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ABSTRACT

We evaluated a comprehensive numerical experiment of finite-
frequency tomography with ray-based (“banana-doughnut”)
kernels that tested all aspects of this method, starting from
the generation of seismograms in a 3D model, the window se-
lection, and the crosscorrelation with seismograms predicted for
a background model, to the final regularized inversion. In par-
ticular, we tested if the quasilinearity of crosscorrelation delays
allowed us to forego multiple (linearized) iterations in the case
of strong reverberations characterizing multiple scattering and
the gain in resolution that can be obtained by observing
body-wave dispersion. Contrary to onset times, traveltimes ob-
served by crosscorrelation allowed us to exploit energy arriving
later in the time window centered in the P-wave or any other
indentifiable ray arrival, either scattered from, or diffracted
around, lateral heterogeneities. We tested using seismograms

calculated by the spectral element method in a cross-borehole
experiment conducted in a 3D checkerboard cube. The use
of multiple frequency bands allowed us to estimate body-wave
dispersion caused by diffraction effects. The large velocity con-
trast (10%) and the regularity of the checkerboard pattern
caused severe reverberations that arrived late in the crosscorre-
lation windows. Nevertheless, the model resulting from the in-
version with a data fit with reduced χ2red ¼ 1 resulted in an
excellent correspondence with the input model and allowed
for a complete validation of the linearizations that lay at the ba-
sis of the theory. The use of multiple frequencies led to a sig-
nificant increase in resolution. Moreover, we evaluated a case in
which the sign of the anomalies in the checkerboard was sys-
tematically reversed in the ray-theoretical solution, a clear dem-
onstration of the reality of the “doughnut-hole” effect. The
experiment validated finite-frequency theory and disqualified
ray-theoretical inversions of crosscorrelation delay times.

INTRODUCTION

The first experiment in seismic tomography was actually a cross-
borehole experiment (Bois et al., 1971, 1972). In those early times,
the interest was exclusively focused on the use of onset times to
estimate the velocity structure. Computers were not large enough
to tackle complete 3D problems, and the crossborehole setup
(i.e., sources in one borehole and receivers in another one) provided
a manageable case study (McMechan, 1983; McMechan et al.,
1987; Bregman et al., 1989). Soon after these first attempts, tomog-
raphers realized that improvements were needed from the theoreti-
cal point of view to take into account more physical phenomena
such as wavefield scattering (e.g., emergence of what is known
as diffraction tomography) (Devaney, 1984; Pratt and Worthington,
1988; Williamson, 1991; Woodward, 1992) and from the observa-

tional point of view, regarding the feasibility of “picking” seismic
arrivals, especially in the presence of noise, leading to more evolved
crosscorrelation measurements of traveltimes (VanDecar and
Crosson, 1990).
Traditionally, a crosscorrelation is viewed as a matched filter ap-

proach in which a test signal uthðtÞ matches exactly the observed
wavelet uobsðtÞ, but with a delay τ or one in which relative delays
between nearby stations of an array are solved from an overdeter-
mined system of equations. With the crosscorrelation

cðtÞ ¼
Z

t2

t1

uthðt 0Þuobsðt 0 − tÞdt 0; (1)

one defines τ as the delay t that maximizes cðtÞ. In this view,
frequency-dependent delays or phase shifts are considered to
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degrade the estimate of τ, as a consequence of imperfect coupling of
the seismometer with the ground, of intrinsic attenuation, or of near-
surface reverberations. We refer to Bagaini (2005) for an extensive
review of the performance of crosscorrelation estimation methods
with this view in mind. Others have attempted to force crosscorre-
lation delay times to approach the classical onset times by giving
more weight to the early part of the seismogram (Woodward and
Masters, 1991). Though this narrows down the volume of sensitivity
(Hung et al., 2001), we consider this approach counterproductive
because it does away with the wealth of information present in
the coda waveform following the earliest arriving energy. The price
to pay, however, is that this energy does not follow a minimum time
path and therefore ray theory is inadequate to explain crosscorre-
lation traveltimes, unless the real earth is so smoothly varying that
finite-frequency theory becomes equivalent to ray theory (Dahlen
et al., 2000).
In an early and prescient paper, Luo and Schuster (1991b) rec-

