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Abstract We present a new method for ambient noise tomography, which provides robust velocity images
accompanied with meaningful estimates of local resolution and uncertainty. We use the Subtractive Optimally
Localized Averages (SOLA) Backus–Gilbert inference method to determine surface wave velocities as local
(unbiased) averages of the “true” model parameters. Regularization on the model itself is not needed, but a
compromise is sought between the local resolution and uncertainty. Then, we construct a 2D grid which
efficiently accommodates the lateral variations on resolution at period. Based on this grid, we perform a
probabilistic inversion to estimate Vs at depth, efficiently propagating the frequency‐dependent uncertainties.
Finally, we demonstrate the effectiveness of this method by deriving a robust 3D Vs model of Western Europe,
using 13 years of continuous noise recordings.

Plain Language Summary Relevant physical interpretations of structural features revealed by
tomographic models require information on their resolutions and uncertainties. We address this inference‐
oriented problem in the context of ambient noise tomography (ANT), by far the most widely used passive
imaging method for investigating the 3D structure of the Earth's crust. We present a new inversion procedure,
combining linear Backus–Gilbert inference and non‐linear probabilistic approaches, that can infer robust
velocity estimates accompanied with their local resolutions and uncertainties. This novel method paves the way
for a new generation of self‐consistent ANT models that can be exploited quantitatively in geological and
geophysical studies.

1. Introduction
Earth's interior imaging based on seismic ambient noise has evolved rapidly over the last few decades, stimulated
by increasingly dense broadband networks (e.g., USArray, AlpArray). Following the pioneering work of Shapiro
et al. (2005), ambient noise tomography (ANT) has been widely applied at regional scales, demonstrating its
effectiveness in imaging crustal shear velocity structures (e.g., Bensen et al., 2009; Moschetti et al., 2010; Stehly
et al., 2009; Sun et al., 2010; Zheng et al., 2011). In conventional ANT, pseudo‐3D Vs models are constructed in
two steps: (a) 2D traveltime inversion based on ray theory, to derive frequency‐dependent surface wave velocity
maps, (b) 1D inversion of local dispersion curves to derive Vs at depth, assuming a laterally homogeneous
subsurface. Despite its simplifying assumptions, ANT remains a first choice for dealing with large databases,
although alternative techniques, more computationally demanding, such as adjoint ANT (AANT) have recently
proved their efficiency in regional‐scale applications (e.g., Chen et al., 2014; Liu et al., 2017; Wang et al., 2018).

Regardless the broad scope of ANT, quantitative assessment of resolution and uncertainty of the relevant models
has often been ignored or poorly addressed—yet crucial for constraining the physical and geological in-
terpretations. Indeed, the classical methods used to solve the 2D inverse problem of ANT are not inherently
designed to infer the local resolution and uncertainty at period, which makes it difficult to propagate a realistic
constraint on their variability into the Vs structure at depth. Most linear approaches remove the inherent non‐
uniqueness of the solution by adding ad hoc regularization (e.g., Boschi & Dziewonski, 1999; Kennett
et al., 1988; Rawlinson & Sambridge, 2003). The values of latter's parameters are usually chosen on the basis of
subjective arguments, that is to find a compromise between model complexity and data misfit. This choice
inevitably biases the model estimates—the solution can be locally biased toward lower or higher amplitudes in
regions of poor and/or anisotropic seismic coverage (Zaroli et al., 2017). Such regularization also implies
renouncing the propagation of data noise into the model, which could statistically bias the estimate of uncertainty.
Statistical techniques (e.g., jackknife, bootstrap) used to evaluate uncertainty often overestimate or underestimate
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its magnitude as the model complexity varies with the level of regularization (Rawlinson et al., 2014). Bayesian
strategies, however, tackle the solution non‐uniqueness through ensemble inference over the model parameters
space (e.g., Bodin & Sambridge, 2009; Bodin et al., 2012; Galetti et al., 2017). This enables the data noise
propagation, while the model uncertainty is usually represented by the variance map of the solution ensemble.
Nevertheless, to reduce the dimensionality of the problem, data noise (treated as unknown) is often parametrized
with the standard deviation of a single Gaussian distribution describing errors in the data, or by means of some
hyperparameters governing distance‐dependent parametrizations. Thus, a wrong choice of the distribution prior
or proposal variance for these hyperparameters could bias the posterior model ensemble.

