166 892 S , 85 838 pP and 17 513
S residuals (Fig. 1 a), with their reassessed uncertainties, which are
sed directly in the SOLA inversions. Note that if we had kept only
on-unique P and S data for the same source–event combination, as
equired by the direct inversion method, our final data set would only
ave contained around 160 000 couples for P / S residuals and 5000
or pP/sS. Using our procedure, we have thus gained a significant
umber of data, 18 000 for S phases, and 494 000 for P phases. 

 M E T H O D S  

n the following sections, we explain how we proceed to invert the
ata set we have constructed with the reassessed uncertainties in
hree steps: (1) performing discrete SOLA inversions (Zaroli 2016 )
f both P and S data subsets; (2) determining where the P and S local
esolution is comparable using three similarity metrics; (3) utilizing
he Hinkley-based division of dln Vp and dln Vs model estimates
if their resolution is similar) and inferring the ratio R with its
orresponding uncertainty, provided that Hinkley is Gaussian-like. 

.1 SOLA tomography setup 

 main advantage of SOLA is that it produces the uncertainty and
esolution of the model estimate in each cell (i.e. each enquiry
oint), with some control over the resolution we aim to achieve
hrough the use of target kernels (Zaroli 2016 ). Indeed, SOLA cal-
ulates the local average of the computed parameters around the
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target cell (for dln Vp and dln Vs ). That is, it finds N generalized- 
inverse coefficients x ( k) 

i , i being the i-th data and N the number of 
( P or S ) data. For each enquiry point k , those coefficients minimize 
the misfit between the local resolution, or averaging kernels ( A( k) 

when considering the enquiry point k), of the model and some user- 
defined a priori resolution, or target kernels (similarly, T ( k) ). The 
trade-off with the output model uncertainty is represented by the 
trade-off parameter η (eq. 1 ). Mathematically, this corresponds to 
(Zaroli 2016 ): 

arg min 
x( k) ∈ RN 

⎧ ⎨ 

⎩ 

M ∑ 

j= 1 
Vj 

(
A( k) 

j − T ( k) 
j 

)2 
+ (

η( k) 
)2 

σ 2 
ˆ m( k) 

⎫ ⎬ 

⎭ 

, 

subject to 
M ∑ 

j= 1 
Vj A

( k) 
j = 1 , 

(1) 

with Vj the volume of the j-th cell and M the number of cells in the 
tomog raphic g rid. At each enquir y point k , A( k) 

j and σ ˆ m( k) are the M 

values of the averaging kernel and uncertainty of the output model. 
They depend on the N generalized-inverse coefficients x ( k) 

i : 

A( k) 
j = 1 

Vj 

∑ N 
i= 1 x

( k) 
i Gi j , 

σ ˆ m( k) =
√ ∑ N 

i= 1 
(

x ( k) 
i σdi 

)2 
, 

(2) 

where σdi denotes the uncertainty of the i-th datum. Each row of 
the matrix G contains the projection of the sensitivity onto the 
tomog raphic g rid, in this case the ray-theoretical sensitivity. To 
quantify how close the resolving kernels resemble the target kernels, 
we define the resolution misfit, RM, as (Zaroli 2016 ): 

RM =
M ∑ 

j= 1 
Vj 

(
A( k) 

j − T ( k) 
j 

)2 
. (3) 

SOLA’s resolution-uncertainty trade-off is influenced by the density 
of data. For instance, in a data-sparse area, we typically do not have 
enough information to allow for a small uncertainty. Because of its 
trade-off with the resolution misfit (RM, see eq. 3 ), a small value 
of η will force a small RM, thus increasing the uncertainty, while a 
large value of η will lead to a larger RM. This will lead to resolving 
kernels A( k) that are hard to interpret despite the small uncertainty. 
Thus, a large target kernel size T ( k) is needed to counteract this effect 
and we typically end-up having low resolution and low uncertainty. 
On the contrary, a large T ( k) in a data-dense area will usually lead 
to a small RM with a small uncertainty. Therefore, the T ( k) can 
be made smaller, allowing us to probe smaller scale structures, 
which then leads to an increase in the uncertainty (with a higher 
resolution). This is the reason for using the ray count as a proxy 
for designing the T ( k) ( a priori resolution). In our application of 
SE Asia, we choose these to be 3-D spheroids, to achieve the best 
resolution-uncertainty compromise. The target kernel size varies 
from the cells’ circumscribed spheroids to 6 times this size laterally, 
proportional with the inverse of the ray count, to allow for smaller 
T ( k) volumes. We add an upper limit for the ray count to handle 
cells with very large numbers of rays (with the limit larger for the 
P -wave inversion due to the presence of more data compared to S ). 
The resulting lateral radii of the target kernels are shown in Fig. 2 (c). 