ognize that the use of crosscorrelation delay times is not restricted to
those cases where the mismatch between the test signal uth and the
observed seismogram is a simple delay, but it can be used to extend
traveltime tomography to include scattered energy that changes the
waveform uobs and its spectrum. Their paper was motivated by the
observation that Tarantola’s pioneering efforts at full-waveform in-
version (Tarantola, 1987) suffer from a highly nonlinear misfit func-
tion, but that delay times retain important information and, at the
same time, lead to a quasilinear inversion. Even though formulated
in two dimensions, the possibly large size of the inversion motivated
Luo and Schuster (1991b) to follow Tarantola and formulate their
method in terms of a gradient search rather than a matrix inversion,
which is computationally much more intensive. The methodology
was built on earlier work by Chavent, Bamberger, and Lailly (see
Lailly (1983) or Plessix (2006) for references). To tackle the prob-
lems with nonlinearity Woodward (1992) suggests the Rytov
approximation, and Shin and Min (2006) develop a separate
phase/amplitude inversion strategy.
At about the same time, Wielandt (1987), Nolet (1987, 1991),

and Červený and Soares (1992) in global seismic tomography
and Devaney (1984), Wu and Toksoz (1987), and Williamson
(1991) in crossborehole tomography explore the width of the sen-
sitivity of body-wave delays. In crossborehole tomography, this
eventually led to waveform tomography using frequency-domain
methods in two dimensions by Pratt and others (Pratt, 1990,
1999; Pratt and Shipp, 1999). In global seismology, where long dis-
tances and large data volumes make waveform tomography imprac-
tical at high frequency, Marquering et al. (1998, 1999), Zhao and
Jordan (1998), and Zhao et al. (2000) link waveform tomography to
crosscorrelation delays; it was the complete theoretical develop-
ment of Dahlen et al. (2000), who efficiently used ray theory to
define the sensitivity, that enabled the first “finite-frequency” appli-
cation in global tomography (Montelli et al., 2004). By that time,
the memory capacity of computers was large enough to allow for
matrix solvers, which require storage of the sensitivity matrix in
memory, rather than gradient search strategies, which allow one
to compute the gradient of the misfit function “on the fly,” but which
require recomputing the sensitivity for every iteration even in case
the inverse problem is perfectly linear. The gradient search was also
introduced in large-scale seismology as the adjoint-state method
(Tromp et al., 2005; Plessix, 2006) and afterward applied by Chen
et al. (2007b) and Tape et al. (2010) to image the Los Angeles basin

and by Fichtner et al. (2009, 2010) at the continental scale. Chen
et al. (2007a) discuss the respective merits of the (matrix-free) gra-
dient search approach and the scattering-integral approach (i.e.,
explicit building of the sensitivity matrix) at the regional scale.
In both strategies (i.e., gradient search or iterative matrix solu-

tion), the sensitivity of the observed crosscorrelation delay ΔT
to the model velocity perturbation δV∕V ¼ δ ln V is linearized
using the single-scattering (Born) approximation to obtain

ΔT ¼
Z

KðrÞδ ln VðrÞd3r; (2)

where, in our case,KðrÞ is the kernel that describes the sensitivity of
the P-wave delay time to variations in the P-wave velocity. The lin-
earity of equation 2 holds even for sharp velocity contrasts as large
as 10% (Mercerat and Nolet, 2013), which gives delay-time inver-
sion an advantage over direct waveform fitting because it potentially
avoids having to iterate in the inversion. The kernel KðrÞ depends
on the reference wavefield sðr; tÞ calculated for a background
model. The main difference between the method of Dahlen et al.
(2000) and that of Tromp et al. (2005), when used for inverting de-
lay times measured by crosscorrelation, is that the first authors com-
pute sðr; tÞ using ray theory in a smooth background model rather
than using a full wavefield modeling tool, such as finite differences
or the spectral element method, in a background model of arbitrary
complexity. This leads to a gain in computing time by two to three
orders of magnitude with only small errors in the approximation of
the sensitivity kernels (Mercerat and Nolet, 2012). Its drawback is
that it can only be applied to waveforms that represent a recognizable
body-wave arrival, though this is often the case in cross-borehole
experiments where just the first arrivals are commonly used.
The reduction of a waveform to a simple time delay (“skeleton

datum” in the terminology of Luo and Schuster, 1991a) leads to a
significant reduction in data volume and would be expected to re-
duce the information contained in the data. Sigloch et al. (2008)
recover much of the information in the waveform by estimating
ΔT for various filter bands, thus multiplying the degrees of infor-
mation from only one body wave arrival. We refer to this method as
multiple-frequency tomography. Sigloch and Nolet (2006) and Zar-
oli et al. (2010) have shown that global body-wave delay times
exhibit measurable dispersion.
Finite-frequency methodologies have been applied in near-