In linear approaches, calculating the full generalized inverse—which is computationally challenging in most
large‐scale tomographic applications—is needed to infer both model resolution and covariance matrices (e.g.,
Nolet, 2008; Zaroli et al., 2017). Hence the resolution matrix is often not determined or only approximated (e.g.,
Rawlinson & Spakman, 2016; Trampert et al., 2013). As a result, assessment of resolution has often been reduced
to checker‐board or discrete spikes sensitivity tests, which suffer from a number of drawbacks (e.g., Lévêque
et al., 1993; Rawlinson & Spakman, 2016). The absence of accurate resolution analysis in the 2D inversion step
results in arbitrary choices of the depth inversion grid—which controls the lateral smoothness of the Vs images, a
proxy for the lateral resolution. In most applications, spacing and spatial distribution of this grid nodes are chosen
to fit the computing resources, and do not reflect the actual local resolution. For the sake of clarity, here we do not
refer to the vertical resolution, since it is not affected by the grid choice, but rather by the sensitivity of inverted
data in the considered period range (e.g., Lin et al., 2008).

Backus–Gilbert (B–G) linear inversion deals in depth with the appraisal problem through a trade‐off between
model resolution and variance (uncertainty), with no ad hoc constraints on the model itself (Backus &
Gilbert, 1967, 1968). In this paradigm, the solution non‐uniqueness is broken by evaluating spatially localized,
weighted averages of the “true” model parameters, which makes possible to infer all at once the model estimates
and the underlying resolution and uncertainty. Zaroli (2016) proposed a computationally efficient variant of the
B–G inversion (the discrete SOLA–BG), and demonstrated its robustness in providing robust tomographic images
with meaningful estimates of resolution and uncertainty, in the scope of global‐scale tomography. In this
approach, the averaging kernels are explicitly constructed based on a priori informations about the local reso-
lution, represented by SOLA target kernels. The choices of their size/form, as well as the SOLA trade‐off
parameter do not introduce averaging bias on the model parameters estimate, contrary to regularization con-
straints in the traditional tomographic methods (Zaroli et al., 2017).

In this study, we present an ANT strategy based on 2D SOLA–BG and 1D probabilistic inversions, which yields
velocity models and their appraisals. Exploiting the inherent strength of each technique, we derive unbiased
surface wave velocity maps, and robust 1D Vs models effectively constrained by meaningful quantitative esti-
mates of local resolution and uncertainty at period. Additionally, we propose an efficient approach to build
meaningful depth‐inversion grids based on the resolution estimates. We demonstrate the effectiveness of this
method through a real data application on the scale of Western Europe. In the light of this application, we will
document key points related to the choice of SOLA–BG tunable parameters and the underlying effects, as well as
uncertainty propagation at depth.

2. Method
2.1. SOLA–BG Inversion for Surface Wave Velocities

We derive group/phase velocity maps by performing a 2D traveltime tomography based on SOLA–BG linear
inversion (Zaroli, 2016; Zaroli et al., 2017). The model parameters are velocity perturbations m = (δUk)1≤ k≤M

with respect to a 2D homogeneous velocity model, and data correspond to traveltime perturbations
d = (δti)1≤ i≤N. Here, the physical model space is discretized into M 2D cells based on a spherical parametri-
zation grid. The linear forward problem has the form d = Gm + n, whereG denotes the sensitivity matrix,m the
“true” model parameters and n the data noise. We assume uncorrelated data errors, having normal distributions
with zero mean ni = N (0,σ2di

). We seek to estimate weighted local averages over the “true” model:

δ̂Uk = R̂k m + N (0,σ2m̂k
) , where R̂k is the kth row of the resolution matrix (i.e., R̂ = Ĝ†G) referred to as

resolving kernel, and σ m̂k
the standard deviation of a normal distribution that describes the model uncertainty. The
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kth velocity perturbation is directly inferred from the kth row of the generalized inverse Ĝ†

k = ( Ĝ†

ki)1≤ i≤N , as

linear combination of data: δ̂Uk = Ĝ†

k d. To achieve this, each row Ĝ†

k is obtained by solving the minimization
problem

min
Ĝ†

k

∑jSj(A
(k)
j − T(k)j )

