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A B S T R A C T   

Seismic tomography allows us to image the interior of the Earth. In general, to determine the nature of seismic 
anomalies, constraints on more than one seismic parameter are required. For example, the ratio R between 
perturbations in vs and vp (dlnvs and dlnvp, respectively) is studied extensively in the lowermost mantle and 
interpreted in terms of thermal and/or chemical anomalies. However, to jointly interpret tomographic models of 
variations in vs and vp or their ratio R, it is essential for them to share the same local resolution. Most existing 
models do not provide resolution information, and thus cannot guarantee to honour this condition. In addition, 
uncertainties are typically not provided, making it difficult to robustly interpret the ratio R = dlnvs/dlnvp. To 
overcome these issues, we utilise the recently developed SOLA tomographic method, a variant of the linear 
Backus–Gilbert inversion scheme. SOLA retrieves local-average model estimates, together with information on 
their uncertainties, whilst it also provides direct control on model resolution through target kernels. In this 
contribution, we apply SOLA to normal-mode data with sensitivity to both vs and vp, as well as density 
throughout the mantle. Specifically, we aim to develop models of both vs and vp with the same local resolution. 
We test our methodology and approach using synthetic tests for various noise cases (random noise, data noise or 
also additional 3D Earth noise due to variations in other physical parameters than the one of interest). We find 
that the addition of the 3D noise increases the uncertainties in our model estimates significantly, only allowing us 
to find model estimates in six or four layers for vs and vp, respectively. While the synthetic tests indicate that no 
satisfactory density models can be obtained, we easily manage to construct models of dlnvs and dlnvp with almost 
identical resolution, from which the ratio R can be robustly inferred. The obtained values of R in our synthetic 
experiments significantly depend on the noise case considered and the method used to calculate it, with the 
addition of 3D noise always leading to an overestimate of R. When applying our approach to real data, we obtain 
values of R in the range of 2.5–4.0 in the lowest 600 km of the mantle, which are consistent with previous studies. 
Our model estimates with related resolving kernels and uncertainties can be used to test geodynamic model 
predictions to provide further insights into the temperature and composition of the mantle.   

1. Introduction 

Seismic tomography is our most powerful tool for imaging the 
Earth’s deep interior. However, the development of a tomography 
model is complicated by several factors that affect how robust the so
lution of the inverse problem is, such as the non-uniqueness of the so
lution (e.g. Nolet, 2008), the heterogeneous data coverage (e.g. Zaroli 
et al., 2017), the chosen model parameterisation (Trampert and Snieder, 
1996), the chosen theory for both the forward and inverse modelling and 

the noise in the data (e.g. Rawlinson et al., 2014). Given all these 
complications, a careful analysis of model resolution and covariance is 
fundamental to robustly interpret seismic images (e.g. Trampert, 1998). 
Nonetheless, most global-scale tomographic models do not provide such 
uncertainty information, except in some studies that utilise Bayesian 
methods (e.g. Trampert et al., 2004; Mosca et al., 2012). Even then, 
model robustness is not computed nor analyzed exhaustively (Rawlinson 
and Spakman, 2016). 

In the lowermost mantle in particular, the above issues concerning 
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the robustness of tomography models prevent us from drawing conclu
sions about the nature of the observed seismic structures. Dozens of 
global tomography models exist, which consistently image two large 
antipodal regions of low seismic velocities (Large Low Velocity Prov
inces, LLVPs for short) underneath Africa and the Pacific. These have 
primarily been observed in shear-wave velocity (vs) models (Lekić et al., 
2012; Cottaar and Lekic, 2016), but more recently also in 
compressional-wave velocity (vp) models (Lekić et al., 2012; Koele
meijer et al., 2016; Garnero et al., 2016; Koelemeijer, 2021), although 
the small-scale details and amplitudes do vary between models. Despite 
this consistent imaging of the LLVPs (at least on longer wavelengths), 
there are still several outstanding questions. In particular, the amount 
and distribution of chemically distinct material in the LLVPs remains 
debated, which influences their mobility and evolution as well as the 
planform of mantle convection through time (e.g. Garnero et al., 2016; 
McNamara and Zhong, 2005; Davies et al., 2015; McNamara, 2019). 

In order to constrain the origin of the low seismic velocities of the 
LLVPs, it is important to consider multiple elastic parameters and to 
robustly determine the relative amplitudes of their anomalies. 
Commonly, the ratio R between perturbations in vs (dlnvs) and vp (dlnvp) 
is considered in studies of the lowermost mantle. Mineral physics ex
periments indicate that the ratio R in the LLVPs should be up to 2.5 if the 
low velocities are only due to thermal variations (Karato, 1993; Karato & 
Karato and Karki, 2001). Values greater than 2.5 imply the presence of 
either chemical heterogeneity (e.g. Su and Dziewonski, 1997; Masters 
et al., 2000a) or the phase transition from bridgmanite to post perovskite 
(e.g. Oganov and Ono, 2004; Koelemeijer et al., 2018). Robust infor
mation on R thus helps to distinguish between different physical in
terpretations of seismic anomalies. 

In order to interpret a pair of vs and vp tomography models jointly, it 
is vital for them to have the same local resolution (Tesoniero et al., 
2016). This can be problematic as traditional tomographic approaches 
do not allow a direct control on the model resolution, which thus pre
vents one to develop dlnvs and dlnvp models with identical local reso
lution. Moreover, the uncertainties associated with the perturbations, 
and therefore with the ratio R, are often not computed. Despite these 
issues, many studies have focused on obtaining and interpreting the 
ratio of seismic velocities (e.g. Su and Dziewonski, 1997; Ishii and 
Tromp, 1999; Masters et al., 2000a; Romanowicz, 2001; Della Mora 
et al., 2011; Koelemeijer et al., 2016). These studies typically find ratios 
close to 1–1.5 in the upper mantle, and an increase in the ratio up to 
values larger than 2.5 in the lower mantle, an observation that has often 
been interpreted to imply chemical heterogeneity. However, without 
information on the vs and vp model resolution, it is difficult to assess 
whether the computed ratios, and hence their interpretation are robust. 

In this study, we aim to solve these issues by developing mantle to
mography models that are accompanied by uncertainty and resolution 
information. We strive to have the same resolution for vs and vp, so that 
their perturbations can be jointly interpreted in a robust way. To solve 
the inverse problem, we shall use the Subtractive Optimally Localized 
Averages (SOLA) method (Pijpers and Thompson, 1992, 1994), a slight 
variant of the linear Backus-Gilbert (B–G) inversion scheme (Backus and 
Gilbert, 1967, 1968, 1970). The SOLA method has been introduced and 
adapted to solve (large-scale) tomographic problems by Zaroli (2016, 
2019). Contrary to the original B–G approach, SOLA allows for a direct 
control on the model resolution through the choice of our target kernels. 
This allows us to build dlnvs and dlnvp models with the same pre- 
specified resolution. This control on resolution and the availability of 
model uncertainties make it possible to analyse the robustness of dlnvs 
and dlnvp model estimates and to analyse to what extent we can interpret 
estimates of R. We apply the SOLA tomographic method to observations 
of normal mode splitting, thus focusing on the long wavelength structure 
of the mantle. The use of normal mode data has several advantages: they 
are directly sensitive to both shear- and compressional-wave velocities 
as well as density, they are sensitive to different depths spanning the 

whole mantle, and they provide a global data coverage. 
This manuscript is structured as follows. In Section 2 we briefly 

summarize some important aspects of normal modes and introduce 
splitting function measurements. In Section 3 we present theoretical 
aspects of the SOLA method and discuss how we apply this to the normal 
mode data. In particular, we discuss methodological aspects such as the 
model parameterisation, inversion strategy and crustal corrections. 
Throughout Section 4 we detail the set-up and procedure for synthetic 
tests and present the corresponding results. We show the ability of 
normal modes to recover the input structure of an existing tomographic 
model, in terms of shear- and compressional-wave velocity perturba
tions. We also discuss the influence of different noise levels and the re
covery of density anomalies in synthetic tests. Then, in Section 5 we 
perform inversions of observed splitting functions for vs and vp pertur
bations, also computing and discussing their ratio R. Finally, the dis
cussion in Section 6 covers different topics such as the importance of 
estimating the noise accurately, the advantages and limitations of our 
approach and implications for both existing and future normal mode 
studies. 