surface seismology to overcome limitations of classical ray tomog-
raphy, while avoiding the heavy computations of highly nonlinear
waveform inversions (Pratt and Goulty, 1991; Luo and Schuster,
1991b; Spetzler and Snieder, 2004). Luo and Schuster (1991b)
and Williamson and Worthington (1993) carry out the first numeri-
cal experiments to evaluate the impact of diffraction effects on
traveltime cross-borehole tomography, although restricted to 2D
numerical simulations. At that time, Vasco and Majer (1993) de-
velop the concept of volumetric sensitivity (“wavepaths”) in the
context of transmission traveltime tomography. More recently,
Spetzler et al. (2007) test the linearized finite-frequency theory
in a time-lapse crosswell numerical experiment, finding similar re-
sults as with ray tomography as long as the perturbations are greater
than the first Fresnel zone. Liu et al. (2009) show that finite-
frequency (Fresnel volume) tomography can achieve more accurate
results than traditional raypath tomography when the anomalies
are of the order of (or smaller than) the first Fresnel zone. van
Leeuwen and Mulder (2010) propose a weighted crosscorrelation
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criterion that renders borehole tomography less sensitive to errors in
the source time function. Buursink et al. (2008) recently extend the
finite-frequency tomography to crosshole radar velocity tomography.
The goal of this paper is to demonstrate that the linearized

techniques developed in global seismology can be directly used
in applied seismics, especially when using transmitted waves
and well-defined body-wave arrivals. We show that, if the delay
times are measured by crosscorrelation, finite-frequency methods
impose themselves because the application of classical ray theory
may lead to very severe errors. We also show the advantages of
using multiple-frequency bands (i.e., multiple Fresnel zone sizes)
to retrieve additional resolution from the same raypath. It is the first
study that uses a complete set of “ground-truth” 3D seismograms
computed with the spectral element method to test the performance
of linearized finite-frequency tomography in a realistic cross-
borehole situation. Though our emphasis is on a realistic explora-
tion setup, we note that distances and periods scale up to situations
encountered in upper mantle tomography if one multiplies times
and distances by 104.

THE NUMERICAL EXPERIMENT

We study elastic, nonattenuating, wave propagation in a 3D
model that produces a significant amount of diffraction and scatter-
ing. We deliberately choose a regular (checkerboard) heterogeneity
pattern because regularity provides a worst-case scenario in which
reverberations can interfere constructively at certain frequencies,
leading to a significant buildup of scattered energy. The actual
model measures 120 × 120 × 120 m, but it is extended 80 m in the
borehole’s plane direction to avoid spurious boundary reflections.
The model, shown in Figure 1, emulates an industry-scale cross-
borehole setting (free surface on top of the model, absorbing boun-
daries on the sides and at the bottom). As a reference model, we use
a homogeneous medium with VP ¼ 6 km∕s, VS ¼ 3.46 km∕s, and
density ρ ¼ 2750 kg∕m3, discretized by 2.88 106 hexahedral spec-
tral elements (interpolation degree 5) of 1 × 1 × 1 m, allowing ac-
curate simulations up to 3 kHz (neglecting any time discretization
errors). The perturbed models consist of a checkerboard pattern of
12 × 12 × 12-m cubic blocks with positive and negative velocity
anomalies of �2% and �5%. For example, the �2% checkerboard
block model comprises a set of contiguous blocks, each with either
a uniform þ2% perturbation or a uniform −2% perturbation (see
Figure 1). We fix VS ¼ VP∕

ffiffiffi
3

p
and ρ ¼ 2750 kg∕m3 at every node

in the model. We verified the numerical accuracy of the mesh by
checking reciprocity for a single force source, and we checked that
there is no appreciable numerical dispersion by carrying out one
simulation in the �5% heterogeneous model with a finer mesh.
We place 17 receivers at the surface (y ¼ 66 m, x from 20 to

100 m) and at two boreholes at x ¼ 10 m, y ¼ 66 m and
x ¼ 110 m, y ¼ 66 m, with 22 receivers each at constant
Δz ¼ 5 m spacing. We simulate 22 shots with explosive sources
in each of the two boreholes (44 shots in total), where shotpoints
are colocated with the 22 receivers. The source time function has a
Gaussian shape with a 0.833-kHz central frequency (central period
of 1.2 ms); thus, it has hardly any noticeable energy beyond 2 kHz.
We note that this realistic crossborehole model scales up to regional
distances if we multiply times and distances with a factor 103 − 104.
In the latter case, our shortest period of 0.5 ms scales up to 5 s
and source-receiver distances scale up to 1000 km and more, the

distance range where strong upper mantle heterogeneity is most
troublesome for linearized tomography.
In exploration seismics, one would probably deploy more sources

and receivers in an effort to resolve the anomalies more precisely,
especially in a 3D problem. We do not follow this strategy in this
experiment for the following reasons: First, it is of interest to us to
investigate how much we can resolve with a limited data set. Sec-
ond, we wish to avoid an “overkill” of data. Redundancy in the data
set may mask the errors we make in linearizing the inversion by
averaging out the theoretical errors, just as one can reduce exper-
imental errors by repeating an experiment and averaging.
As expected, the checkerboard model generates a significant

amount of scattering. In Figure 2, an example of shot gathers in
the homogeneous reference medium and in the checkerboard mod-
els is shown for the same source position at x ¼ 10 m, z ¼ −30 m