2
+ η2k σ2m̂k

, s.t.∑jSjA
(k)
j = 1. (1)

where the first term represents a resolution misfit and the second the model variance. A(k) denotes the averaging
kernel of the kth cell, as defined by A(k)j = R̂kj/Sj at the jth cell of area Sj. The target resolving kernel, T(k),
represents the desired local resolution. Hence, we minimize a resolution misfit rather than a data misfit, without
any regularization applied directly to the model m̂ itself. Constraint in Equation 1 ensures that no averaging bias is
introduced (Nolet, 2008; Zaroli et al., 2017). Here, the value ηk controls the propagation of data noise into the
local average estimate, and therefore the trade‐off resolution versus uncertainty. An optimal compromise is to
choose ηk near to the maximum curvature of the trade‐off L‐curve. The form and size of T(k) is an a priori of the
inverse problem. Target kernels are chosen to be circular with a radius representing the target local resolution.

We solve the problem (Equation 1) using the LSQR‐based (Paige & Saunders, 1982) approach proposed by
Zaroli (2016). The generalized inverse coefficients obtained are then used to infer velocities, their resolution A(k)

and uncertainty σ m̂k
. A(k) and σ m̂k

are estimated locally by the linear relations: σ2m̂k
= ∑i(x

(k)
i σdi)

2
and

A(k)j = 1
Sj∑ix

(k)
i Gij, with (x

(k)
i )
1≤ i≤N

the N coefficients of Ĝ†

k.

2.2. Resolution‐Based Depth Inversion Grid

Our aim at this stage is to construct a 2D grid of nodal points that adapts to the variability of local resolution at
period, and use it to extract dispersion curves and their uncertainties for the depth inversion. However, the process
of extracting dispersion curves is meaningful if the sampled maps display similar local resolutions, that is,
spatially localized averaging kernels that are similar for all the considered periods. To achieve this, we use the
same grid and target kernels in the SOLA–BG inversion for all periods.

Instead of using the distribution of SOLA–BG nodes for depth inversion, which requires rather costly compu-
tations, we space the nodes at a distance relative to the targeted local resolution at period, so that the dispersion
curves are only extracted at relevant locations as regards the actual resolution. To achieve this, we follow the
strategy of Nolet and Montelli (2005) and Zaroli (2010), which consists of iteratively adjusting the spatial lo-
cations of the nodes to minimize the total energy function

E =∑
M

j=1
∑
k∈Nj

(Ljk − ljk)2

l2jk
(2)

where Ljk is the distance between nodes j and k in a Delaunay mesh of spherical triangles, ljk is the average a priori
resolving length given as function of the average local resolution (rjk) between the two nodes (ljk = α rjk, α≤ 1),
Nj are the neighbors of node j andM is the total number of nodes. We solve this non‐linear optimization problem
using the conjugate gradient method. We construct the starting grid by iteratively subdividing triangles until their
side's length is close to the desired node spacing imposed by the local resolving length.

2.3. Probabilistic Inversion for Shear Wave Velocities

At each node of the obtained 2D grid, we derive a 1D Vs model at depth, based on the SOLA–BG local
dispersion curve and the underlying uncertainties. We design a probabilistic inversion procedure consisting of
two steps: (a) library‐based inversion, (b) McMC Bayesian inversion. The first aims to construct a first‐order
velocity model with marked interfaces representing the main geological discontinuities (e.g., basement,
Moho). We perform a grid search over a set of five‐layers synthetic models, parametrized by thickness, and
isotropic {Vp,Vs,ρ} . For simplicity, we assume uncorrelated data uncertainties and covariance matrix Cd that

Geophysical Research Letters 10.1029/2025GL115623

NOUIBAT ET AL. 3 of 12

 19448007, 2025, 14, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025G

L
115623 by C

ochrane France, W
iley O

nline L
ibrary on [29/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



follows a multivariate normal distribution with zero mean. The reduced chi‐square misfit function
χ2red (m,d,σd) =

1
N(g(m) − d)TC− 1

d (g(m) − d) is used to evaluate discrepancies between observed dispersion
curve d = (Ûi)1≤ i ≤N and synthetics g(m), given the uncertainties σd = (σ Ûi

)1≤ i ≤N on d. We obtain a

deterministic solution by weighting the models by their 1/χ2red values, and calculating the ensemble average.

