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S U M M A R Y 

Seismic tomography is routinely used to image the Earth’s interior using seismic data. How- 
ever, in practice, data limitations lead to discretized inversions or the use of regularizations, 
which complicates tomographic model interpretations. In contrast, Backus–Gilbert inference 
methods make it possible to infer properties of the tr ue Ear th, providing useful insights into 

the internal structure of our planet. Two related branches of inference methods have been 

de veloped–the Subtracti ve Optimall y Localized Averages (SOLA) method and Deterministic 
Linear Inference (DLI) approaches—each with their own advantages and limitations. In this 
contribution, we show how the two branches can be combined to derive a new framework 

for inference, which we refer to as SOLA-DLI. SOLA-DLI retains the advantages of both 

branches: it enables us to interpret results through the target kernels, rather than the imperfect 
resolving kernels, while also using the resolving kernels to inform us on trade-offs between 

physical parameters. We therefore highlight the importance and benefits of a more careful 
consideration of the target kernels. This also allows us to build families of models, rather 
than just constraining properties, using these inference methods. We illustrate the advantages 
of SOLA-DLI using three case studies, assuming error-free data at present. In the first, we 
illustrate how properties such as different local averages and gradients can be obtained, includ- 
ing associated bounds on these properties and resolution information. Our second case study 

sho ws ho w resolution anal ysis and trade-of fs between physical parameters can be anal ysed 

using SOLA-DLI, even when no data values or errors are available. Using our final case study, 
we demonstrate that SOLA-DLI can be utilized to obtain bounds on the coefficients of basis 
function expansions, which leads to discretized models with specific advantages compared to 

classical least-squares solutions. Future work will focus on including data errors in the same 
framework. This publication is accompanied by a SOLA-DLI software package that allows 
the interested reader to reproduce our results and to utilize the method for their own research. 

Key words: Inverse theory; Seismology; Seismic tomography; Surface waves and free os- 
cillations.. 
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 I N T RO D U C T I O N  

eismic tomography relies on mathematical inversions (Nolet 2008 ;
awlinson et al. 2010 ) to model Earth’s interior from collected data.
esulting tomography models highlight persistent features, such as

ubducted plates, rising plumes and large scale velocity anoma-
ies, believed to mirror real Earth characteristics (Ritsema & Leki ́c
020 ). Improving these models often involves the development of
ew models with different data or methods to enhance the resolu-
ion of certain features or to reduce uncertainties. Ho wever , seismic
nversions encounter a major challenge: data scarcity. This leads to
on-uniqueness in solutions (e.g. Tarantola 1987 ), which often is
itigated using regularization. Yet, such prior information might
C © The Author(s) 2025. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
nadvertently impose unrealistic constraints or introduce artefacts
n the models (e.g. Nolet 2008 ; Zaroli et al. 2017 ). While incor-
orating such new information is not inherently wrong, it must
e accurate and well-understood to avoid misinterpretations of the
esulting seismic tomography models. 

In contrast, inference methods aim to constrain some specific
roperties of the unknown model. In geophysics, these methods
an be traced back to the seminal papers of Backus and Gilbert
Backus & Gilbert 1967a , b , 1970 ), where they attempted to ob-
ain the highest resolution local averages of a continuous unknown
odel using just the data as constraints. The methodology intro-

uced in Backus & Gilbert ( 1970 ) has since been used in various
ranches of geophysics, for example, deconvolution (Oldenburg
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1981 ), geomagnetism (Backus 1988a ), seismology (Zaroli 2016 ). 
Fur ther more, this foundational work has inspired the development 
of two branches of linear inference methods (see Fig. A1 ). 