(receivers in the borehole at x ¼ 110 m). Note that the waveform of
the direct arrival changes dramatically, mostly because of later ar-
riving energy, but that the onset does not visibly arrive later; rather,
the onset becomes more emergent (as opposed to impulsive) when
the velocity contrast increases from �2% to �5%.
We restrict our study to these first (P-wave) arrivals. The extension

to later arrivals, such as reflected waves, is trivial in theory, though
the computation of the corresponding kernels KðrÞ with ray theory
may become cumbersome and the use of full wavefield methods to
compute the kernels is often preferred. To estimate the delay times,
we define the crosscorrelation window boundaries t1 and t2:

t1 ¼ tpred − σpred − dtaper; (3)

t2 ¼ tpred þ f−1c þ dpulse þ σpred þ dtaper; (4)

where tpred is the predicted arrival time with uncertainty σpred, dpulse is
the duration of the body-wave pulse on the broadband record, fc
is the central frequency of the passband filter, and dtaper is the
duration of the windowing taper. We reject near-field seismograms

Figure 1. The 3D checkerboard model (�5%) with the source and
receiver locations (gray spheres) used in the synthetic experiments.
For viewing purposes, only a 12-m-thick slice between the
two boreholes is plotted. The source location at (x ¼ 10 m,
z ¼ −85 m) is shown with a black star and corresponds to the shot
gathers of Figure 2.
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that contain an S-wave in the same time window as the P-wave, and
we check visually if an “unwanted” wave such as a boundary reflec-
tion arrives before t ¼ t2, in which case we truncate t2 to exclude the
arrival. If this brings the window length t2 − t1 < f−1c , the frequency
band is excluded from the measurement. We adopt σpred ¼ 0.1 ms,
dpulse ¼ 1.8 ms, and dtaper ¼ 0.3 ms. We measure the delay as the
time of the largest maximum in the crosscorrelation function. The
lowest frequency band (8 ms) corresponds to an average P-wave-
length of 48 m, and the highest frequency band (0.5 ms) corresponds
to an average P-wavelength of 3 m:We thus cover wavelengths much
larger and smaller than the size of the targeted heterogeneities.
Finally, we do not consider data with a normalized crosscorrelation
coefficient R less than 0.9, as this may lead to selecting a sidelobe

maximum rather than that of the true delay (Mercerat and
Nolet, 2013).
In Table 1, we show the number of measurements that satisfy the

previous constraints, as well as the “observational” errors σ�2% and
σ�5%. The errors are standard errors, estimated from the scatter away
from a purely linear dependence of the crosscorrelation delay times
for the �5% model against the ones of the �2% model. Histograms
of the data set in the four lowest frequency bands (8, 4, 2, and 1 ms)
are shown in Figure 3.We observe that as the central period increases,
the delay times distributions narrow, clearly reflecting the wavefront
healing effect (Hung et al., 2001; Malcolm and Trampert, 2011).
No noise was added to the synthetic seismograms, but the ob-

served delays show a spread around the theoretical prediction from
equation 2 mainly due to the effects of multiple scattering (as op-
posed to single scattering modeled with the Born theory) and, to a

Table 1. Crosscorrelation delay times (R > 0.9) and initial
error estimates.

Dominant �5% model �2% model

Period (ms) N σ�5% (ms) N σ�2% (ms)

Broadband 883 0.043 1295 0.017

8 215 0.029 394 0.012

4 621 0.032 918 0.013

2 879 0.033 1268 0.013

1 950 0.037 1316 0.015

0.5 120 0.043 28 0.017

0

100

200

300

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
∆T (ms)

4-ms band

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
∆T (ms)

8-ms band

0

100

200

300

1-ms band 2-ms band

Figure 3. Histograms of the data in four different frequency bands
(from 1 to 8 ms) for the �5% model. The narrowing of the distri-
butions reflects the dispersion introduced by wavefront healing.
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Figure 2. Seismograms (horizontal component of velocity) of
receivers in the borehole at x ¼ 110 m from a shot at x ¼ 10 m,
z ¼ 30 m (a) for the homogeneous reference medium, (b) for the
�2% checkerboard, and (c) the �5% checkerboard. In the first
panel, we indicate the arrivals involved. The crosscorrelation win-
dow (broadband) is shown with gray hyperbolae. We thus avoid
arrivals other than the (direct) P-wave. For this source-receiver pair,
we reject the trace at z ¼ −10 m because the window includes en-
ergy from the reflected P-wave. The incipient arrival marked with a
vertical arrow is an artifact due to inefficient absorbing boundaries.
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lesser degree, the bending in raypaths unaccounted for and the
effects of windowing before crosscorrelation (see Figure 4 in
Mercerat and Nolet, 2013). Because the velocity perturbation for
the �2% model is smaller than that of the �5% model, the corre-
sponding seismograms are much “cleaner” for lack of strong rever-
berations. Because no random noise was added to the seismograms,
we assumed the signal-to-noise ratio to be the same for both data
sets, an assumption that we discuss in the next section.