2. Normal modes 

Seismic recordings of normal modes (spectra) can be directly 
inverted for Earth structure (one-step inversion) or in two separate steps 
with splitting functions obtained as an intermediate step (two-steps 
inversion) (e.g. Li et al., 1991). The one-step inversion is non-linear and 
requires large amounts of computation time, which consequently only 
few studies have used (e.g. Li et al., 1991; Durek and Romanowicz, 
1999; Kuo and Romanowicz, 2002; Jagt and Deuss, 2021). Instead, 
splitting functions are linearly related to 3D Earth structure and once a 
database of splitting functions is developed, it can be utilised repeatedly 
(e.g. Ishii and Tromp, 1999; Mosca et al., 2012; Koelemeijer et al., 2016; 
Moulik and Ekström, 2016). While the use of splitting functions for 
studies of density has been questioned (Al-Attar et al., 2012; Akbar
ashrafi et al., 2017, e.g.), velocity models developed with the one-step or 
two-step inversion method only differ in the detail with the two-step 
inversion computationally efficient (Jagt and Deuss, 2021). As SOLA is 
only applicable to linear(− ised) problems, we cannot use the one-step 
procedure. Therefore, we make use of splitting functions (two-step 
approach) to obtain models of the mantle. Given the small computation 
time, this allows us to perform numerous synthetic experiments. 

2.1. Normal mode theory 

Free oscillations or normal modes of the Earth arise after large 
earthquakes (typically with moment magnitude Mw > 7.4), when the 
Earth resonates like a bell. Due to the finite size of the Earth, only 
discrete resonance frequencies are permitted. Two different types of 
normal modes exist: (i) spheroidal modes, which involve vertical and 
horizontal motion, and (ii) toroidal modes, which involve horizontal 
motions only. Spheroidal mode multiplets nSl and toroidal mode mul
tiplets nTl are characterised by their radial order n and angular order l. 
Each multiplet consists of 2l + 1 singlets with azimuthal order m. 

For a spherically symmetric, non-rotating, perfectly elastic and 
isotropic (SNREI) Earth model, all 2l + 1 singlets of a given mode are 
degenerate, i.e. have the same frequency. Earth’s rotation, ellipticity 
and aspherical structure – including topography on internal boundaries 
and lateral variations in isotropic and anisotropic structure – remove 
this degeneracy, resulting in so-called splitting of the multiplet. In the 
real Earth, normal modes may also exchange energy (“coupling”), but 
the “self-coupling” approximation (which consider multiplets in isola
tion) is commonly used in tomographic applications. 

The splitting of a given mode is conveniently described by splitting 
function coefficients, introduced by Woodhouse et al. (1986). Using 
perturbation theory, these coefficients, denoted as cst , are linearly 
related to the perturbations of the reference Earth model in shear-wave 
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velocity (dlnvs), compressional-wave velocity (dlnvp), density (dlnρ) and 
topography on internal boundaries (dlnh) as follows: 

cst =

∫ a

0

[
dlnvs,st(r)Ks

s(r) + dlnvp,st(r)Kp
s (r) + dlnρst(r)K

ρ
s (r)

]
dr

+
∑

d
dlnhd

stH
d
s (1)  

where s and t indicate the spherical harmonic degree s and order t 
describing lateral heterogeneity in the Earth. Ks

s(r), K
p
s (r), Kρ

s (r) and Hd
s 

are the sensitivity kernels at degree s associated with the perturbations 
in vs, vp, density and topography of discontinuities, computed here using 
the 1D PREM model (Dziewonski and Anderson, 1981). We focus here 
only on volumetric heterogeneity, thus neglecting the interface topog
raphy effects with the exception of the crust (see Section 3.5). 

Fig. 1 shows examples of sensitivity kernels at degree 2 for a few 
spheroidal modes. Since the sensitivity to vs and ρ depends on the har
monic degree, sensitivity kernels at degrees 2, 4, 6 and 8 are shown in 
Supplementary Fig. S1. While some normal modes have targeted sensi
tivity to the shallow mantle (e.g. fundamental modes with n = 0 and 
high angular order l, Fig. 1a) or lowermost mantle (e.g. Stoneley modes, 
Fig. 1b), others have very oscillatory sensitivity, particularly in the mid 
mantle. As SOLA constructs resolving kernels by combining data sensi
tivity kernels, we can thus expect that it will be challenging to resolve 
structures in the mid mantle. Nevertheless, the fact that modes are 
sensitive to different parameters at different depths makes them suitable 
to study structures across the whole mantle. 

2.2. Splitting function measurements 

For the development of model SP12RTS, Koelemeijer et al. (2016) 
combined splitting function measurements that were obtained after 
2011, including all vp sensitive modes of Deuss et al. (2013) and the 
Stoneley modes of Koelemeijer et al. (2013). All measurements were 
obtained from the non-linear, iterative, least-squares inversion of 
seismic spectra (Deuss et al., 2013), using data from 93 earthquakes with 
Mw > 7.4 between 1976 and 2011. We use the same normal mode 
dataset as in model SP12RTS, given our main interest in both vs and vp 

perturbations and the focus on the lower mantle. However, we only use 
coefficients up to degree 8 as the number and quality of measurements 
above s = 8 drops significantly. Our dataset thus contains 143 

spheroidal modes, with 5309 splitting function coefficients. We do not 
include toroidal modes here, as there are fewer data with larger un
certainties and they are mainly sensitive to vsh. We also exclude inner 
core sensitive modes, as in Koelemeijer et al. (2016), given our primary 
interest in mantle structure. Though some of the observed splitting 
functions were obtained using pair- or group-coupling, in this study we 
only consider the self-coupled parts of the splitting functions, limiting us 
to study even-degree heterogeneity only. 

Uncertainties - including data uncertainties - play a crucial role in 
SOLA inversions. To determine the measurement uncertainties of the 
splitting functions in our dataset, a bootstrap resampling technique was 
used, as described in Deuss et al. (2013). This consists of remeasuring the 
splitting coefficients leaving out entire events at random in each 
inversion. The maximum range of measurements was taken for each 
coefficient to obtain an overestimate estimate of the measurement un
certainty. However, this procedure only considers uncertainties in the 
measurements due to the earthquake sources and data noise, while 
additional “theoretical errors” are also present (Resovsky and Ritzwol
ler, 1998). Particularly, the error due to the use of the self- and group- 
coupling approximations can be considerable (Deuss and Woodhouse, 
2001; Al-Attar et al., 2012; Robson et al., 2022, e.g.) and it has been 
suggested that published measurement uncertainties should be multi
plied by a factor of 2 to more accurately represent the true data un
certainties (Akbarashrafi et al., 2017). 

3. Methodology 

3.1. The SOLA-Backus-Gilbert method 

The SOLA (Subtractive Optimally Localized Averages) method is an 
alternative formulation of the Backus–Gilbert (B–G) linear inversion 
scheme (Backus and Gilbert, 1967, 1968, 1970), which retains all its 
advantages, but is more computationally efficient and versatile in the 
explicit construction of resolving kernels. The method was first devel
oped for helio-seismic inversions by Pijpers and Thompson (1992, 1994) 
and introduced and adapted to seismic tomography by Zaroli (2016). 
For an exhaustive introduction to SOLA tomography, the reader is 
referred to Zaroli (2016) and Zaroli (2019). Here, we only summarize 
the main points. 