Thanks to SOLA (see eq. 1 ), we can control the dln Vp and dln Vs 

local resolutions ( A( k) ) and aim for them to be as close as possible 
to each other. To achieve this, we use the same target kernel size 
for both at each enquiry point, taking the largest size based on 
the P - and S -phase ray counts. This approach is similar to that in 
Restelli et al. ( 2024 ), who also aimed to obtain similar P and S 
resolution kernels in SOLA inversions, but in a 1-D application of 
normal-mode data. Finally, the localized averaged velocity anomaly 
estimate is computed from the generalized-inverse coefficients and 
the data: 

ˆ m( k) =
N ∑ 

i= 1 
x ( k) 

i di . (4) 

With SOLA, we only need to invert for chosen enquiry cells, within 
the region of study. This allows for the use of teleseismic data 
travelling outside the region as well. For this reason, our tomo- 
g raphic g rid consists of two g rids with different cell sizes: we 
have an inner grid [black rectangle in Fig. 1 (a)], which covers 
more than the whole region of study, within [ 90 ◦, 136 ◦] longi- 
tude, [ −18 ◦, 10 ◦] latitude and [ 0 km , 1000 km ] depth, with fine 
cell sizes of 0 . 5 ◦ ×0 . 5 ◦ ×50 km . This covers a larger area than 
the region of interest [yellow rectangle in Fig. 1 (a)] to study po- 
tential smearing on the edge of the region. We use a coarser grid 
(outer grid) to cover the rest of the Earth’s mantle, using coarser 
cells of 2 ◦ ×2 ◦ ×100 km. A summar y of the tomog raphy setup is 
displayed in Fig. 2 

3.2 Metrics to assess the similarity of resolution for P and 

S 

In addition to using identical P and S target kernels, we use three 
metrics to evaluate the similarity of the 3-D resolving kernels for 
the P - and S- wave inversions ( A( k) 

P and A( k) 
S , respectively), with the 

overall aim to achieve these at a comparable resolution: the misfit 
of the A( k) 

P to the A( k) 
S kernel (Rdiff), the peak signal to noise ratio 

(PSNR) and the Jaccard ratio metric. 

• The ‘Rdiff’ metric (see eq. 5 ) is the misfit between A( k) 
P and 

A( k) 
S normalized by the volume of A( k) 

S : 

Rdiff ( k) =
∫ (

A( k) 
P − A( k) 

S 

)2 

∫ (
A( k) 

S 

)2 
=

∑ M 

j= 1 Vj 

(
A( k) 

P, j − A( k) 
S, j 

)2 

∑ M 

j= 1 Vj 

(
A( k) 

S, j 

)2 
. (5) 

For similar A( k) 
P and A( k) 

S , the Rdiff value should be small, and ideally 
close to zero. 

• The PSNR (see eq. 6 ) is generally used in the context of image 
compression to measure the similarity between two images. In our 
case, because A( k) contains many values close to zero, the PSNR 

effectively only provides information on how voluminous A( k) is. 
While the PSNR resembles the Rdiff value since both rely on misfits 

of the form 

(
A( k) 

P, j − A( k) 
S, j 

)2 
(e.g. Nasrabadi et al. 2014 ), it is not 

normalized: 

PSNR 

( k) = 20 log 10 

2 √ 

mean 
all layers 

(
mean 

j∈one layer 

(
Vj [ A

( k) 
P, j − A( k) 

S, j ]
2 
)) ′ 

. (6) 

Unlike Rdiff, the PSNR is sensitive to the size of A( k) as 
∫ 

A( k) = 1 . 
As a result, misfits tend to be larger for smaller kernels. With most 
cells zero, the few non-zero misfit values strongly influence the 
PSNR as we consider averages in eq. ( 6 ). For voluminous A( k) , 
these misfits are small, leading to high PSNR values. Conversely, 
confined A( k) produce large misfits and lower PSNR values. 

• The Jaccard metric (see eq. 7 ), commonly used in mathematics, 
states how two sets spread over the same volume, by dividing their 
intersection over their union. To define the volumes of A( k) 

P and A( k) 
S 

to be used in such a metric, we only consider cells with significant 
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Figure 2. Summary of the tomography setup using SOLA. (a) and (b) show the P and S ray counts at 475 km depth, respectively, while (c) indicates the lateral 
radius of each T ( k) , computed from the inverse of the ray counts. The T ( k) are adapted to have similar sizes, even though the S -wave subset is smaller. Examples 
of target kernels are shown in (c). Stations used in both P and S subsets are represented by inverted red triangles. (d) 3-D scheme of the tomog raphy g rid, with 
a fine mesh of 0 . 5 ◦ ×0 . 5 ◦ ×50 km within the black rectangle of Fig. 1 (a), down to 1000 km depth, and a coarser mesh of 2 ◦ ×2 ◦ ×100 km covering the 
remaining mantle of the Earth. 
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mplitudes, that is, greater than 15 per cent of the maximum of either
A( k) 

P or A( k) 
S . This 15 per cent threshold was found by trial-and-error.

his metric can be written as: 

accard = Volume ( P ∩ S) 

Volume ( P ∪ S) 
, (7) 

here P =
{ 

cells j | A( k) 
P, j > 0 . 15 max 

(
A( k) 

P 

)} 
and likewise for S

ith A( k) 
S . When the two sets A( k) 

P and A( k) 
S become more similar, the

accard value gets closer to one. 

The combination of the three metrics offers a robust way to
ompare the A( k) for the P - and S -wave models. Particularly, it is
seful to consider the Rdiff and PSNR jointly. For confined A( k) ,
ven small volumetric differences in A( k) 

P and A( k) 
S could yield large

diff values, but their overall impact is limited due to the size
f the volume. In this case, less weight should be given to Rdiff.
oluminous A( k) tend to easily span different grid cells, so a small
diff is needed to achieve similarity. In other words, more weight

hould be given to Rdiff in that case. To ensure similar A( k) 
P and

A( k) 
S , we therefore define thresholds for a combination of the PSNR

nd Rdiff values as well as for the Jaccard metric. We consider A( k) 
P 

nd A( k) 
S to be comparable when two thresholds are achieved: 