THE INVERSION

Because the starting model is homogeneous, no expensive ray
tracing is needed to find the traveltime and geometrical spreading
fields needed to compute the sensitivity kernels KðrÞ. Moreover, we
showed earlier that the differences between sensitivity kernels cal-
culated with ray theory, or from the full wavefield computed nu-
merically, are negligible for an homogeneous reference medium
(Mercerat and Nolet, 2012). We stress that all the inversions pre-
sented in this work correspond to solving the linear system of equa-
tion 5 only once. The quasilinearity of delay time inversions is what
sets it apart from waveform inversions, and one of the aims of this
study is to assess the advantages and disadvantages of a purely
linear approach. However, in case the changes from the starting
model are large and linearity is not assured, it is always possible
to continue iterating. If ray theory is used to compute the kernels,
this may require a smoothing of the perturbed model between
iterations. The wavefield sðr; tÞ for each source is then defined
as a sum of ray arrivals, which allows us to compute the kernels
KðrÞ following Dahlen et al. (2000). To resolve the sharp checker-
board model, the integrals in equation 2 are discretized with
1,771,561 (¼ 121 × 121 × 121) unknown model velocity perturba-
tions mi and as much as 3668 (for the �5% model) or 5219 (for the
�2%model) delay times di for the six frequency bands (0.5 to 8 ms
and the broadband) to yield a linear system of the form0

B@
A

ϵdI

ϵsS

1
CAm ¼

0
B@

d

0

0

1
CA: (5)

Here, ϵd is a coefficient that governs the norm (Tikhonov) damping
of the solution whereas ϵs weighs the minimization of the model
roughness as expressed by its second derivatives (Laplacian or

roughness damping). The matrix S is a Laplacian differentiator,
damping the solution for each voxel toward the average of the
neighboring voxels:

mk −
1

Nk

X
j∈N k

mj ¼ 0; (6)

where N k is the set of Nk neighbors of voxel k. For further details
on the computation of matrix A and the damping strategy, we refer
the reader to Chapter 14 of Nolet (2008).
Except for normalizing the data to unit variance, no weighting is

applied to different frequency bands. The system is strongly under-
determined, if only because the experimental configuration allows
us to constrain the model only to a thin, quasi-2D, volume between
the two boreholes. We use a constant ratio between norm and rough-
ness damping to arrive at a best data fit, as measured by minimizing
χ2 for N data and M unknowns:

χ2ðmÞ ¼
XN
i¼1

�jPM
j¼1 Aijmj − dij2

σ2i

�
; (7)

where σi is the standard deviation in datum i (Table 1).
To solve linear system 5, we use the LSQR solver (Paige and

Saunders, 1982). We fix the ratio ϵd∕ϵs and seek a damping that
gives an acceptable reduced chi-squared χ2red ¼ χ2∕N ≈ 1. With
the data set of 3668 delay times for the 5% model, we perform three
different inversion experiments. In the first one, we use all the data
available (i.e., the five frequency bands plus the broadband data). In
the second one, we use only the data from the band with a dominant
period of 2 ms. Finally, we interpret the data for this band with ray
theory rather than with the finite-frequency kernels (i.e., changing
matrix A accordingly).
We first investigate the “trade-off” (Nolet, 2008) of the model

norm versus the data fit for these three cases. Figures 4 and 5 show
how χ2red varies with the model norm for each of these three cases in
the �5% and the �2% models, respectively. We note that as more
data are used in the inversion (i.e., using multiple-frequency bands),
the fit degrades as expected. As we shall see, the multiple-frequency
data have a greatly increased resolution and impose more detail (and
thus a higher norm) on the resulting model.