Inverse methods like SOLA, which belong to the Backus–Gilbert 
approach, do not seek to construct a particular model solution m̃, that is, 
to estimate infinitely many model parameters, but instead to determine 
some optimally localized averages, m̂, over the ‘true’ model, m. This can be 
written in a general form as 

m̂ =

∫

R̂m (+ propagated noise). (2) 

The process of averaging, which is performed within a region rep
resented by a resolving kernel R̂, removes the non-uniqueness of the 
solution without the introduction of regularisation constraints on the 
model. Therefore, it is possible to identify unique averages, even when 
the (infinitely many) parameters themselves are not uniquely defined 
(Menke, 1989). 

While in the classic Backus–Gilbert formulation this resolving kernel 
R̂ is designed to be as focused as possible, with SOLA we specify an a 
priori target form for R̂, through the definition of a target (resolving) 
kernel T. The SOLA optimization problem then consists of seeking a 
local-average estimate m̂ as a linear combination of the data, such that 
the resulting resolving kernel R̂ is the closest possible to its target kernel 
T. At the same time, SOLA moderates the uncertainty, σm̂, related to the 
model estimate, which represents in a statistical sense the propagation 
of noise into the model space. This can be summarised as follows: 
∫

(R̂ − T)2
+ η2 σ2

m̂ = min, (3) 

Fig. 1. Examples of spheroidal mode sensitivity kernels for mantle structure at 
degree s = 2. We show the sensitivity to shear-wave velocity vs (blue), 
compressional-wave velocity vp (black) and density ρ (red), calculated for the 
anisotropic PREM model (Dziewonski and Anderson, 1981). Horizontal lines 
indicate the surface and the radii of the core-mantle boundary (CMB) and inner 
core boundary (ICB). Each panel is normalised independently. Kernels for other 
spherical harmonic degrees are presented in Supplementary Fig. S1. The 
resolving kernels obtained using SOLA are effectively linear combinations of 
different normal mode sensitivity kernels. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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where η represents a trade-off parameter — the well-known trade-off 
between model resolution and model uncertainty (Backus and Gilbert, 
1970). 

Specifying a target averaging kernel for every region of interest 
(within the model space) means that we have direct control on the local 
model resolution as we can also specify how close we want to fit these. 
We thus introduce a priori information on the model resolution, which is 
significantly different from assuming a priori information on the model 
itself (e.g. by using damping or smoothness constraints). We can also 
control the level of model uncertainty by varying the trade-off param
eter. Moreover, both the resolving and target kernels are normalised to 
unity (i.e., 

∫
R̂ =

∫
T = 1), so that we may obtain unbiased local aver

ages with respect to the true model (e.g. Zaroli et al., 2017). 
In summary, SOLA provides a direct control and valuable informa

tion on the model resolution and uncertainties, which are necessary to 
draw well-informed conclusions from tomographic images. The avail
ability of both resolution and uncertainties (in addition to an ensemble 
of local-average model estimates) is a luxury that most other tomo
graphic schemes do not provide (at least for large-scale problems, often 
due to the high computational costs). Finally, the key advantage of SOLA 
tomography for our study is that it allows us to build models of dlnvs and 
dlnvp with (almost) identical resolution. 

3.2. Model parameterisation and target kernels 

Vertically, the model is subdivided into 96 layers using the original 
PREM parameterisation (Dziewonski and Anderson, 1981), with layer 
thickness varying from about 20 km at the surface to about 40 km at the 
CMB. This fine layering allows us to capture the characteristics of the 
sensitivity kernels, and minimizes the error introduced with the dis
cretisation. While this may appear very fine, it is important to note there 
is a clear distinction between the model parameterisation and the 
thickness of the target kernels and thus the vertical resolution of the 
model. 

Laterally, the model is parameterised into spherical harmonics up to 
degree 8, which gives a lateral resolution of about 5400 km at the sur
face and 2700 km at the CMB. The lateral parameterisation in spherical 
harmonics allows us to perform purely 1D (depth) inversions consid
ering one spherical harmonic coefficient with degree s and order t at a 
time. The 3D model estimate and the associated uncertainties are then 
obtained by combining the results for different coefficients. 

With 1D (depth) inversions, we only have to define 1D target kernels. 
Following Masters et al. (2000b) and Masters and Gubbins (2003), we 
choose the target kernels to be in the shape of a boxcar. Alternatively, we 
could have assumed smooth functions such as Gaussian functions, to 
mimic the sensitivity kernels of the modes. However, our choice of 
boxcars simplifies the interpretation of the local averages, which can 
now be interpreted as the mean of the model between two depths 
(assuming that the obtained resolving kernels also approximate a 
boxcar). 

Typically, when using body-wave or surface-wave data in 3D in
versions, the size of the target kernels is guided by the heterogeneous 
data coverage and the local resolving length that could potentially be 
expected based on the ray density (e.g. Zaroli, 2016, 2019; Latallerie 
et al., 2022). Since we perform 1D inversions using normal mode data, 
which provide global data coverage, we instead estimate the optimal 
thickness of the target kernels with synthetic tests, as explained further 
in Section 4. 

3.3. Resolution misfit 

To combine 1D model solutions at different spherical harmonic de
gree s and order t, it is vital that they all have the same local resolution, i. 
e. the resolving kernels are the same. To achieve this, we define the same 
target kernels for all degrees s, and we aim to obtain resolving kernels 

that fit these target kernels equally well for every spherical harmonic 
degree s (the kernels do not depend on order t). To quantify the simi
larity between target kernels and resolving kernels, we introduce the 
concept of resolution misfit (RM), defined as: 

RM =

∫
(R̂ − T)2dr
∫

T2dr
. (4) 

The smaller RM, the higher the fit between the resolving and target 
kernels. When building a 3D model, we want to ensure that RM is the 
same for the resolving kernels of all coefficients. 

The trade-off parameter η now plays a fundamental role as changes in 
η lead to different RM values. To build a 3D tomographic model, we first 
of all choose a value of RM that provides the desired similarity between 
resolving and target kernels. Subsequently, we run a large number of 
inversions for each spherical harmonic degree while varying η until we 

Fig. 2. Example trade-off curves of resolution misfit (a) and model un
certainties (b) as a function of trade-off parameter η. Each dot corresponds to a 
synthetic inversion for vs including 3D noise (3D-N case, see Section 4.2), here 
computed for harmonic degrees s = 2, 4, 6 and 8 with order t = 1. To build 
complete models of all spherical harmonics, we combine results for different 
spherical harmonic degrees with the same resolution misfit RM. For example, if 
we choose a value of 0.2 for RM (grey line, top panel), we would use values of η 
between ∼0.8 (for s = 2) and ∼2.5 (for s = 6). 
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obtain the desired value of RM. Fig. 2 presents an example of how this 
works in practice. We typically obtain similar, but different curves for 
different spherical harmonic degrees and thus select slightly different 
values of η for each degree to build the 3D tomographic model. Also note 
that RM values increase (worse resolution) for high η values while un
certainties decrease, in agreement with the expected trade-off between 
resolution and uncertainties. 