Jaccard > 0 . 45 , 

Rdiff < ∼ −2 . 24e−2 × PSNR + 2 . 353 . 
(8) 

hese threshold values are obtained after visual inspection of a
ubset of 600 cells, with the aim to eliminate more false negatives
han false positives, and to be conservative on the final selection of
omparable P and S resolving kernels. We illustrate the results of
his visual inspection for the combined PSNR and Rdiff metric in
ig. 3 (a), which confirms that the PSNR or Rdiff could not have
een used individually, while we show the threshold for the Jaccard
n Fig. 3 (b). Strictly similar A( k) 

P and A( k) 
S should lead to a high

SNR value by definition, but the Rdiff will be tiny, such that this

s not an issue for the threshold. We tried out circa 20 different  
etrics, but the PSNR–Rdiff combination seems to work best for
his study, given that we have cells of rather similar volume across
he region of interest. Yet, other metrics or combinations could be
sed, for example using the resolution misfit—eq. ( 3 ). In studies
ith different geometries, this could be normalized by the integral
f the T ( k) (e.g. Restelli et al. 2024 ). 

To illustrate different metrics combinations, Fig. 3 (c) shows slices
f A( k) 

P and A( k) 
S for different cells ( k) . The Jaccard metric only

elates to the volume of the resolution kernels that have signifi-
ant values, without giving importance to the potential differences
n amplitude. On the contrary, the two misfit metrics (PSNR and
diff) only reflect the amplitude differences in the resolving ker-
els. Consequently, we observe that when the Jaccard threshold is
ot reached, but the misfit one is (second column), the low am-
litudes are generally spread over different volumes even if the
aximum amplitudes are relatively similar. On the contrary, when

he Jaccard criterion is satisfied, but the misfit one is not (third
olumn), the amplitudes are rather different even if the volume of
oth resolution kernels is similar. When both criteria are met (first
olumn), or not (last column), we observe the best or worse of
ll metrics: we either have similar amplitudes over similar volumes
comparable P and S resolution), or different amplitudes over differ-
nt volumes (very different resolution), respectively. Thus, we use
hese metrics to compute a first mask, which serves to only display
he P and S -wave models where their resolution is deemed to be
omparable. 

.3 The Hinkley distribution 

e aim to compute the ratio R( k) = ˆ m( k) 
S / ˆ m( k) 

P for all cells k with
omparable resolving kernels A( k) 

P and A( k) 
S . Since in the SOLA

ramework, ˆ m( k) 
S and ˆ m( k) 

P are local-average estimates with corre-
ponding Gaussian uncertainties, σ

ˆ m
( k) 
S 

and σ
ˆ m

( k) 
P 

, their division (i.e.

R( k) ) results into the Hinkley distribution, H . This distribution is

art/ggaf468_f2.eps
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Figure 3. Illustration of the metrics used to assess the similarity of P and S resolution applied to a subset of random cells. (a) Combination of the PSNR and 
Rdiff metrics and (b) the Jaccard metric for the similarity assessment of the resolving kernels ( A( k) ). A subset of 600 cells were visually inspected to define the 

similarity of A( k) 
P and A( k) 

S . The straight blue lines represent the Rdiff = −2 . 24e−2 × PSNR + 2 . 353 (a) and the Jaccard = 0 . 45 (b) equations, respectively. A 

plus corresponds to a cell that is deemed to differ in terms of the P and S resolution, because of either the Jaccard or the PSNR/Rdiff metrics (the combination is 

named ‘Ak Misfit’). Cells having similar P and S resolution are represented by circles. (c) Slices of normalized resolving kernels A( k) 
P (top) and A( k) 

S (bottom) 
at four different locations k. These were chosen to illustrate several scenarios for the metrics, that is, a location (from left to right) where both conditions are 
respected; only one condition is respected (Ak Misfit is, but Jaccard is not); only the other condition is respected (Jaccard); none of the conditions are respected. 
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computed analytically (Hinkley 1969 ): 

H ( w ) ∼ N1 ( μ1 , σ
2 
1 ) 

N2 ( μ2 , σ
2 
2 ) 

( w ) , (9) 

where μ1 , 2 and σ1 , 2 represent the mean and standard deviation of 
the two uncorrelated Gaussians (i.e. dln Vs and dln Vp in each cell). 
The complete analytic equation can be found in the Supplementary 
Materials section Ss1, eq. (Se1). 

For further interpretation of the ratio R, we are only interested in 
cells where the Hinkley distribution resembles a Gaussian, as Gaus- 
sian uncertainties are easier to interpret. To assess when the Hinkley 
distribution is close to a Gaussian, we compute the following misfit: 

Misfit =
∫ 

w∈ [ −15 , 15] 

( H ( w) − BGF ( w)) 2 

H ( w)2 
dw , (10) 
with BGF the Gaussian function (Best-fitting Gaussian Function) 
that best fits the Hinkley distribution ( H ). We do not consider w
with absolute values larger than 15, as these likely result from 

a division with a denominator close to zero. The BGF is found 
using a Nelder-Mead simplex algorithm (Nelder & Mead 1965 ), by 
determining the mean μ and variance σ 2 of a normal distribution 
N that minimize the L 2 norm of the function f ( w) = H ( w) −
N ( w, μ, σ 2 ) . We consider Hinkley to be Gaussian-like when the 
misfit (see eq. 10 ) is smaller than 10 per cent. In that case, the values 
of μ and σ represent our estimates of the ratio R = dln Vs /dln Vp 

and its uncertainty, respectively. We illustrate the determination of 
the ratio R using Hinkley in Fig. 4 , where we show examples for 
cells k with a misfit above and below the 10 per cent limit. Based on 
this misfit, we set up a second mask, with the aim to only interpret 

art/ggaf468_f3.eps
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Figure 4. Examples of the Hinkley distributions for three different cells (a,b,c). For each example, we show: (i) the dln Vp (dotted blue) and dln Vs (orange) 
SOLA distributions; (ii) the dln Vs /dln Vp Hinkley distribution (green) and its best-fitting Gaussian function (BGF, here in purple) and (iii) the dln Vp /dln Vs 