To better account for structural complexity and improve the data fit, this solution is used as a reference model in a
Bayesian inversion, more efficient in exploring the multi‐dimensional model parameters space. The posterior
distribution p(m|d) of a model m is given by the Bayes's theorem: p(m|d)∝ p(d|m)p(m), where p(d|m) is the
likelihood and p(m) the prior. We evaluate the likelihood using the Gaussian function

p(d|m) =
1

∏N
i=1(

̅̅̅̅̅
2π

√
σ Ûi

)
exp(−

1
2
∑
N

i=1
[
g(m)i − Ûi

σ Ûi

]

2

) (3)

where σ Ûi
is the velocity uncertainty for the ith period, Ûi and g(m)i are the ith values in the observed and

synthetic dispersion curves, respectively. We parametrize each layer by perturbations on Vs and Vp/Vs with
respect to the reference model, and sample the posterior distributions using a McMC algorithm. This approach is
similar to the one described in Yuan and Bodin (2018), except that we do not consider the data uncertainties as
unknowns, nor as represented by a single hyper‐parameter. At each iteration, a new model mʹ is proposed ac-
cording to Gaussian distributions centered on the parameter value in the current modelm. The model perturbation
is chosen randomly from the following: (a) modify a layer depth, (b–c) perturb Vs or Vp/Vs in one layer, (d) add
new layer, (e) remove an existing layer. The model proposal is then accepted or rejected with a probability
proportional to the ratio of likelihood functions ofm andmʹ . We refer the reader to Bodin et al. (2012) and Yuan
and Bodin (2018) for more details about the computation of acceptance probability.

We exploit the Delaunay triangulation of the optimal set of nodes to interpolate Vs at the locations of the other grid
nodes. To achieve this, we perform a linear interpolation based on barycentric coordinates, at each depth. We
locate the three vertices pi(i = 1,2,3) of the spherical triangle enclosing each node, and estimate Vs(r, z) at the
node location r by linearly interpolating the vertices values, using the normalized barycentric coordinates
bi(i = 1,2, 3): Vs(r, z) = ∑

3
i=1biVs (pi, z) . Hence, this interpolation, which can be seen as a weighted average, is

more convenient than classical interpolations. Model uncertainties (posterior ensemble variances) are interpolated
using the same procedure.

3. Application: Imaging of the European Lithosphere
Following the deployment of the AlpArray seismic network (AASN; Hetényi et al., 2018), Western Europe has
become one of the most densely instrumented regions, providing an ideal setting for 3D imaging of the crust and
upper mantle based on ambient noise. Thus, several ANT were conducted at continental and regional scales (e.g.,
Kvapil et al., 2021; Lu et al., 2018; Nouibat, Stehly, Paul, Schwartz, Bodin, et al., 2022; Sadeghi‐Bagherabadi
et al., 2021; Schippkus et al., 2018). ANT models covering the western Mediterranean region have substan-
tially improved the knowledge of the 3D structure beneath the Alps‐Apennines‐Ligurian complex system,
providing new insights for geological and geodynamic modeling (Paul et al., 2024). However, none of them
provide constraints on the local resolution and uncertainty. Applying the method described in Section 2, we aim to
address this issue by constructing the first 3D Vs model accompanied by robust quantitative appraisals.

3.1. Data Set

We built a comprehensive data set of Rayleigh wave group velocity measurements from vertical component noise
correlations of 3,000 broadband stations available between 2010 and 2023 (Figure 1a). To date, this is the largest
noise database in the region, with almost 5 million correlations. Daily records are processed following the
procedure described in Nouibat, Stehly, Paul, Schwartz, Bodin, et al. (2022) and Nouibat, Stehly, Paul, Schwartz,
Rolland, et al. (2022). Group velocity dispersion curves are measured using multiple filter analysis (MFA,
Dziewonski et al., 1969; Herrmann, 1973) at periods in the range 5–80 s. Similarly to Nouibat, Stehly, Paul,
Schwartz, Bodin, et al. (2022), we keep only reliable measurements based on SNR and inter‐station distance
criteria (2% to 30% selected measurements depending on the period).
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We assume that the uncertainty in the traveltimemeasurement at a given period is 10% of the calculated traveltime
in a homogeneous 2D model given by the average of velocity measurements. We have chosen to be cautious
regarding the uncertainty magnitude, given that it is rather complicated in practice to be assessed precisely for
noise data, and the resulting model uncertainties fall well within the typical range of 0.01–0.1 km/s. Furthermore,
it makes sense to assign higher uncertainties to longer paths, as they integrate more velocity structures, hence,
more structural complexity, being likely to accumulate a higher level of uncertainty. Finally, by overestimating