The first branch started with three contributions from Backus 
(Backus 1970a , b , c ) where the goal was to find a specific linear 
property of the unknown model, rather than just the highest reso- 
lution local average. Backus showed that data alone cannot provide 
any information on nearly all linear properties, and introduced an 
additional prior constraint on the model space in the form of a model 
norm bound (Backus 1970a ). The use of prior model information 
(e.g. a norm bound) is what distinguishes this branch, which we 
refer to as the DLI (Deterministic Linear Inference) branch due to 
the deterministic nature of the norm bound prior information (as 
opposed to a probabilistic prior information). Backus ( 1970b ) and 
Backus ( 1970c ) further in vestigated ho w to deal with properties 
that cannot be naturally expressed on Hilbert spaces, and how to ap- 
proach situations where we have bounds on the norm of a truncated 
expansion of the model rather than the model itself. Parker ( 1977 ) 
re-derived the findings of Backus ( 1970a ) in a modified framework, 
defining a finite-dimensional ‘property–data’ space separate from 

the infinite–dimensional model space. This approach was then used 
to constrain the coefficients of a basis expansion for an unknown 
model by applying data constraints along with a model norm bound 
that differed from the one used by Backus ( 1970a ). More recently, 
Al-Attar ( 2021 ) has placed the method of Backus ( 1970a ) and Parker 
( 1977 ) in a more general mathematical framework. 

The second branch has mainly been represented by the SOLA 

method (Subtractive Optimally Localized Av erages), dev eloped by 
Pijpers & Thompson ( 1992 , 1994 ), although similar methods had 
pre viousl y been used in deconvolution theory (Oldenburg 1981 ). 
The SOLA branch was introduced into the seismic tomography 
community by Zaroli ( 2016 ) and has received increasing attention 
in the past decade (e.g. Zaroli et al. 2017 ; Lau & Romanowicz 
2021 ; Latallerie et al. 2022 ; Amiri et al. 2023 ; Restelli et al. 2024 ). 
Fundamentally, SOLA resembles the method by Backus ( 1970a ), 
with the distinction that it lacks any prior model information such 
as the model norm bound used in the DLI branch. In the absence 
of additional prior constraints, it yields only an approximate local 
average–precisely defined by a resolving kernel R. Given an un- 
known model m̄ , the Backus ( 1970a ) method finds a set of possible 
values for 

∫ 
T m̄ (the desired property), where T represents a pre- 

defined weight function, known as the target kernel. In contrast, 
SOLA provides a single value, 

∫ 
R ̄m (the approximate property), 

under error -free conditions, w here R is similar to T . Consequently, 
results obtained with approaches from the DLI branch can be inter- 
preted in terms of the target kernels, whereas results from the SOLA 

branch are interpreted through the resolving kernels (see Table A1 ). 
The primary advantage of linear inference methods ov er inv er- 

sions lies in their ability to provide detailed uncertainty and resolu- 
tion anal yses. Howe ver, this benefit comes at the cost of linearity; 
these methods are only applicable to linear problems or weakly non- 
linear ones through linearization. While Snieder ( 1991 ) extended 
the method of Backus & Gilbert ( 1970 ) to address weakly nonlinear 
problems, the SOLA and DLI branches lack such generalizations. 
Fur ther more, compared to other linear methods, linear inference 
techniques are not ideal candidates for iterative solvers, as they 
focus on extracting properties of the model rather than construct- 
ing models (though, as we will show later, it is possible to build 
discretized models as well). In nonlinear problems, typically a non- 
linear method (such as Bayesian inversion) or an iterative solver is 
used to arrive at a model that is considered relatively close to the 
true model. The employed methods must hav e conv ergent proper- 
ties, but they do not necessarily have the ability to provide resolution 
and uncertainty information. Linear inferences could then be used 
as a final step to provide comprehensive uncertainty and resolution 
analysis. 

We propose that the combination of the two methodological 
branches offers a more comprehensive base framework for geo- 
physical inferences. By framing the interpretation in terms of target 
kernels, as is implicitly done in the DLI branch, we ensure the results 
are easily and consistently interpretab le, w hich is particularly im- 
portant for specific applications, such as determining relationships 
between seismic velocities. If the interpretation is to be placed on 
the target kernels, then we argue that more care should be taken 
when designing the target kernels. Ho wever , the impact of target 
kernel selection has not been directly studied in the SOLA branch; 
simple target kernels, such as boxcar and Gaussian functions, have 
typically been chosen for their ease of use (e.g. Zaroli et al. 2017 ; 
Restelli et al. 2024 ). A more careful consideration of the target ker- 
nels not only ensures that the advantage of easier interpretability is 
not lost, but it can also lead to tighter property bounds, as we will 
demonstrate. 