Hinkley distribution (blue) with its BGF (red). In the top example, both ratios are considered Gaussian; in the middle, only dln Vp /dln Vs and in the bottom 

example, only dln Vs /dln Vp is Gaussian. In panels of R and 1 /R , we also indicate the misfit between the Hinkley distribution and the BGF defined in eq. ( 10 ). 

c  

l  

d

4

W  

d  

u  

s  

r  

d  

t  

m  

a  

d  

a

4

W  

c  

b  

d
(  

u
t  

c  

n  

H  

u  

m
 

t  

p  

d  

b  

2  

i  

c  

t  

u  

p  

i  

r  

i  

 

d  

f  

a  

M  

n  

a  

v
 

t  

d  

b  

s  

s  

S  

b  

c  

m  

u
o  

t  

w  

G  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/244/1/ggaf468/8326513 by guest on 07 January 2026
ells k for which the division of ˆ m( k) 
S with ˆ m( k) 

P results in a Gaussian-
ike distribution of R( k) . The same approach is also applied to the
ln Vp /dln Vs ratio (1/ R). 

 R E S U LT S  A N D  D I S C U S S I O N  

e present hereafter the SPRUM-Indo model, which describes
ln Vs , dln Vp and their ratio ( R) beneath Indonesia along with the
ncertainties using SOLA with body wave data in ray theory. To en-
ure a meaningful joined interpretation of dln Vs and dln Vp and their
atio R [see Fig. 5 (a) for 475 km depth and Fig. S2– S5 for other
epths], we first combine the two masks discussed in the Methods
o create a final mask [Fig. 5 (c) and Fig. S1]. This allows us to infer
aps of R = (

dln Vs /dln Vp 

)
and 1 /R = (

dln Vp /dln Vs 

)
, with their

ssociated uncertainties on the remaining cells, using the Hinkley
istribution [Fig. 5 (d)–(e) for 475 km depth and Fig. S6– S9 for
dditional depths]. 

.1 Resolution and Hinkley masks 

hile the resolution mask (Fig. 5 c) is correlated with the data
overage distribution (Fig. 2 ), the Hinkley mask is linked to the ratio
etween the anomaly values in the denominator (either dln Vp or
ln Vs for R or 1 /R, respectively) and their uncertainties, σ ˆ m( k) / ˆ m( k) 

Fig. 4 ). When this ratio is high—meaning the amplitude of the
ncertainty is comparable to the amplitude of the anomaly itself—
he Gaussian distribution of the denominator may cross zero. In that
ase, the division is likely to become unstable, leading to a loss of
ormality in the R (or 1 /R) ratio and a failure of the Hinkley test.
owever, we typically find that our inversion results in relatively low
ncertainties for both dln Vp and dln Vs . As a result, the resolution
ask is typically the most restrictive. 
For the division method, when uncertainties are not available,

he preferred approach is to discard grid cells where one of the
arameters is close to zero, since Hinkley fails when the Gaussian
istribution of the denominator crosses zero (as done, for instance,
y Della Mora et al. 2011 ; Koelemeijer et al. 2015 ; Tesoniero et al.
016 ; Lu et al. 2019 ). However, our analysis of the R ratio us-
ng Hinkley shows that it is sufficient to discard only dln Vp values
lose to zero, increasing the number of potentially computable ra-
ios. Moreover, the use of more independent data reduces the final
ncer tainties. Therefore, inver ting all available P -wave data, as is
ossible with the SOLA method, is more beneficial than reduc-
ng the data set to match the number of S -wave data. In fact, the
atio of model uncertainty over model amplitude ( σ ˆ m( k) / ˆ m( k) ) is typ-
cally lower for dln Vp , making the inference of dln Vs /dln Vp —the
R ratio popularized by Masters et al. ( 2000 )—more reliable than
ln Vp /dln Vs , thus resulting in fewer masked cells (Fig. 5 c). Un-
ortunately, computing Hinkley using absolute velocity values that
re never zero to bypass these issues is not feasible. Supplementary
aterials section Ss2 demonstrates that this approach leads to a

onlinear problem that cannot be easily solved, as it involves local
verages over multiple depths that have different reference model
alues. 

When Hinkley does not follow a perfect Gaussian distribution,
he value of its ratio R differs from the ratio obtained by directly
ividing dln Vs by dln Vp . However, when Hinkley is Gaussian,
oth ratios are equal. This may explain artefacts observed in other
tudies when dividing dln Vs and dln Vp in regions with seemingly
imilar resolution (e.g. Fang et al. 2018 ; Zenonos et al. 2020 ).
etting aside the fact that their resolution assessment is purely
ased on resolution tests, these studies also did not include un-
ertainties on the velocity distributions. As a result, the division
ay be unreliable, leading to differences in the computed R val-

es (with and without Hinkley). Moreover, when only one of R
r 1 /R can be obtained using Hinkley, it is not possible to ob-
ain the other ratio by simply taking the inverse of the ratio that
orks. Indeed, if we assume the R Hinkley distribution is non-
aussian, while 1 /R is Gaussian, we can reproduce the expected