Figure 1. (a) Target resolution map with locations of seismic stations used in this study (red circles: permanent networks,
blue: AlpArray network, cyan: other temporary networks). The thick black lines show the main geological boundaries
(modified from Faccenna et al., 2014). (b) Zoom on the Alpine region showing the grid nodes of the depth inversion. Thick
black and red lines show the main geologic units, modified from Handy et al. (2010) and Rollet et al. (2002). Green circles:
shapes of some SOLA target resolving kernels.
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the magnitude of data errors, one implicitly takes into account errors inherent in the two‐step nature of the
inversion procedure (see Zhang et al., 2018).

3.2. Results

For SOLA–BG, we use an irregular grid in which the cell size is linearly adjusted to the raypath density at 5 s,
varying from 0.1° to 0.8° (Figure 1a). SOLA targets are localized at the cell centers and their radius is given as
twice the cell side. Accordingly, their size varies with the ray coverage which is an appropriate fist‐order
approximation for the spatial variations in resolution (Figure 1b). A Fast Marching Method (Rawlinson &
Sambridge, 2005) is used jointly with SOLA–BG in order to update rays geometry and better accommodate the
influence of strong velocity contrasts in the region. We calculate an optimal set of nodes (with α = 0.5, see
Section 2.2), and invert for Vs at each node using 24 parallel Markov chains performing 150,000 iterations.

Figure 2. Group velocity maps with their uncertainty and resolution estimates. Acronyms in the 5‐s velocity map refer to Po
basin (PB), Ligurian basin (LB), Southeast‐France basin (SFB), Sicily fold‐and‐thrust belt (SiB), German Molass basin
(GMB), Parisian basin (PrB), North‐Sea basin (NSB), Aquitaine basin (AB) and Ebro basin (EB). The SOLA resolving
kernels are well focused overall, except in the south‐west Ligurian basin (green circles: SOLA target kernels).

Geophysical Research Letters 10.1029/2025GL115623
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Results of the tomography are summarized in Figures 2 and 3. The 5‐s group velocity map and 5‐km Vs depth slice
display a very good correlation with surface geology (Figure 1). We clearly distinguish the main sedimentary
basins, highlighted with low‐velocity anomalies (U < 2.4 km/s, Vs < 2.7 km/s). The 10‐km Vs slice (upper‐crust)
displays mantle velocities (Vs > 4 km/s) in the Ligurian and Adriatic basins, indicating the thinning of oceanic
crust, and low velocities (Vs = 2.9–3 km/s) in Italy highlighting deep sediments of Po and North‐Adriatic basins.
The 23‐s group velocity map and the 30‐km Vs slice (lower‐crust), exhibit low velocity anomalies along the
mountain belts, reflecting the signature of deep crustal roots.

The 5‐s uncertainty map exhibits low values (σ < 0.035 km/s) within some sedimentary basins, such as, Po and
German Molass basins, compared to the surrounding mountain belts. We observe similar uncertainty levels along
the Alps and Apennines at 23 s period (sensitive to lower‐crust), while the Massif Central displays higher values
(σ > 0.045 km/s). Uncertainties on the periphery of the well‐covered area are relatively low (σ < 0.025 km/s), for

Figure 3. Depth slices in the Vs model and their uncertainty estimates given by standard deviation of the posterior ensemble of
105 models. The dashed white line delimits the area of resolution confidence (see Section 4.1).
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example, Ligurian Sea, Tyrrhenian Sea, and Northwestern France. Indeed, these regions exhibit large resolution
misfit (see Figure S1 in Supporting Information S1), that is, poor, anisotropic ray coverage resulting in smeared
averaging kernels, which is balanced by lower model variance. Differences of uncertainty between regions of
similar averaging kernels (e.g., Alps vs. Massif Central) are likely due to variations on the quality and coherence
of measurements, reflecting varying medium complexity.We can see a clear transition in the uncertainty topology
toward the north‐west of France; this transition marks a decrease in path density and hence an increase in the size
of averaging kernels (Figure 1).