3.4. 3D noise 

Normal modes are simultaneously sensitive to multiple physical 
parameters, as is evident from Eq. (1). Traditionally, this additional 
sensitivity is taken into account using scaling factors, e.g. the sensitivity 
to vp and ρ are scaled and added to the sensitivity of vs when inverting for 
vs (e.g. Ritsema et al., 1999, 2011; Moulik & Ekstr̈om 2014). We do not 
want to take this approach since we do not want to assume any a priori 
information on the model parameters. Instead, we follow an approach 
similar to the one introduced by Masters (1979) (see also Masters and 
Gubbins, 2003), where the effect of perturbations that are not of interest 
is seen as additional noise. We call this the “3D Earth noise” or simply 
“3D noise” for brevity (σ3D), as it arises from the 3D structure of the 
Earth. For example, when inverting for perturbations in vs, we need to 
take the contributions from vp (Cvp ) and density (Cρ) variations into 
account in the noise according to: 

σ3D,vs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

C2
vp
+ C2

ρ

√

. (5) 

Here, we estimate the 3D noise due to mantle structure by calculating 
splitting function predictions for 16 existing tomography models. A list 
of these models is given in Supplementary Table S1. To evaluate the 3D 
noise due to a particular physical parameter, we compute the splitting 
function coefficients using only perturbations in that parameter present 
in the mantle, with all other perturbations set to zero. For models that 
only constrain dlnvs, we use the same dlnvp − dlnvs and dlnρ − dlnvs 

scaling relationships as used in the construction of the models, if these 
are known. If not specified, we use a scaling factor of 0.5 for dlnvp − dlnvs 

and 0.3 for dlnρ − dlnvs. For each normal mode and each coefficient s, t, 
we use the largest predicted value as 3D noise level, in order to estimate 
the noise in a conservative way. The total noise (σtot) is then given by 
adding the 3D noise to the data noise (σd): 

σtot =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
d + σ2

3D

√

. (6) 

Using this procedure, we typically find that the 3D noise for vs is 
lower than the 3D noise for vp and ρ, which have similar noise levels for 
most modes (Fig. 3). The measurement (data noise) levels are even lower 
in general. 

3.5. Crustal corrections 

Accurate crustal corrections are required to avoid mapping crustal 
features into mantle structure during tomographic inversions. These 
corrections consist of both corrections for crustal velocities and topog
raphy on crustal interfaces. The effect of crustal velocities is typically 
neglected in the case of normal modes, as the thickness of the crust (less 
than 100 km) is a fraction of the wavelength of the data (typically more 
than 1000 km). We have verified that 3D variations in crustal velocities 
only change normal mode splitting functions by < 0.5% compared to the 
effect of variations in crustal thickness, consistent with work by Moulik 
and Ekström (2014). Therefore, we can safely neglect these volumetric 
variations, and only correct the data for topography on crustal in
terfaces, including the surface topography, water depth and Moho 
depth. 

While surface topography and water depth can safely be assumed to 
be known, Moho depth variations have larger uncertainties. Restelli 
et al. (2023) demonstrated that predictions for normal modes sensitive 

to the lowermost mantle are not affected by the use of different crustal 
models. However, we want to verify that the way we account for the 
crust does not influence the results significantly in any part of the 
mantle. We have therefore performed additional synthetic tests during 
which we either consider the Moho depth to be known – and correct for 
it using model CRUST5.1 (Mooney et al., 1998) – or as unknown – and 
we include it in the 3D noise. In both cases, we find similar patterns in 
our model estimates with the difference in amplitudes less than 5% 
(Supplementary Fig. S2). Given the small difference between the two, 
for simplicity we assume the Moho depth to be known and correct for it 
using model CRUST5.1, in addition to correcting for surface topography 
and water level. 

4. Synthetic inversions 

While the SOLA method has already been applied to body waves (e.g. 
Zaroli, 2016, 2019), surface waves (Latallerie et al., 2022) and normal 
modes and body waves together (Dubois, 2020), here we apply SOLA for 
the first time to only normal modes, paying particular attention to the 
uncertainties in our data. The main difference in inversion setup be
tween these studies and ours is that our data and model are para
meterised in spherical harmonics, which allow us to perform pure 1D 
inversions in depth rather than in a 3D space. Rather than applying our 
inversion strategy directly to observed normal mode splitting functions, 
we first test our newly developed inversion strategy using synthetic 
experiments. Using these experiments we (i) verify that our imple
mentation of SOLA allows us to recover a given input model, (ii) 
establish at what resolution normal modes are able to recover vs, vp and 
density structure in the mantle, (iii) study the trade-off between data 
noise levels and resolution (minimum averaging thickness) as a function 
of spherical harmonic degree, (iv) investigate different noise levels and 
the influence of 3D noise, (v) find the ideal value of the resolution misfit 
RM and, finally, (vi) we assess to what degree we should trust the model 
based on observed data. 

4.1. Noise cases and input model 

Since uncertainties play a fundamental role in SOLA inversions, we 
consider three cases with different levels of noise: we either only 
consider the published splitting function uncertainties (case DATA-N), 
or we replace these by random noise up to the same maximum ampli
tude as the data noise (case RAND-N), or we also consider 3D noise due 

Fig. 3. Illustration of typical 3D noise levels, showing noise levels for coeffi
cient c20 for vs (blue), vp (black) and density (red) for all modes of our data set 
(horizontal axis). The data uncertainties are also plotted for comparison (grey). 
Grey vertical lines divide mode branches with different n. While individual 
mode noise levels are difficult to determine, it is clear that the 3D noise for vs is 
lower than that for vp and density. This is mostly due to the smaller amplitudes 
of vp and ρ perturbations in existing mantle models compared to vs, as well as 
the sensitivity kernels. Note that the 3D noise levels are significantly larger than 
the data noise. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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to mantle structure in addition to the data noise (as in Eq. 6; case 3D-N). 
The noise levels in the random noise case are typically larger than for 
DATA-N since most of the coefficients have uncertainties lower than the 
maximum value. 

As Akbarashrafi et al. (2017) suggested and mentioned before, we 
multiply the data uncertainties by a factor of 2 in the DATA-N and 3D-N 
cases, in order not to underestimate theoretical data errors. To avoid an 
underestimate of the 3D noise, we consider the fact that several studies 
(e.g. Ritsema et al., 2007; Schuberth et al., 2009; Koelemeijer et al., 
2018) estimated that the amplitude reduction due to reparameterisation 
and damping during the filtering process was roughly 50%. Although 
this reduction may depend on the models considered, these studies 
provide the most relevant values given they also include normal mode 
data in the tomographic model and use spherical harmonic expansions. 
Therefore, in the 3D-N case, we opt to double the 3D noise amplitudes to 
account for the reduced amplitudes of tomographic models, which the 
3D noise is based on. Thus, in the 3D-N case both noise contributions are 
multiplied by a factor of 2. The three cases can be summarised as 
follows: 

σ =

⎛

⎜
⎜
⎜
⎝

2 × σd in DATA-N
rand(0 − max(σd) ) in RAND-N

2 ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
d + σ2

3D

√

in 3D-N
(7) 

To describe the 3D structure in the mantle and calculate synthetic 
splitting functions, we make use of model S20RTS (Ritsema et al., 1999). 
This model prescribes the vs perturbations, while it makes use of scaling 
factors of 0.5 and 0.3 to prescribe perturbations in vp and density, 
respectively. We compute synthetic splitting function predictions from 
S20RTS including all perturbations in vs, vp and density. For the DATA-N 
and RAND-N cases, we then assume the same scaling factors during the 
inversion, as commonly done in normal mode inversions. In contrast, in 
the 3D-N case we do not assume to know anything about the mantle 
structure and account for the additional sensitivity through the 3D noise. 

4.2. Inversion procedure 

We adopt the following procedure. Given our primary interest in the 
deep mantle, and the fact that SOLA allows us to target a specific depth 
range, we build a model from the bottom up, starting at the core-mantle 
boundary (CMB). We use an initial thick target kernel of about 1000 km 
thick (similar to the depth layers in early normal-mode based studies 
(Trampert et al., 2004)). We run SOLA inversions for spherical harmonic 
degree s = 2 for different values of η and choose a resolution misfit value 
that leads to an acceptable compromise between resolution and un
certainties, finding that RM ∼ 0.08 is suitable. We then run inversions 
for similar ranges of η for all coefficients to find those η values that lead 
to the same RM of 0.8 (by trial and error). Having done this for all even- 
degree coefficients up to s = 8, we build the full model estimate by 
combining the spherical harmonic coefficients. If the results are 
acceptable in terms of similarity between output and input models, 
resolution and uncertainties, we repeat the procedure for thinner and 
thinner target kernels (which will result in higher model uncertainties). 
Once we have obtained the thinnest possible target kernel that leads to 
uncertainties in a chosen range, we proceed to the next layer, repeating 
the procedure up to the surface. 