art/ggaf468_f4.eps
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Figure 5. Results of the SOLA inversion at 475 km depth for dln Vp , dln Vs , dln Vs /dln Vp and dln Vp /dln Vs , shown in (a), (b), (d) and (e), respectively, including 
their uncertainties. The standard deviation indicated in the uncertainty maps represents the mean uncertainty of all cells present in a given map. (c) The dln Vp 

and dln Vs maps are used to compute the resolution and Hinkley masks, showing where dln Vp and dln Vs have similar local resolution and where their ratios 
are interpretable. The combination of both indicates where the ratios can be interpreted. SM: Sumatra, JV: Java, RR: Roo Rise, SB: Sumbawa, BS: Banda Sea, 
MS: Molucca Sea. 
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non-Gaussian Hinkley pdf of R by randomly drawing samples from 

the Gaussian Hinkley distribution of 1 /R and creating a histogram 

of their inverses. Therefore, both R and 1 /R must be computed 
using Hinkley, and we should only interpret the distribution that is 
Gaussian. 

We define R′ = 1 
1 /R , as the inverse of the Hinkley value for 1 /R, 

which should be equal to the R value. When both ratios ( R and 1 /R) 
are Gaussian, we observe a correlation between | R − R′ | and the 
misfit between the Hinkley distribution of R and its BGF (eq. 10 ). 
However, no correlation is found between | R − R′ | and the misfit 
of the 1 /R Hinkley distribution and its BGF. This further confirms 
that when only R is non-Gaussian, the Gaussian distribution of 1 /R
(through R′ ) cannot be used to compute R –in other words, R 	= R′ . 
It is therefore crucial to obtain a reliable PDF using Hinkley and 
to determine precisely when it follows a Gaussian distribution, in 
order to obtain reliable R (or 1 /R) values and their uncertainties 
for meaningful interpretations. To summarize, the two ratios are 
only interchangeable when both follow a Gaussian distribution. 
Indeed, for all cells where both ratios follow a Gaussian distribution, 
the median of { | R − R′ |} is about 0.17 times the median of the 
uncertainties in R ratio—i.e. the uncertainty in R is much larger 
than the difference between R and R′ , but only if both ratios are 

Gaussian. 
4.2 Sensitivity of Hinkley to data uncertainties 

Estimating data uncertainties is a complex task that directly affects 
model uncertainties and, consequently, the computation of the ratio 
using Hinkley. Here, we investigate the sensitivity of the ratio to the 
data uncertainties by simulating their perturbation while keeping the 
velocity values fixed. We then compute many Hinkley distributions 
with different uncertainty combinations and assess whether they are 
Gaussians. We use the proportion of Gaussian-like distributions we 
obtain in this process as a way to quantify the sensitivity and the 
potential errors in the data uncertainty estimation that may be due 
to the crustal model or errors in source parameters. 

To determine the extent of data uncertainty perturbations, we 
define an amplification factor αi for each data based on its seismic 
phase: 1.2 for the direct P and S phase and 1.5 for the pP and sS 

phase, meaning that σi,P or σi,sS could be up to 1.2 or 1.5 times 
larger. This is similar to the upscaling factor of Latallerie et al. 
( 2025 ) for instance. We then compute the quadratic average α of 
these factors for the entire P and S data sets as follows: 

α =
√ ∑ N 

i α2 
i 

N 

, (11) 

where i is the data index and N the number of data. Using this 
quadratic average, 1.24 for P and 1.23 for S phase, we define a new, 
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arger model uncertainty for the k-th cell σ ′ 
ˆ m( k) : 

σ ′ 
ˆ m( k) = α × σ ˆ m( k) . (12) 

ssuming that the difference between this new model uncertainty
nd the estimated SOLA model uncertainty represents the error in
he uncertainty estimation, we have: 

′ 
ˆ m( k) − σ ˆ m( k) = σ ˆ m( k) × ( α − 1) . (13) 

hus, Hinkley’s sensitivity of data uncertainties is the proportion of
aussian-like Hinkley distributions within the ranges of uncertainty

ˆ m( k) ± σ ˆ m( k) × ( α − 1) [shown by the red rectangles in Figs 6 (a) and
c) for two cells], because the true model uncertainties σ ′ 

ˆ m( k) (for P
nd S ) are expected to fall in those ranges. At the example depth of
75 km (Fig. 6 b), we observe that the proportion of Gaussian-like
inkley distributions is close to 100 per cent for R, except near

he edges of the unmasked area, while for 1 /R, we find large areas
here the Hinkley distribution is Gaussian-like only 20 per cent
f the time. This further suggests that the determination of the

R ratio is more stable than the determination of 1 /R. Interesting
atter ns are obser ved when we examine slices of the Hinkley–
GF threshold maps, where we mask areas where the misfit is
bove 10 per cent (Figs 6 a and c). Most of what we observe is
xpected; Hinkley becomes non-Gaussian as the dln Vp (panels ii)
r the dln Vs (panels i) distribution crosses zero. However, sometimes
he distribution crosses zero and yet still results in a Gaussian ratio.
his further highlights the instability of Hinkley and underscores

he fact that confidence in the model uncertainties is ver y impor tant
or reliable inferences of the ratio. As the sensitivity approaches
00 per cent, Hinkley is stable and robust to variations in data
ncertainty. However, if the sensitivity is close to zero, accurate
ata uncertainty estimation is crucial to trust the computed ratio.
ased on this sensitivity analysis, it would be possible to define
 third mask to exclude regions with Hinkley ratios that are less
table. However, as we would need to choose a threshold, we did
ot apply such a mask in this study to avoid introducing another
ubjective choice. 