0

1

2

3

4

5

6

χ2
re

d

0 1 2 3 4 5 6
Model norm (%)

±5% checkerboard
2 ms (ray theory)
2 ms (finite freq.)
All bands

0.0

0.5

1.0

0.0 0.5 1.0

Figure 4. Trade-off between the root-mean-square
(rms) model norm (kept proportional to the rough-
ness norm) and the data fit for the�5%model, for
the full data set and for the band with a dominant
period of 2 ms, interpreted with equation 2 or with
ray theory.
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Figure 5. Trade-off between the rms model norm
(kept proportional to the roughness norm) and the
data fit for the�2%model, for the full data set and
for the band with a dominant period of 2 ms, in-
terpreted with equation 2 or with ray theory.
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The fact that the χ2red for the �2% model does
not descend to the same level as for the �5%

model might be interpreted that our assumption
of equal signal-to-noise ratio does not hold, and
in fact the data corresponding to the �5% model
are actually “cleaner” than the one from the�2%

model, despite being at the limit of linearity of
equation 2. However, care must be taken with
such a conclusion: The ray theoretical χ2red is bet-
ter than all others for the �2% model, but, as we
shall see in the next section, the model obtained
is not correct.
Figure 6 shows how the solution varies with

damping using data from all frequency bands.
From here on, unless otherwise specified, we
present the solution in the vertical plane contain-
ing the two boreholes (y ¼ 66 m). As stated
above, we damp the norm and the roughness
(Laplacian) of the solution, keeping their ratio constant. Although
it is evident that the model with χ2red ¼ 1.9 does not represent the
�5% amplitudes of the “ground truth”model, one might be tempted
to prefer the model with χ2red ¼ 0.6. However, close inspection
shows that the center cells in this model, where the resolution is
marginal, have more artifacts and are less consistent in displaying
even the correct sign of the anomaly. We observe that the regulari-
zation mainly affects the amplitude of the anomalies and less their
shape. The fact that amplitudes are less well resolved than the shape
of anomalies is well known in traveltime tomography.
We then redo the inversion varying the damping coefficient to

find the value that results exactly in χ2red ¼ 1. The solution is shown
in the left of Figure 7. The original model is quite well recovered,
not only in terms of the anomaly polarity but also the amplitude
values, especially in the upper half of the model (i.e., from the sur-
face to 60-m depth). Figure 8 shows the distribution of the delay
times, scaled by their standard error, as well as the a posteriori dis-
tribution of the data misfits. The latter distribution is approximately
normal with no important “tails.”
The model retrieved using data from a single frequency band

(2 ms) shows acceptable resolution only near the boreholes and
the free surface (i.e., where sources and receivers are located).
The improvement in spatial resolution in the
upper half of the domain, when we use data from
multiple frequency bands, is obvious from
Figure 7.
The seismograms computed in the �2%

model show much less reverberatory effects,
and therefore more data (5219) satisfy the thresh-
old R > 0.9. Nevertheless, the inversion of the
data obtained with the �2% model, shown in
the left of Figure 9, leads to a disappointing result
for χ2red ¼ 1, and it indicates that we have under-
estimated the errors in this data set. Originally,
we assumed the same relative errors for the data
from the two models, reasoning that the lack of
reverberations and high-order scattering for the
�2% model would make up for the much re-
duced amplitudes of the delay times. But the sol-
ution obtained for χ2red ¼ 2.5 (see Figure 9) is
more reasonable. Because it is reasonable to
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Figure 8. The histogram of the delays observed in the 5% model
scaled by their standard error is shown in blue. The distribution of
the data misfit for the model with χ2red ¼ 1 is shown in red.
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Figure 7. (a) The solution obtained by inverting the data for the �5% model in all fre-
quency bands with correlation coefficient R > 0.9. (b) The solution for only the band
with central period 2 ms. The colored dots in each box indicate the target model. For
both solutions, the roughness/norm damping was adjusted such that χ2red ¼ 1.
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expect that the errors due to nonlinearity of the crosscorrelation de-
lays are smaller at the level of �2%, the increased errors are prob-
ably in the extra data allowed by the data quality windowing. For
the �2% model, the standard errors in Table 1 should be multiplied
by

ffiffiffiffiffiffi
2.5

p ¼ 1.6 to reflect a more realistic error estimate. The extra
damping causes an additional lack of resolution that shows up as
heavy “streaks” in the dominant ray directions.

THE SHORTCOMINGS OF RAY
THEORY

We investigate in this section if ray theory can be used to deal
with delay times obtained by crosscorrelation, i.e., we ask if cross-
correlation traveltimes can be inverted with geometrical ray theory
sensitivities. First, we want to point out the different nature of
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crosscorrelation delays and onset times classically used in travel-
time tomography. As our data is completely “noise free,” we can
easily “pick” the onset time of each source-receiver path as the time
when the amplitude is a percentage of the maximum amplitude of
the P-wave (in this case 1%). Before the measurement, horizontal
and vertical seismograms are rotated to the raypath reference frame.
In Figure 10, we show the results of onset times and crosscorrelation
delays for each frequency band. We clearly observe that they may
be very different, especially at low frequencies. In fact, we show
two examples of seismograms where the raypath crosses voxels that
are in majority fast or slow, respectively (see Figure 10). In the first
case, the onset time clearly precedes that of the homogeneous
model. However, even by eye, it is evident that most of the energy
arrives later, and this information is completely missed if one only
inverts for onset times. We also stress that this is a noise-free case,
and therefore the picking process becomes trivial and unambiguous.
Beside, it has been shown that crosscorrelation delay times are
much more robust than onset times in the presence of noise (see
Nolet [2008] and references therein).
Then, we carry out the same test as shown in Figure 7; that is, we