Vs uncertainty maps are given by the ensemble variance at depth. They emphasize the inversion effectiveness in
explaining the dispersion curve given its uncertainty level, that is to explain the subsurface complexity. They
display strong lateral variations, well correlated with the geologic structures and varying at depth (Figure 3). We
observe strong uncertainty values (σ > 0.3 km/s) at 5 km depth, along the continent‐ocean transitions (e.g.,
Ligurian‐Provence and Corsican margins). Deeper, at 10 km, high uncertainties (σ = 0.3–0.4 km/s) are detected
at the basis of thick sedimentary basins, for example, Ligurian and Southeast‐France. In the lower crust (30 km),
the south‐western Alps show slightly higher uncertainties than the central and eastern Alps, which is coherent
with the deep Alpine structure becoming more complex to the south‐west. Overall, the French Massif central
exhibits rather low uncertainties (σ < 0.2 km/s), comparable to recovered values in the oceanic domains.

Figure 2 indicates that the choice of the size of target kernels is consistent with the path density in the region.
Overall, the averaging kernels are well focused within the respective SOLA targets in the well‐covered areas.
Nevertheless, we observe a spread of kernels located in the least covered areas (e.g., oceanic domains). This
suggests the need of increasing target sizes, thereby reducing the resolution, though this effect diminishes at
longer periods as the path density increases (see 23 s). Additional results are shown in Figures S4–S6 in Sup-
porting Information S1, and a comparison with a recent ANT model is provided in Figure S7 in Supporting
Information S1.

4. Discussion
4.1. Trade‐off Resolution Versus Uncertainty

SOLA–BG is a powerful tool to accommodate the trade‐off between resolution and uncertainty, through the
explicit choice of the target kernel (Tk) (Equation 1). By fixing the targets size, we accommodated the dis-
crepancies in raypath coverage at period. Thus, similar local resolution estimates were achieved at the cost of
optimum, variable resolution over the individual periods—the size of Tk is driven by the longer periods which
usually exhibit lower path density. In practice, it is impossible to achieve precisely the same local resolution, as
the number, azimuthal distribution and the noise level of measurements vary between periods. One can, however,

consider the query‐points where the resolution‐misfit reduction εk = 1 −
∑j

Sj(A
(k)
j − T(k)j )

2

∑j
Sj(T

(k)
j )

2 is higher than a

threshold confidence (see Figure S1 in Supporting Information S1). In our application, we considered a threshold
of 65%, which corresponds to the region delimited with the dashed white line in Figure 3. One can tune this value
and the size of SOLA targets to achieve a good compromise that enables reasonably precise geologic in-
terpretations, while not degrading the resolution too much.

The SOLA trade‐off is also influenced by the tunable parameter ηk which controls the propagation of uncertainties
from data into the model (Equation 1). In contrast to the parameters of regularization in damped least squares
(DLS) inversion methods, for example, ‖d − Gm‖2 + Θ2‖m‖2 = min, where Θ is the so‐called damping
parameter, the choice of ηk in SOLA–BG does not induce physical misinterpretations of the velocity structures
(no averaging bias, see Figure S2 in Supporting Information S1)—increasing resolution leads to higher uncer-
tainty, and vice versa, but the solution remains “mathematically” interpretable (with respect to the “true” model).
For computational reasons, we fix its value for all nodes in our application. However, one can adapt this value at
each location to further fit the desired local resolution, which can be useful for small problems.

Figure 4.1 shows group velocity models of Southwestern Alps (15 s period), obtained for two different target
sizes. One can see that a Tk radius of 0.2° is more appropriate to resolve fine velocity structures such as the so‐
called Ivrea body high‐velocity anomaly. The recovered anomaly exhibits very good matching with the positive
Bouguer anomaly (white contour in Figures 4.1c and 4.1f). Nevertheless, the 0.4°‐Tk solution better constrains the
group velocities (2 times lower uncertainty values).
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4.2. Computational Efficiency of the Method

4.2.1. Benefits From the Optimal Grid

Another aim of the optimal grid design (Section 2.2) is to reduce the size of the problem, hence the computational
cost of the inversion at depth. In our application, the number of nodes is almost reduced by a factor of 2 (from
19,045 to 8901, see Figure S13 in Supporting Information S1). This enabled a cost reduction by a factor of 2,
given that a Vs inversion on one node requires ∼600 CPU seconds on a 2.7 GHz Intel platform.