.3 Structural interpretation of SPRUM-Indo 

he complexity of the SE Asia region is clearly visible in our results,
or instance in the dln Vp and dln Vs models [see Figs 5 (a) and (b) for
75 km depth and Figs S2, S4 for other depths]. While we present
ur results as depth slices, we want to stress that the structure at each
ocation represents a local average over a larger region (defined by
he resolution). To interpret the velocity anomalies, we thus always
eed to consider also the model uncertainty and resolving kernel
see Figs S3, S5 for dln Vp and dln Vs uncertainties respectively, for
ther depths). 

Multiple subducting slabs stand out, such as the Java-Sumatra
labs, the spoon-shaped slab in the Banda region and the two slabs
ith opposing subduction in the Molucca Sea. At shallow depths,

he slabs appear relatively thin, widening from the mantle transition
one (MTZ) down to the lower boundary of our model (800 km
epth). The continuity of the slabs is also clearly visible. In addition,
ell-defined low-velocity regions are observed, such as the one
etween the Molucca Sea slabs and another beneath the Sumatra
lab. While a detailed interpretation of the region is beyond the
ramework of this study, we will briefly discuss below two distinctive
eatures: the Java slab hole and the Sumatra subslab hot mantle
pwelling (SHMU). 
.3.1 The Java slab hole 

he Java slab hole was first discussed by Widiyantoro et al.
 2011 ) and Hall & Spakman ( 2015 ). Widiyantoro et al. ( 2011 )
id not specify its size, but their models suggest it is sim-
lar to the description of Hall & Spakman ( 2015 ): a 250–
00 km deep, 400–500 km wide reduction in the fast velocity
nomaly between 109 and 115 ◦E (indicated by the target kernel in
ig. 7 ). 
Hall & Spakman ( 2015 ) proposed that a buoyant structure in the

lab caused subduction to pause about 8 Myr ago, supported by
igh-K alkalic backarc volcanism of the same age. While Zenonos
t al. ( 2019 ) and Toyokuni et al. ( 2022 ) agree with this origin, their
odels show smaller sizes for the slab hole: 350–500 km (Zenonos

t al. 2019 ) or 280–430 km (Toyokuni et al. 2022 ). Toyokuni et al.
 2022 ) also found that the subslab mantle and mantle wedge mate-
ials could be connected between 310 and 400 km depth. Further
tudies by Wang et al. ( 2022 ) and Xie et al. ( 2023 ) agree on the
ize, but they suggest that the velocity estimates are uncertain due
o a lack of data. They could therefore also be interpreted as a thin-
ing of the slab, instead of a hole (Wang et al. 2022 ). A second
ole beneath East Sumbawa has also been suggested by some stud-
es (e.g. Widiyantoro et al. 2011 ; Hall & Spakman 2015 ; Zenonos
t al. 2019 ; Wehner et al. 2022 ). Yet, none of these studies analysed
heir tomographic model uncertainty or resolution. While they did
erform sensitivity tests, these do not provide reliable information
n the true model resolution. 

In our model [Fig. 7 , where the supposed Java and Sumbawa holes
re respectively indicated with ‘JV’ and ‘SB’ in the dln Vp slice (b)],
e observe a slight reduction in the P -wave velocity amplitudes,
onsistent with the results of Zenonos et al. ( 2020 ) [see the mod-
ls for Central Java in Fig. S10(b)], though Toyokuni et al. ( 2022 )
Fig. S10c) shows a stronger positive anomaly and slab deflection
orthward. At the locations of both suggested holes, dln Vs /dln Vp 

nomalies (Fig. 8 and Figs S6–S9 for other depths) largely exceed
alues of 2.5, with uncertainties around 1. This is again rather con-
istent with Zenonos et al. ( 2020 ) (Fig. S12), but in their model the
nomaly is less pronounced at the location of the main hole. While
hese regions have slightly higher ratio uncertainties compared to
heir surroundings, they show no significant changes in their dln Vp 

nd dln Vs uncertainties. 
Seismicity data indicate no earthquakes at the location of the

upposed holes (Fig. 7 b). However, we observe no overall corre-
ation between seismicity and the R values of the SOLA model.
ince 250–500 km is the least seismogenic depth range (e.g. Tsam-
as et al. 2017 ), this may not be relevant. Fur ther more, the A( k) is
ell contained within the area with reduced P -wave velocity am-
litudes (Fig. 7 b), indicating a good resolution. At the same time,
he amplitude reduction is significant given the model uncertainty,
ndicating reliable results. However, the main hole is absent in the
 -wave model, similar as in the results of Zenonos et al. ( 2019 ) and
ehner et al. ( 2022 ) [see Fig. S11(b) and (c) for their respective
 -wave models]. We note a slight amplitude reduction in our S -wave
odel near the location of the second hole near Sumbawa between

00 and 400 km depth, even though it is 100 km deeper than seen in
he models of Widiyantoro et al. ( 2011 ) and Wehner et al. ( 2022 ).
f the proposed slab holes exist, they must therefore be smaller
han the resolution of our model. Alternatively, the subduction of
tructures like the Roo Rise could affect the thermochemical prop-
rties of the slab, serving as alternative explanation of the reduced
ln Vp amplitudes, unaffected dln Vs amplitudes and the lack of
eismicity. 