To decide whether a model estimate is acceptable, we compare the 
model estimate (output model) with the “filtered” input model, i.e. the 
input model averaged through the same resolving kernels as the output. 
This ensures we are comparing the same average, which is justified by 
the fact that we are interested in finding a weighted average of the 
model parameters, not the parameters themselves. To quantify how 
acceptable the uncertainties are, we will use a “relative uncertainty”, 
which is the model average uncertainty divided by the maximum model 
amplitude. We aim to have a relative uncertainty of 20–25% for σvs and 

< 50% for σvp , similar to the uncertainty levels found by Mosca et al. 
(2012). We then define the output model amplitudes “unbiased” if we 
can recover the filtered input model amplitudes within the model 
uncertainties. 

4.3. S-wave velocity structure from synthetic experiments 

We start our synthetic experiments by performing inversions for 
shear-wave velocity perturbations, as the vs perturbations in the mantle 
have the highest amplitudes and the lowest 3D noise, and are thus likely 
the easiest ones to recover. We apply the procedure described above to 
cases DATA-N and RAND-N (results shown in Supplementary Fig. S3 and 
S4) as well as case 3D-N (with results shown in Fig. 4). By comparing the 
three cases, we can investigate the influence and importance of the 
different uncertainties. 

Following the procedure in Section 4.2, we are able to obtain model 
estimates with acceptable resolving kernels throughout the mantle, 
while able to keep the relative uncertainty below 25% in every layer. In 
the DATA-N and RAND-N case, we would be able to invert for more 
layers, but to ensure that we can directly compare the results of different 
noise cases, we limit the number of layers in these case to the maximum 
number of layers we are able to obtain in the 3D-N case, i.e. six. These six 
layers vary in thickness from ∼220 km at the surface to ∼350 km at the 
CMB, with very thick layers (resolving kernels) of ∼820 km in the mid 
mantle. For the DATA-N and RAND-N cases shown in Supplementary 
Fig. S3 and S4 respectively, in each layer the output model estimate 
closely resembles the filtered input model, and we recover both the 
amplitudes and the pattern of the anomalies well. The associated model 
uncertainties are typically < 15.5%. 

For the 3D-N case (shown in Fig. 4) we still obtain very similar model 
estimates, but with higher model uncertainties (between 17 and 25%) as 
expected. Even in layers in the mid mantle (e.g. layers ULM and LLM, 
where output model amplitudes are overestimated), the difference be
tween the filtered input and output is smaller than the uncertainties. 
This makes our model estimate an unbiased average of the input model 
given these uncertainties. Except for the increase in the uncertainties, 
the inclusion of 3D noise does not lead to significant differences to the 
DATA-N or RAND-N cases. We conclude that the sensitivity of the 
normal modes to vp and density perturbations, which affects our in
versions through the 3D noise, mainly has an effect on the noise prop
agated into the model, and not on the recovered dlnvs model estimate 
itself. 

4.4. P-wave velocity mantle structure from synthetic experiments 

Given the higher levels of 3D noise and lower amplitudes of dlnvp in 
the mantle, we expect that vp models are more difficult to build than vs 

models. Consequently, we do not anticipate obtaining the same resolu
tion as for dlnvs. We again apply our procedure (Section 4.2) to all three 
noise cases when inverting for dlnvp, with results for the DATA-N and 
RAND-N cases shown in Supplementary Fig. S5 and S6, respectively, and 
the results for the 3D-N case presented in Fig. 5. 

We are able to build vp model estimates with satisfactory resolving 
kernels and uncertainties in four layers in the mantle, which vary in 
thickness from ∼600 km at the CMB to ∼1000 km in the mid mantle. The 
results for cases DATA-N and RAND-N (Fig. S5 and S6) are satisfactory in 
all four layers: the output model estimates closely resemble the filtered 
input model and uncertainties are well below the threshold. When 
adding 3D noise in case 3D-N (Fig. 5), the results are not as positive. 
Only in the lowermost mantle (layer LLM), we are able to obtain model 
estimates that resemble the filtered input with a relative uncertainty of 
about 31% and unbiased amplitudes, implying that we are able to 
constrain the vp structure in the lowermost mantle within our setup. 

In the other three layers, the output model estimates still feature 
positive and negative anomalies in similar locations as the input models, 
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but their amplitudes and uncertainties are less satisfactory. Especially, 
for the upper mantle layer (layer UM) the model estimate is biased to
wards high amplitudes with a large discrepancy between the filtered 
input and model output. The two layers in the mid mantle have quite 
high relative uncertainties, which are close to 50% (our threshold), but 
similar to the uncertainty amplitudes found in older work (Mosca et al., 
2012). Contrary to the inversions for dlnvs, the sensitivity to other 
physical parameters (especially vs) as quantified in the 3D noise affects 
both the model uncertainties and the recovered vp structure. 

4.5. dlnvs/dlnvp from synthetic experiments 

When comparing maps of dlnvs and dlnvp, it is vital for them to have 
the same local resolution, as discussed in the Introduction. It is therefore 
not our aim to develop models with the best resolution achievable, but 
instead to end up with models of dlnvs and dlnvp with the same local 
resolution. From our synthetic tests above, we have found that the res
olution of dlnvp models is lower than that of dlnvs models. Consequently, 
the dlnvp resolution will dictate the maximum resolution that we may 

Fig. 4. Synthetic inversion results for vs perturbations with 3D noise (case 3D-N). For each layer (shown in different rows) we present: (a) the target and resolving 
kernels (black and red lines, respectively); (b) the input model S20RTS filtered through the relevant resolving kernel; (c) the output model estimate; (d) the output 
model uncertainties. In (a), we only show the resolving kernel for spherical harmonic coefficient c20, as other resolving kernels have the same shape as set by our 
inversion procedure (Section 4.2). The uncertainties are generally very uniform due to the even data coverage provided by normal modes. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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expect to obtain for the dlnvs/dlnvp ratio. Given the larger uncertainties 
for dlnvp models in the mid mantle, we focus our efforts only on the 
lowest layer, i.e. the bottom ∼600 km of the mantle, where we managed 
to obtain satisfying results for dlnvp (relatively low uncertainties and 
unbiased amplitudes) and the depth region of interest in the debate 
surrounding the LLVPs. To obtain the same local resolution for vs as vp, 
we repeat SOLA inversions for dlnvs using the same target kernel 
thickness as in layer LLM of the dlnvp model. For each coefficient, we 
vary the trade-off parameter η until we obtain the same resolution misfit 
RM as for dlnvp (RM ∼ 0.08). This way we ensure that the resolving 
kernels, and hence the local resolution, are comparable for the dlnvs and 
dlnvp models (e.g. Fig. 6a). 

Computing the dlnvs/dlnvp ratio in a tomographic model can be 
tricky, as we may be dividing by small numbers (small vp anomalies) and 
previous studies have taken several different approaches. The most 
straightforward way may be by performing a point-by-point division and 
considering the median or mean (from now on “pbp division”), but 
studies have also calculated the root-mean-squares average of both ve
locities and divided these values (from now on “RMS division”), or 
determined the slope of the best fitting straight line between dlnvp and 
dlnvs values (from now on “regression fit method"). While the latter 
approach tends to provide an overestimation of R, the median of a pbp 
division often represents an underestimate (e.g. Koelemeijer et al., 
2016). Here, we explore all three approaches. 