invert the crosscorrelation delay times of the 2 ms band, but now the
Amatrix reflects ray theoretical sensitivities (i.e., infinite frequency
raypaths). We can see in Figure 11 that the polarity of the ray-
theoretical solution is often reversed, especially away from sources
and receivers. The reduced resolution due to the use of one fre-
quency band only makes the sign reversal even more dramatic be-
cause it persists over a full range of “smeared” checkerboard
squares. Jacobsen and Sigloch (2009), who first discover this aber-
rant behavior of ray theory, name this “the devil’s checkerboard.”
The sign reversal would not occur if the size of the heterogeneities is
of the order of the width of the Fresnel zone or larger.
The failure of crosscorrelation delay time inversions based on ray

theory can be understood when one considers that the sensitivity of
a crosscorrelation delay is exactly zero at the location of the ray
itself (Marquering et al., 1999; Dahlen et al., 2000; Spetzler and
Snieder, 2004). To be precise, this is the case only if ray theory
is valid and no phase changes occur due to supercritical reflection
or passage of a caustic. Deviations from ray theory may introduce
some sensitivity, but our experience with computing sensitivity in
3D structures is that a minimum in sensitivity usually remains un-
less caustics are introduced (Dahlen et al., 2000; Mercerat and No-
let, 2012). Anyhow, in our case, the maximum sensitivity is found
for those scattering locations that cause the scattered wave to be as
much out of phase as possible with the direct arrival, which happens
when the “detour” time ΔT equals π∕2ω for a wave with angular
frequency ω. Away from the source and receiver, the delay is there-
fore much more influenced by the cells neigboring the cell that con-
tains the ray. In the case of a checkerboard pattern, neighboring cells
are of different polarity (see Figure 12).
We also observe that crosscorrelation delays have finite sensitiv-

ity in a volume extending beyond the ray plane, but ray theory can-
not capture the sensitivity of the waves outside of the plane of the
two boreholes. On the contrary, Figure 13 shows the multiple-
frequency solution of the �5% model in two horizontal planes
at z ¼ −6 m and z ¼ −18 m, i.e., cutting the middle of the first
two rows of checkerboard voxels. The recovery of the out-of-plane
structure is weak near the surface where kernels are narrow. But at
an 18-m depth, some out-of-plane anomalies are imaged correctly
by the wider finite-frequency sensitivity kernels.

DISCUSSION

The checkerboard model used in this paper embodies a very
strong test of the quasilinear behavior of crosscorrelation delays
because the velocity contrasts are not only sharp but also well
organized, enabling resonances that potentially violate the single
scattering assumption. Using a simple test of the magnitude of
the delays as a function of the amplitude of the heterogeneity, Mer-
cerat and Nolet (2013) show that, except for the highest frequency
bands, linearity still dominates in checkerboard models for velocity
contrasts up to 10%. In this paper, we test the logical corollary: that

Figure 12. Vertical slice of a finite frequency banana-doughnut ker-
nel (2 ms band) between a source at x ¼ 10 m z ¼ −30 m and a
receiver at x ¼ 110 m z ¼ −30 m. The checkerboard voxels at z ¼
−30 m lie in the “hole” of the kernel, although the delay time is
much more influenced by the neighboring voxels of different polar-
ity (especially inside the black ellipses).

Figure 11. The solution that we obtain when we invert the data with
dominant period 2 ms, but now using ray theory. Note the reversal
of colors (inside the green ellipses) due to the fact that a crosscor-
relation delay senses the velocity in a band around the ray trajectory.
The value of χ2red ¼ 1 for this solution. We marked two raypaths
with solid black lines, which correspond to the seismograms shown
in Figure 10.
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crosscorrelation delay times can be inverted with a single iteration
of a linearized inversion scheme even if contrast are sharp but are
within the 10% bound. For more irregular distributions of hetero-
geneity, i.e., without well-organized sharp reflectors, the amplitude
of the heterogeneity can even be twice as large (Mercerat and Nolet,
2013). It should be noted that one still has to iterate to find the right
level of regularization.
The linearity may also help to attack the nasty question of how to