12 E. Serra et al.

Figure 6. Sensitivity of the ratio computation to data uncertainty perturbations, shown for two example cells (a and c), for both 
dln Vp 
dln Vs 

and dln Vs 
dln Vp 

estimation (i 

and ii). The non-hatched and hatched cells correspond to those combinations of uncertainties for which the misfit between Hinkley and its BGF is below or 
above 10 per cent, respectively, that is, whether the Hinkley can be considered Gaussian or not. (b) Maps of the sensitivity computed for all cells in the 475 km 

depth layer. For each cell, we express the proportion of Gaussian-like Hinkley distributions that are obtained for the possible velocity–uncertainty combinations 
we consider. The velocity values are fixed, and the uncertainties are linearly chosen in the range (1 ± 0 . 24) × σ for the P phases and (1 ± 0 . 23) × σ for the S 
phases (where the value is determined by the relative number of direct and depth phases). 
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4.3.2 The Sumatra subslab hot mantle upwelling (SHMU) 

Underneath the Java-Sumatra slab at 200 km depth, a strong and 
large negative velocity anomaly is present. This so-called sub- 
slab hot mantle upwelling (SHMU) might have different causes: 
it could be due to a return flow rising along the slab as it is 
subducting in the lower mantle (e.g. Toyokuni et al. 2022 ) or 
could represent flow due to the retreat of the Indo-Australian 
plate (e.g. Long & Silver 2008 ; Fan & Zhao 2021 ). It has been 
suggested that these low-velocity anomalies may trigger megath- 
r ust ear thquakes, because their buoyancy increases the nor mal 
and/or shear stress in nearby areas (e.g. Fan & Zhao 2021 ; 
Toyokuni et al. 2022 ). Additionally, Nugraha et al. ( 2019 ) found 
a link between earthquake production zones and unusual Vp /Vs 

values. 
In our models (see Fig. 9 for slices at 475 km depth and Figs S2–

S5 for other depths), the SHMU structure appears in both P - and 
S -wave models, a feature that is also seen in the S model of Zenonos 
et al. ( 2019 ), but absent in the S model of SASSY21 (Wehner 
et al. 2022 ) and the P model of Zenonos et al. ( 2019 ). It is well 
resolved as the resolving kernels are clearly focused with a lateral 
extent smaller than the SHMU itself. In addition, the uncertainties 
are lower than the velocity amplitudes, though they are slightly 
higher than in nearby areas. In both P - and S -wave models, the 
negative anomalies seem to arise from deeper than the model’s 
lower boundary. However, in the P -wave model the low-velocity 
anomaly is only observed up to 175 km depth, while in the S -wave 
model, it continues to the surface. This discrepancy could arise 
from differences in the crustal corrections that are applied to P and 
S rays, particularly if Vp and Vs are not equally well constrained in 

the crustal models. 
The dln Vs /dln Vp anomaly varies with depth (see Fig. 10 for 
slices at 475 km depth and Figs S6–S9 for other depths). At 275 km 

depth, R is strongly positive (around 3–4), but at 475 km, it is 
closer to 1. The uncertainties at these depths are relatively high 
(1 at 275 km and 0.3 at 475 km) albeit still lower than the model 
values, while at greater depth the ratio cannot be interpreted due to 
being masked. Near the surface, the SHMU shows large variations 
in dln Vs /dln Vp , with very negative values due to positive dln Vp 

and negative dln Vs values. These unusual R values may lead to 
more megathrust earthquakes (Nugraha et al. 2019 ), which seem to 
occur more frequently in the Sumatra slab than the Java slab. This 
remains a hypothesis, as the difference in megathrust frequency 
could also be due to the fact that the Sumatra megathrust fault is 
longer (e.g. Hutchings & Mooney 2021 ). Perhaps coincidentally, the 
SHMU is only visible below Sumatra in our models. This may be 
because upwelling mantle material passes through the hole under 
Java, enters the mantle wedge, thus encouraging local volcanism 

(e.g. Hall & Spakman 2015 ; Toyokuni et al. 2022 ) and weakening 
the SHMU in the upper mantle under Java (e.g. Fan & Zhao 2021 ). 
Alternatively, if no slab holes are present, geothermal processes 
due to the subduction of the Roo Rise could disrupt the mantle 
upwelling. An aborted ridge is also being subducted in nor ther n 
Sumatra, leading to a difference in lithospheric structure beneath 
Sumatra and Java. It is younger and thinner under Sumatra (e.g. 
Conrad & Lithgow-Bertelloni 2006 ; Müller et al. 2008 ), which 
may also partly explain why the SHMU is located only beneath 
Sumatra. 

Our model results appear consistent with the different volcanic 
rocks observed in Indonesia, with typically more felsic lavas found 
in Sumatra, while Java has more mafic lavas (see for instance Fig. 7 b) 
(e.g. Romero et al. 2021 ). The subducting slab under Sumatra may 
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Figure 7. The region of the potential Java slab hole in the dln Vp model (b) with its uncertainties (c), represented by vertical (along the green line) and 
horizontal (at 375 km depth) slices. Seismic events reported by the ISC and volcanoes (Neumann van Padang & Association 1951 ) are represented by black 
dots and coloured upward triangles in (b,e), respectively. We only show here the events from the ISC-EHB (International Seismological Centre 2023b ) and 
ISC-Reviewed (International Seismological Centre 2023a ) data sets. The averaging kernel is also shown at the proposed location of the main slab hole (a), with 
the spatial extent of the target kernel indicated on all maps. The panels on the right similarly represent the dln Vs model (respectively e, f and d). Abbreviations 
are the same as indicated in Fig. 5 In the (b) vertical slice, ‘JV’ and ‘SB’ are situated above the locations of the suggested main and Sumbawa holes. 