Specifically, we always assume that our SOLA model estimates of 
dlnvs and dlnvp are two normally-distributed variables. In the pbp and 
RMS ratio estimates, we assume for simplicity that the two variables are 
independent, and we calculate the ratio distribution respectively for 

each point of a 5 × 5 degrees grid, while we do not have to make this 
assumption for the regression fit method. When performing the point- 
by-point division, we discard points with either ∣dlnvs∣ < 0.1% or ∣dlnvp∣ 
< 0.1% to avoid spurious R estimates, similar to Koelemeijer et al. 
(2016). Although we could approximate the ratio distribution (Hinkley 
ratio distribution) to a Gaussian distribution and express R in terms of a 
mean and standard deviation, this is often not possible. Therefore, we 
only report the mean value of R here without the uncertainties. How
ever, thanks to the synthetic experiments, where we know what the 
value of R should be, we get an insight into how much R is biased with 
each method. 

Since vp perturbations in S20RTS are scaled from vs perturbations 
with a factor of 0.5, the ratio R that we retrieve in our synthetic ex
periments should be exactly 2. Our results for R in the LLM layer are 
shown in Fig. 6 for each of the three noise cases analyzed in this paper. 
We have chosen the colour scales in such a way that identical maps of vs 
and vp anomalies would indicate the expected ratio of 2. When we only 
include data noise or random noise (DATA-N and RAND-N in Fig. 6), the 
two maps are almost identical and the ratio assumes values very close to 
2 regardless of the method used to calculate it. When we also consider 
3D noise, we immediately note darker colours in the vs map than the vp 

map and thus a ratio greater than 2 with a broader distribution. In this 
3D-N case, the ratio is overestimated by 20–40% depending on the 
method we use to evaluate it. While we do not observe any systematic 
bias in the pbp and RMS estimates of the ratio, we find that the 
regression fit gives an upper bound, consistent with earlier work (Koe
lemeijer et al., 2016). 

Fig. 5. Synthetic inversion results for vp perturbations with 3D noise (case 3D-N). All panels and details are similar as in Fig. 4.  
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4.6. Density structure recovered in synthetic experiments 

Besides constraining velocity variations, splitting function mea
surements have also been used in inversions for the mantle density (Ishii 
and Tromp, 1999; Trampert et al., 2004; Mosca et al., 2012; Koelemeijer 
et al., 2017, e.g.). However, several studies have argued that the use of 
the self-coupling approximation introduces a theoretical error that is 
larger than the signal of mantle density in the data (Deuss and Wood
house, 2001; Al-Attar et al., 2012; Akbarashrafi et al., 2017), which is 
why we doubled the data noise in our SOLA inversions. Additional un
certainties in mid mantle structure further affect density inversions 
(Koelemeijer et al., 2017; Robson et al., 2022), an effect that we capture 
in the 3D noise. SOLA thus allows us to investigate whether it is possible, 
given these complications, to construct an acceptable resolving kernel 
and a model estimate with acceptable uncertainties for density at the 

base of the mantle. 
We again perform synthetic tests with and without 3D noise, now for 

a ∼1000 km thick target kernel at the bottom of the mantle, with the 
results shown in Fig. 7. We manage to obtain resolving kernels with a 
low resolution misfit (i.e. reproduce the target kernel well) for all co
efficients, meaning that there is sufficient sensitivity to density in the 
data set. When we only use data noise or random noise (Fig. 7 top and 
middle row), we retrieve the input model well, including the amplitudes 
and with relative uncertainties of about 4%. This would be similar to 
studies that inverted for density while keeping the velocity structure 
fixed. However, when we include the 3D noise, the recovered ampli
tudes are strongly overestimated and the relative uncertainty is close to 
70%. This indicates that inversions for density are mostly complicated 
by unconstrained structure in the rest of the mantle, consistent with 
other recent work (Robson et al., 2022). Nevertheless, in our synthetic 

Fig. 6. Synthetic inversion results for the ratio R = dlnvs/dlnvp. We show results for the three different noise cases (DATA-N, RAND-N and 3D-N). For each case, we 
show: (a) the dlnvs (red) and dlnvp (blue) resolving kernels and target kernel (black); (b) the dlnvs model estimate and associated uncertainties; (c) the dlnvp model 
estimate and associated uncertainties; (d) histograms resulting from a point-by-point division between the two maps (dlnvs/dlnvp), with the vertical red line indicating 
the mean of the distribution (Rpbp). We also indicate the value of the ratio R calculated using the RMS and regression-fit approaches (see text). The maximum of the 
scale for the vs maps is twice that for the vp maps, so that when the two maps have similar patterns and colour intensity we can directly – and qualitatively – infer that 
the ratio is close to 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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case, we would be able to interpret the LLVPs as low density anomalies 
despite this, given the strong negative anomalies found at their locations 
(dlnρ ∼ − 1.47% with σρ ∼ 1.03). 

5. Real data inversions for mantle structure 

In the following sections, we show the results from inversions using 
observed splitting functions (Deuss et al., 2013; Koelemeijer et al., 2013; 
Koelemeijer, 2014). The setup of these real data inversions is guided by 
our synthetic tests and we use the same target kernels (6 for vs and 4 for 
vp), which will aid in drawing conclusions from our study. 3D noise is 
included as described in Section 3.4, making the real data inversions 
most comparable to the 3D-N case. We present model estimates of vs, vp 

and R, all depicting lateral variations with respect to PREM, together 
with relevant resolution and uncertainty information. We compare our 
results to two other tomography models that use normal modes, both 
filtered using our resolving kernels. Specifically, we consider model 
SP12RTS, since this model constrained both vs and vp perturbations and 
we use the same normal mode data set. Differences should therefore 
primarily arise from the difference in inverse method. We also compare 
to model S20RTS, which included fewer and older measurements, but 
we have used for our synthetic tests. Significant differences with this 
model must come from our observed data and relate to real structures in 
the Earth. 

5.1. Model estimates of S-wave velocity perturbations 

Fig. 8 presents our results from real data inversions for dlnvs in the 
six-layer setup of the synthetic tests. We can observe many features 
common in long-wavelength tomography models. At shallow depths 
(layer UUM), we identify low velocity zones at locations of mid-ocean 
ridges and high velocities underneath cratons and in the proximity of 
subduction zones. At greater depth, particularly in the ULM layer, we 
find fast velocities at areas of deep subduction under South America and 
South-East Asia. In the deepest two layers, we observe low velocities 

under the Pacific and Africa, with the amplitudes of these LLVPs 
increasing towards the bottom of the mantle. 

Compared to the other two models, we find stronger amplitudes in 
our model estimates, particularly when we compare to model SP12RTS 
(which utilised the same normal mode dataset). Nevertheless, we do not 
identify significant differences between our results and the other 
models, as expected given the large consistency between long- 
wavelength tomographic models (e.g. Lekić et al., 2012; Koelemeijer, 
2021). However, our model estimates have additional information on 
the resolution and the model uncertainties, which these older models do 
not. Specifically, we note that typically find a low relative uncertainty 
for our vs model estimates, ranging from 15 to 19% in the upper mantle, 
increasing to 31% in the mid mantle and decreasing again below 2000 
km to 23–24%. The mid mantle thus remains the least constrained part 
of our model, but at least we can quantify how unconstrained it is. 

5.2. Model estimates of P-wave velocity perturbations 

Fig. 9 shows the results for our real data inversions for dlnvp 
compared to SP12RTS and S20RTS, using the same four target kernels as 
in our synthetic tests. While we do show results for the first layer (UM), 
we do not interpret them (greyed out) as the results in the synthetic tests 
at these depths were biased towards higher amplitudes, despite their low 
relative uncertainties. In the mid mantle, we observe two areas of higher 
velocities underneath South America and Southeast Asia – similar as in 
the vs model – consistent with regions where deep subduction is thought 
to occur. In the lowest two layers, we again find low velocities under
neath Africa and the Pacific, with the amplitudes increasing slightly 
towards the CMB. 