define the time window ðt1; t2Þ in case the background model is far
from the real earth and picking onsets for t1 is not feasible because
of the large data volume. Because the delay τ can be large, one can
extend the interval without violating linearity as long as the wave
arrival is sufficiently isolated, possibly refining ðt1; t2Þ in a sec-
ond try.
It is important to realize that crosscorrelation delays constitute a

fundamentally different class of data from onset times because they
incorporate energy arriving after the onset that does not follow a
minimum-time path. While abandoning classical ray theory might
seem to present a disadvantage in terms of the computational effort
it requires, this is more than compensated for by the ability to use
information from multiple frequency bands to increase the resolu-
tion. Our conclusions for crosscorrelation delay times are similar to
findings of authors comparing phase inversions with respect to trav-
eltime tomography (Shin and Min, 2006; Ellefsen, 2009).
One could pose the question how the multiple-frequency inver-

sion of crosscorrelation delay times relates to full-waveform
inversion (see Virieux and Operto [2009] and references therein).
Though amplitude information is not directly involved in the inver-
sion presented in this paper, the use of data from different frequency
bands essentially enables us to invert the phase spectrum, or at least
a subset of samples from it. But amplitude and phase spectra of
causal functions are related by the Kramers-Kronig relationships.
We are thus effectively using very similar information as used in
waveform inversion. The selection of a few discrete frequencies
in frequency-domain full-waveform inversion (Sirgue and Pratt,
2004; Mulder and Plessix, 2008; Ben-Hadj-Ali et al., 2008) is com-
parable to the selection of frequency bands in our approach, with the
important difference that the delay (or the phase) is significantly
more linear than the waveform or complex spectrum (Mercerat
and Nolet, 2013). However, the limitation to a finite time window

excludes any energy arriving after t2 in a crosscorrelation delay
time, whereas such energy still contributes to a full-waveform in-
version. By integrating later arriving phases in full-waveform inver-
sion, we expect an increased resolution as we move from the
forward-scattering regime to the back-scattering regime.
One reviewer implicitly raised the interesting question whether

images without the “smearing,” still visible in Figure 7, and without
other smaller discrepancies with the true model are in principle
within reach for transmission tomography of first arrivals, in case
one increases the coverage of sources and sensors. Sheng and
Schuster (2003) and Dahlen (2004) answer this question using
the Radon transform, showing that even in the ideal case of full
coverage, the image will be blurred depending on the width of
the frequency band used (analogous to the “diffraction limit” in op-
tics) and with the important caveat that linearity is valid. The results
of this paper may put one’s mind at ease about the linearity caveat,
but clearly there still remain fundamental limitations as to what can
be resolved with transmission tomography.

CONCLUSIONS

We present a conclusive numerical experiment that includes all
the steps of finite-frequency tomography with ray-based (banana-
doughnut) sensitivity kernels, from the generation of seismograms
for a 3D elastic model to the final inversion of crosscorrelation de-
lay times. Very different in nature and often much more precise than
onset picks, we show that these delays must be interpreted by a
finite-frequency theoretical approach. We conducted the test using
seismograms calculated by the spectral element method in a cross-
borehole experiment for a 3D checkerboard model. The large veloc-
ity contrast of 10% and the regularity of the checkerboard pattern
cause severe reverberations that arrive late in the crosscorrelation
windows. No noise was added to the synthetic seismograms, so
the “observational” errors represent the deviation from linearity
of the crosscorrelation delays for the �2% and the �5% model.
The models resulting from the linearized inversion resulting in a
data fit with reduced χ2red ¼ 1 show an excellent correspondence
with the target models (shape and amplitude of model perturba-
tions) allowing for a complete validation of the theory.

The recovery of an out-of-plane structure with
a classical 2D cross-borehole setting is also
shown, which again shows an advantage of
using finite-frequency (volumetric) sensitivities.
Nevertheless, there is a trade-off between
the width of the kernel that senses the out-of-
plane structure and the resolution that can be
obtained because only long wavelengths reach
that far.
Finally, to illustrate the danger of using ray

theory sensitivities for the interpretation of cross-
correlation delay times, we present a case in
which the sign of the anomalies in the checker-
board is reversed in the ray-theoretical solution,
a clear demonstration of the reality of the
doughnut-hole effect. We note that, even in the
case of more complicated wave propagation in
the background model, there is a region with
minimal traveltime sensitivity along the raypath.
We conclude that the numerical experiment
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Figure 13. The solution obtained for the delays in the�5%model (all frequency bands)
in two horizontal planes (a) at z ¼ −6 m and (b) z ¼ −18 m. Borehole positions are
marked by black triangles. Note the out-of-plane resolution up to 20 m away from
the “ray” plane between the two boreholes.
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validates finite-frequency theory and disqualifies ray-theoretical in-
versions of crosscorrelation delay times.
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