Figure 8. Same as Figs 7 (b)–(f), but showing the dln Vs /dln Vp (a, b) and dln Vp /dln Vs (c, d) ratios. 
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hus be releasing more silica compared to Java, enriching the sur-
ounding mantle and giving rise to felsic lava in the forearc vol-
anism. Since the SHMU appears spatially linked to the slab over
 long distance, it may also be enriched with silica. This could ex-
lain the large negative anomaly of the SHMU and the differences
etween dln Vp and dln Vs at shallower depths, as silica would in-
rease Vp more than Vs (e.g. Matsushima 1981 ). Above 200 km,
lab dehydration might favour partial melting of the SHMU due
o adiabatic decompression, reducing Vs more than Vp . This would
everse the sign between dln Vp and dln Vs . Finally, the enrichment in
ight silicates could explain the high dln Vs /dln Vp ratios as well as
he buoyancy of the SHMU. This enrichment might increase grad-
ally with g reater depths, suppor ted by the decrease in the ratio R
rom 200 to 700 km depth (Fig. 10 a). 

We note that it is complicated to perform a thorough interpretation
f our results because of the nature of dln Vs /dln Vp and the fact this

art/ggaf468_f7.eps
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Figure 9. The region of the subslab negative velocity anomaly (SHMU), shown for both the dln Vp model (b, c) and the dln Vs model (e, f). An averaging kernel 
for the location of the SHMU is also shown (a, d), with the spatial extent of the target kernel indicated on all maps. For more details, see the caption of Fig. 7 

Figure 10. Same as Figs 9 (b)–(f) for the dln Vs /dln Vp (a, b) and dln Vp /dln Vs (c, d) ratios. 
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is quite different from dln 
(
Vp /Vs 

)
. The latter is well studied by 

other fields, especially in rock mechanics. Interpreting dln Vs /dln Vp 

in terms of dln 
(
Vp /Vs 

)
helps to better understand the physical 

processes responsible for the observed seismic velocity variations. 
To this end, we have explored a new approach for interpreting 
models of dln Vs , dln Vp , R , 1 /R and their uncertainties. As this is 
beyond the scope of this work, we will introduce this in a future 
study. 
5  C O N C LU S I O N  

In this paper, we propose an approach to obtain estimates of the ratio 
R ( dln Vs /dln Vp ) and its uncertainties, which enable quantitative in- 
terpretations of Earth’s interior structure. Using the SOLA-Backus- 
Gilbert method, we are able to construct models of relative velocity 
anomalies ( dln Vp and dln Vs ) and their ratios ( dln Vp /dln Vs ( 1 /R) 
and dln Vs /dln Vp ( R)), along with their uncertainties. We assess the 
similarity of the P and S -wave model resolutions using three metrics 
(Jaccard, PSNR and Rdiff) and use these to mask out regions where 
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he local model resolution is dissimilar. This approach allows us to
se all data and to obtain individual models with better resolution
nd smaller uncertainties that propagate into the estimates of the
atio. Our approach using SOLA also enables us to include tele-
eismic data in regional models as the inversion is performed on a
oint-by-point basis. 

We compute the velocity ratio using the Hinkley distribution,
hich accounts for the Gaussian uncertainties in dln Vp and dln Vs .
or easier geophysical interpretations, we assess whether the Hink-
ey distribution of R (and 1 /R) are Gaussian, and mask regions of
he models where this is not the case. When the Hinkley distribution
f R (or 1 /R) deviates too much from a Gaussian, the distribution of
he inverse ratio is typically Gaussian-like. Therefore, it is essential
o analyse which ratio is Gaussian after computing both Hinkley
istributions, before making model interpretations. 

We apply our methodology to study the mantle down to 800 km
epth beneath Indonesia using a combination of the ISC-EHB and
SC-Reviewed data sets. Specifically, we develop models of dln Vp ,
ln Vs as well as R and 1 /R with resolution and uncertainty informa-
ion. We find that the region of similar resolution for dln Vp and dln Vs 

oughly follows the region with good data coverage, emphasizing
he need to use all possible data. Our models enable us to quan-
itatively confirm the presence of a subslab hot mantle upwelling
eneath the Sumatra slab, but we found no conclusive evidence of
lab holes under Java or East Sumbawa given the model resolution.
rom this application of our methodology to SE Asia, we note that

he similarity in resolution is the most limiting factor for computing
he ratio. It may therefore be possible to develop an algorithm to
ptimize the resolution-uncertainty trade-off by adjusting the target
ernel size to increase the number of cells with similar resolution.
inally, with the four developed models for dln Vp , dln Vs , R and
 /R, it is possible to interpret the structures in terms of the true

Vp /Vs ratio. We propose an approach for this in a future study. 
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ATA  AVA I L A B I L I T Y  

he discrete SOLA tomography code consists in running the LSQR
ode with specific, study-dependent , input matrices and vectors,
orresponding to personal choices (e.g. data kernels, model dis-
retization, target kernels), as detailed in appendix A of Zaroli
 2016 ). LSQR is available at (Stanford’s Systems Optimization Lab-
ratory): https://web.stanford.edu/group/SOL/sof tware/lsqr/ . Seis-
ic events and code ( ISCLOC ) from the International Seismolog-

cal Centre (ISC) are available at: http://www.isc.ac.uk/index.php .
he code raydyntrace is available at: https://www.geoazur.fr/GLO
ALSEIS/Soft.html . We use TauP (Crotwell et al. 1999 ) for ray

racing, as implemented in ObsPy (Beyreuther et al. 2010 ). All
he tomographic results produced in this study are available at:
ttps://doi.org/10.5281/zenodo.15480510 . 
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