In general, there is less consensus on the compressional-wave ve
locity structure of the mantle, and even though many models feature 
LLVPs, there is more variability in terms of shape, length-scales, location 
and velocity amplitudes. The LLVP structures in our vp model estimate 
are similar to those in SP12RTS and S20RTS, but our model features 
typically higher amplitudes than in SP12RTS and lower amplitudes than 

Fig. 7. Synthetic inversion results for density perturbations with only data noise (DATA-N), random noise (RAND-N) and also 3D noise (3D-N). We only show results 
for a layer on top of the core-mantle boundary, showing (a) the target and resolving kernels (black and red lines, respectively); (b) the input model S20RTS filtered 
through the relevant resolving kernel; (c) the output model estimates for the three different cases; (d) the output model uncertainties. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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in S20RTS (for both the negative anomalies in the LLVPs and the positive 
anomalies surrounding them). Although the absolute uncertainties 
appear relatively low, due to the low vp amplitudes, the relative un
certainties are greater than 50% in the two mid mantle layers, and ∼42% 
in the lowermost mantle layer. Despite the uncertainties, we can still 
interpret the low vp anomalies at the LLVPs locations to be robust fea
tures, implying we do indeed observe these structures in Vp as well. 

5.3. Model estimates of the ratio R in the lowermost mantle 

To constrain the ratio R in the mantle, it is essential that our model 
estimates of shear-wave and compressional-wave velocity have the same 
resolution, as discussed in Section 4.5. Therefore, we have obtained 
model estimates for vs perturbations using the same target kernel as used 
for vp and we impose the same resolution misfit value to obtain similar- 
shaped resolving kernels. 

In Fig. 10 we show our results from real data inversions for the ratio 
R as an average in the bottom 600 km of the mantle. The amplitudes in 
the vs map are markedly higher than those in the vp map (which has a 
colour scale that is half the amplitude), so it already appears visually 
that the ratio must be larger than 2. When calculating the ratio using 

three different methods, we find R values of 3.7, 2.9 and 5.6 for Rpbp, Rrms 

and Rfit respectively. However, from the synthetic experiments, we know 
that the ratio can be overestimated by up to 40% depending on the 
method used to calculate it. Assuming that this overestimation is linear, 
the R values in our model may be reduced to 2.9, 2.5 and 4.0 for the pbp 
division, the RMS division and the regression-fit method, respectively. 
As caveat, we should add that the regression-fit method may be affected 
by small values and tends to overpredict the value of R. Thus, depending 
on the method to calculate it, the R value may be as low as 2.5, the value 
compatible with a mantle without compositional heterogeneity or phase 
transitions. Therefore, we should avoid interpreting our results as being 
indicative of a high dlnvs/dlnvp ratio. 

Results for all four layers (associated with the resolving kernels in 
Fig. 9) indicate that the ratio R increases with depth in the mantle, 
despite the thick resolving kernels (Supplementary Fig. S7). This is in 
agreement with previous studies, which also reported increases in the 
ratio with depth up to values of 4 near the CMB (e.g. Su and Dziewonski, 
1997; Masters et al., 2000a; Ritsema and van Heijst, 2002; Della Mora 
et al., 2011; Koelemeijer et al., 2016). The range of R values we find is 
thus consistent with these studies, with the main difference being that 
we are confident that the resolution of our vs and vp model estimates is 

Fig. 8. Real data inversion results for vs perturbations. For each layer (given as different rows) we show: (a) the target and resolving kernels (black and red lines, 
respectively); (b) the model uncertainties; (c) the model estimate of vs perturbations; (d) the shear-wave velocity structure of model SP12RTS filtered by our resolving 
kernels, shown here to assess the influence of the employed inverse methodology; (e) the shear-wave velocity structure of model S20RTS filtered by our resolving 
kernels, which was used in our synthetic tests. The mean layer absolute uncertainty is indicated at the bottom of each uncertainty map. The uncertainty and res
olution information that accompany our model are not provided by the SP12RTS and S20RTS models. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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comparable. 
For completeness, we show in Supplementary Fig. S8 maps of lateral 

variations in the ratio R, for both synthetic experiments and real data 
inversions. For the DATA-N and RAND-N cases, the maps show that R is 
effectively constant (homogeneous), as also visible in the sharper his
tograms in Fig. 6). However, when we include 3D noise, we observe 
more complex patterns and a larger variation in the R values. Therefore, 
we refrain from interpreting the maps describing lateral variations in R 
in the real data inversions. In addition, we do not have the associated 
uncertainties of these maps as the error propagation from vs and vp 

variations into R is not straightforward. 

6. Discussion 

To accurately compute and robustly interpret ratios of seismic ve
locities (e.g. R = dlnvs/dlnvp), it is crucial to obtain models of dlnvs and 
dlnvp models with the same local resolution. This is challenging since 
most of the commonly-used inverse methods do not provide a direct 
control on model resolution. Moreover, model uncertainties are often 
not provided, making physical interpretations in terms of temperature 
and chemical variations difficult. We have overcome these issues by 
utilising the SOLA method and applying this to normal mode data in 
order to develop long-wavelength models of vs and vp perturbations as 

Fig. 9. Real data inversion results for vp perturbations. All panels and details are similar as in Fig. 8, except that the vp perturbations in S20RTS are obtained by 
scaling the vs perturbations, while they are independently inverted for in SP12RTS. For both models (SP12RTS and S20RTS) we show the structure filtered according 
to our resolving kernels. The mean layer absolute uncertainty is indicated at the bottom of each uncertainty map. Note that the structure in the UM layer should not 
be interpreted based on the synthetic test results of Fig. 5. 

Fig. 10. Real data inversion results for the ratio R = dlnvs/dlnvp. As in Fig. 6, we show: (a) the dlnvs (red) and dlnvp (blue) resolving kernels and target kernel (black); 
(b) the dlnvs model estimate and uncertainties; (c) the dlnvp model estimate and uncertainties; (d) the histogram resulting from a point-by-point division between the 
two maps (dlnvs/dlnvp), with the vertical red line indicating the mean of the distribution (Rpbp). We also indicate the value of the ratio R calculated as the mean of the 
ratio between the RMS values of dlnvs and dlnvp (Rrms) and as the slope of the best-fitting line between dlnvs and dlnvp perturbations (Rfit). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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well as their ratio. We will now discuss some aspects of our study, 
including the importance of characterising the noise, the advantages and 
limitations of our approach, and some implications for existing and 
future inversions of normal mode data. 

6.1. Characterising data noise 

The entire SOLA philosophy and approach to constructing Earth 
models is highly dependent on the data noise. Therefore, it is crucial to 
accurately estimate data noise levels and to reduce these where possible. 
However, the uncertainties in our data set, calculated as explained in 
Deuss et al. (2013), do not take into account all the sources of uncer
tainty, including theoretical approximations (Resovsky and Ritzwoller, 
1998). Al-Attar et al. (2012) and Akbarashrafi et al. (2017) suggested 
that published splitting function uncertainties must be doubled to 
properly account for different sources of errors, which we have therefore 
assumed throughout this work. In fact, when we do not double the data 
noise, we do not recover the input structures, likely due to numerical 
instabilities in the SOLA inversions. Thus, at the moment our SOLA in
versions require the data noise to be doubled. 

Our normal mode splitting function observations are all measured 
using spectral data from very large earthquakes. Since earthquakes with 
magnitude greater than 7.4 are relatively rare, long-running reliable 
broadband networks are crucial to obtain these data and to reduce data 
uncertainties. The expansion of the global seismic network (GSN) in the 
last 20 years, together with the occurrence of large earthquakes such as 
the Tohoku event in 2011, has substantially improved normal mode 
measurements. Nowadays, the number of GSN stations able to resolve 
normal modes from large earthquakes is almost twice the number in 
2014, thanks also to the installation of seismometers in boreholes and 
postholes (Ringler et al., 2022). These types of installations are less 
subject to non-seismic noise than surface installations, which will reduce 
the overall noise levels of low-frequency data. Having more and quieter 
long-period broadband instruments will ultimately lead to improved 
measurements and thus reduced measurement uncertainties. 