It is conceptually possible to build this optimal grid prior to the 2D inversion. However, this raises the practical
problem of recalculating it each time the target kernels are modified. In addition, it is better to choose a finer grid
for accurate representation of the sensitivity matrix. Our choice to build this grid a posteriori is particularly
relevant given that SOLA–BG is far less computationally demanding than the depth inversion (one query‐point
requires ∼120 CPU seconds and 1 core).

Figure 4. (1) SOLA–BG inversion results in the SW‐Alps, using two sizes of target resolving kernels (1a–1c: 0.4°, 1d–1f:
0.2°). Green circles in 1a and 1d denote the a priori target forms. The white contour in 1c and 1f denote the so‐called Ivrea
body positive Bouguer anomaly (from Bigi et al., 1990). (2) Depth inversion results for a node located in Po Basin, using: (1)
group velocity uncertainties from SOLA–BG (blue curves), (2) uniform uncertainty treated as unknown (red curves). Black
dots and bars in 2a are SOLA–BG group velocities and their uncertainties. Note that underestimating uncertainty, when
treated as unknown (prior distribution, 0.001–0.03 km/s), leads to incorrect Vs variations at depth, as a result of data over‐
fitting.
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4.2.2. Benefits From the Inversion Scheme

The SOLA scheme is extremely parallel since it computes the solution at each query‐point independently from the
others—each row of the generalized inverse is computed independently. Therefore, it adapts perfectly to the 1D
character of depth inversion. This is highly useful for testing the influence of SOLA's tunable parameters on the Vs
model—the dispersion curve can simply be recalculated at the considered grid node without having to recalculate
the 2D group velocity maps.

4.3. Propagation of Group Velocity Uncertainties at Depth

We propagate group velocity uncertainties into Vs, by weighting the misfit of each individual period by the
corresponding SOLA–BG uncertainty estimate (Equation 3). Relying on such constrained frequency‐dependent
estimates is a more realistic way of assessing the variance on Vs at depth. Underestimating the uncertainty level,
when considered the same for all periods and treated as unknown, would limit the range of models in the solution
ensemble since the inversion algorithm would over fit the dispersion curve. On the other hand, overestimating it
leads to irrelevant solutions being considered as probable. The effect of a wrong choice of this parameter prior
distribution is illustrated in Figure 4.2.

We considered in our application, errors in Rayleigh wave travel times increasing with the source‐receiver
distance, as fist‐order estimate of their real magnitude. However, it is worth pointing out, even more in
SOLA–BG, that a more precise evaluation of data uncertainties would further constrain the model uncertainty
estimate. Our primary aim in this study was to illustrate the feasibility of our ANT approach and its efficiency in
recovering self‐consistent Vs models in complex geodynamic contexts. The influence of dispersion measurements
uncertainties on the model appraisals will be further investigated in a future accompanied work.

5. Conclusion
We presented an innovative method for conventional ANT, based on Backus–Gilbert and Bayesian inversions.
SOLA–BG yields unbiased surface wave velocities, estimated as local averages over the “true” model, and
provides robust appraisals of the underlying resolution and uncertainty. We presented a method for constructing
optimal depth inversion grids that adapts to the spatial variations of the local resolution at period, reducing
significantly the computational cost for the 3D Vs model. We have shown that Vs can be further constrained by
propagating SOLA uncertainty estimates, in the framework of Bayesian inversion. We successfully applied this
ANT method at the scale of Western Europe and demonstrated its effectiveness in providing robust crustal Vs
images and their appraisals, enabling meaningful quantitative interpretations.

Data Availability Statement
Seismic waveforms used in this study are publicly available from the ORFEUS Data Center (https://orfeus‐eu.
org/data/odc/). The “discrete” SOLA code used in this study merely consists in running the LSQR algorithm
(Paige & Saunders, 1982) with specific, study‐dependent, input matrices and vectors (e.g., data‐sensitivity ker-
nels, model‐space discretization, “target” averaging kernels), as detailed in Zaroli (2016). The LSQR code is
available at: https://web.stanford.edu/group/SOL/software/lsqr/ (Stanford's Systems Optimization Laboratory).
Our tomographic model will be available in the ForM@Ter—EaSy Data repository (https://easydata.earth).
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