In our synthetic inversions for vp and density (see Section 4), we 
generally obtained satisfactory resolving kernels with a low resolution 
misfit, indicating that there is sufficient sensitivity in our normal mode 
data set to these parameters. The fact that our model estimates were also 
satisfactory (output resembling input with low uncertainties) for the 
DATA-N and RAND-N cases, but not for case 3D-N demonstrates that it is 
the sensitivity to other physical parameters (especially vs) that prevents 
us from obtaining robust models of vp and density throughout the 
mantle. This notion is consistent with other recent work on normal mode 
measurements and density inferences (e.g. Koelemeijer et al., 2017; 
Robson et al., 2022). Therefore, efforts should also focus on firstly 
developing long-wavelength models of the mantle with uncertainties 
and secondly reducing the uncertainties in these models. One possible 
approach to take, may be to utilise SOLA inversions to constrain vs at 
first and use the model estimate including its uncertainties to estimate 
the 3D noise for vp and subsequently density, iterating if necessary. 

6.2. Advantages and limitations of our approach 

The main advantage of SOLA is that it allows us to directly constrain 
the resolution of our model estimate, thus enabling us to build models of 
different physical parameters with the same local resolution and to 
robustly interpret these. This is particularly useful in studies of the dlnvs/

dlnvp ratio R, given it is possible that differences in resolution affect this 
parameter (e.g. Chaves et al., 2021). Our approach, of focusing on 
finding the worst resolution in one physical parameter and imposing this 
on inversions for other physical parameters is easily expandable to other 
data sets, where it should be kept in mind that it is only the local reso
lution that needs to be the same, and not necessarily the data set used for 
each parameter. As a result, we may not get the best possible resolution 

for every parameter, and finding the best possible target kernels and η 
values can be time consuming. Our optimal resolution may also be 
limited by the choice of our target kernels. We choose boxcar functions 
as they are easier to interpret. However, smoother target kernels may be 
more appropriate for normal modes (note though that our resolving 
kernels do not show strong edge effects). In future work we will inves
tigate and discuss the effects of different types of target kernels on model 
results. 

SOLA also allows us to retrieve models of the Earth with unbiased 
amplitudes and uncertainty information (e.g. Zaroli et al., 2017). 
Tomographically filtered geodynamic models of thermal or thermo
chemical convection in the mantle mostly differ in their amplitudes (e.g. 
Ritsema et al., 2007; Davies et al., 2012), making the availability of 
unbiased SOLA model estimates with uncertainties important for dis
tinguishing between the two scenarios. Although the fact that we only 
recover satisfactory model estimates for six or four layers may appear 
disappointing, it should be kept in mind that these model estimates 
represent true averages over the Earth thus provide valuable informa
tion. For example, they can be used to compare to geodynamic simu
lations with our resolving kernels acting as tomographic filter. Given 
that we also have the model uncertainties, we should be able to rule out 
filtered geodynamic models that do not fit our model estimates within 
their uncertainties. Improving both data and 3D noise estimates would 
allow us to recover the model in thinner layers and thus achieve a better 
local resolution for such comparisons, as evidenced by our results for the 
DATA-N and RAND-N cases. 

Our study is entirely based on normal mode data. The advantage of 
this is that inversions are extremely quick (just a few seconds for each 
coefficient). This makes it possible to perform many synthetic inversions 
with various set-ups. On the down-side, our choice of data limits us to 
only image the large-scale and even-degree structure of the mantle. 
However, we believe that a robust characterisation of the long- 
wavelength structures remains essential before attempting to robustly 
image small-scale features. It will also be possible to add different data 
types (e.g. body and surface waves) to improve the sensitivity to 
particularly depths and to illuminate small-scale structures not observ
able with normal modes. It will also be interesting to see how compa
rable the results are when our approach is applied to body-wave data 
only in order to constrain R in the mantle. 

Finally, our study relies on estimates of 3D noise, which significantly 
increases the uncertainties associated with our models. However, the 3D 
noise ensures that we do not assume any a priori knowledge about the 
final model and the relationship between different parameters. Here, we 
used existing tomographic models to estimate the 3D noise levels in a 
conservative way, as it is better to overestimate the noise and then later 
re-assess this. Alternatively, we could have made use of geodynamic 
model predictions, but these are affected by several, still uncertain, 
parameters such as the rate of internal heating and CMB temperature, as 
well as the mineral physics data used for the conversion from temper
ature to seismic velocities. Thus, we believe our approach of using a 
range of tomographic models to estimate the 3D noise is at current the 
best possible way we have. 

6.3. Implications for existing and future normal mode studies 

Splitting function measurements have been used in many tomo
graphic studies of the mantle, to constrain not just the velocity structure, 
but also density variations. We have shown that we can develop satis
factory model estimates of both the shear-wave and compressional-wave 
velocity in the mantle in at least a number of layers, with uncertainties of 
less than 32% and 50% (compared to around 55% and 70% in the study 
of Mosca et al. (2012). Over time, as data uncertainties decrease and 
consequently the uncertainties of our vs and vp model estimates decrease 
as well, we may be able to increase the number of layers in the mantle 
and re-evaluate our work on the density structure. 

Our synthetic tests for density fail when 3D noise is included and we 
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find large model uncertainties (Fig. 7), despite the fact that we are able 
to obtain resolving kernels with a low resolution misfit. This warrants us 
to be cautious of published density models of the mantle that have 
shown focused resolving kernels. Instead we need to emphasise the fact 
that a good resolution does not imply a low model uncertainty or the 
ability to interpret a model. 

In this study, we have focused our studies on R, the ratio between 
shear-wave and compressional-wave velocity variations. However, our 
approach of finding the same local resolution for two physical param
eters (here vs and vp) can be easily extended to other parameters. 
Particularly, it will be useful for developing models of anisotropy, as we 
can ensure that vsh and vsv have the same local resolution. In order to 
study anisotropy using SOLA applied to normal modes, good-quality 
measurements of toroidal modes are vital. We have recently demon
strated that current data sets of toroidal mode measurements (including 
the new measurements of Schneider and Deuss (2021)) contain suffi
cient sensitivity to both shear-wave and compressional-wave anisotropy 
in the mantle (Restelli et al., 2023). It will be interesting to see whether 
SOLA inversions applied to these data are able to constrain the aniso
tropic structure of the Earth’s mantle. 

7. Conclusions 

In this contribution we have, for the first time, applied the tomo
graphic SOLA inversion scheme (Zaroli, 2016) to a dataset consisting of 
only normal modes. This has allowed us to build global tomography 
models of shear- and compressional-wave velocity in several layers in 
the mantle. These models are accompanied by uncertainty and resolu
tion information, which helps us to assess the robustness of the model 
estimates. Over time, as more precise measurements are available and 
with better constraints on overall mantle structure (i.e. improved esti
mates of both data and 3D noise), we may be able to constrain the vs and 
vp structure in thinner layers (i.e. achieve a better resolution) and 
decrease the uncertainties in our model estimates. 

SOLA also provides a direct control on the model resolution. As a 
result, we have managed to construct models of dlnvs and dlnvp with the 
same local resolution, which enables us to robustly compute their ratio 
R. Our synthetic tests indicate that estimates of R are overestimated 
when additional 3D noise is included. When taking this into consider
ation, our estimates of R in the lowermost mantle from real data are 
2.5–4.0. These values are consistent with previous studies, but the 
additional information on resolution and uncertainty will allow us to 
perform meaningful comparisons with geodynamics. 

We have demonstrated the importance of estimating all sources of 
the data noise, given its strong impact on the model estimates and un
certainties. In particular, when normal mode studies do not account for 
“theoretical errors” due to coupling approximations, or treat the addi
tional sensitivity to other physical parameters as known, it is likely that 
model uncertainties are underestimated. Given the results for density in 
our synthetic tests (satisfactory resolving kernels, but model estimates 
with very large uncertainties), we urge readers to be careful with 
interpreting tomographic images based on normal modes when resolu
tion and uncertainties are not both available. 
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