Although the DLI branch of methods does not require the explicit 
use of resolving kernels, these kernels are central in the SOLA 

branch. We will demonstrate that, with a slight modification of 
the SOLA approach, the resolving kernels can also be seen as an 
implicit component of approaches in the DLI branch. Even within 
DLI methods, we can thus use these resolving kernels to obtain 
additional insights into spatial trade-offs and contamination from 

other physical parameters. In addition, if the interpretation is placed 
on the target kernels, it is possible to use inference methods to obtain 
discretized models, rather than just properties of models. 

By combining the two branches, we obtain in essence a deter- 
ministic linear inference method, similar to Al-Attar ( 2021 ), but 
with modified property bounds and a direct incorporation of re- 
solving kernels (an idea stemming from SOLA) into the analysis. 
Therefore, this combination should be regarded as a ‘SOLA-infused 
deterministic linear inference’ method, which we will refer to as 
‘SOLA-DLI’. 

In this contribution, we do not consider noise in the data. How- 
ever, this does not mean that the data are perfect. Even a noise-free 
data set is not ‘perfect’ if it lacks enough information to fully con- 
strain the model space to a single solution, that is, it is incomplete. 
As Backus & Gilbert ( 1967a ) demonstrated, an infinite-dimensional 
model space requires an infinite number of independent data to 
provide complete constraints. Both branches of linear inference 
methods discussed earlier can address data noise and incomplete- 
ness, but they take fundamentally different approaches to handling 
incompleteness. Approaches from the DLI branch integrate incom- 
pleteness errors into the property bounds, while the SOLA branch 
captures these errors in the resolving kernels. Notably, the treat- 
ment of data noise varies even within each branch (e.g. Backus 
1970a outlines two distinct approaches for handling them). 

As the two methods we aim to combine differ fundamentally in 
how they address incompleteness in the data, we focus in this work 
e xclusiv ely on errors arising from data incompleteness rather than 
data noise. As a result, the framework we present is not immediately 
ready for most real-world applications, but it forms a foundation for 
future developments where data noise will be incorporated. In the 
mean time, the theory already has potential practical applications 
even without data noise considerations. For example, in design op- 
timization prob lems, w here data have yet to be measured, it is the 
‘geometry of the data set’ that drives the optimization problem. 
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his is exactly an element that can be addressed with the theory
resented here. 

The remainder of this paper is organized as follows: Section 2
rst explores the relationship between the DLI and SOLA branches,
efore combining them into the joint SOLA-DLI framework. In ad-
ition, we discuss the use of target and resolving kernels in SOLA-
LI, specifically, showing how the choice of target kernels influ-

nces the types of properties that can be constrained and how some
ay be better constrained than others. It further develops the theo-

etical framework for cases involving multiple physical parameters,
xplaining the roles and interpretations of resolving and contami-
ant kernels within this context. Additionally, it demonstrates how
amilies of models can be derived using DLI-based inference meth-
ds. Section 3 presents three practical examples with synthetic,
oise-free data to illustrate the theoretical concepts introduced in
ection 2 . Finally, Sections 4 and 5 provide a discussion and con-
lusion, respecti vel y. Appendix A provides a general perspective on
nference methods, while appendices B , C , D provide supplemen-
ary mathematical deri v ations that of fer additional detail to support
ection 2 . 

 T H E O RY  

n this section, we will mathematically describe the link between the
wo branches of linear inferences, taking the DLI branch as start-
ng point and subsequently introducing elements from the SOLA
ranch to establish the SOLA-DLI framework. We also examine
ow the choice of target kernels influences the inference outcomes
nd discuss key considerations necessary for ensuring the correct in-
erpretation of results. Additionally, we demonstrate how resolving
ernels can be employed to analyse trade-offs between physical pa-
ameters and how the model norm bound can serve to estimate these
rade-of fs, of fering a potential alternative to the 3-D noise method
mployed so far (Masters & Gubbins 2003 ; Restelli et al. 2024 ).
inall y, we e v aluate the strengths and limitations of linear inference
ethods for deriving discretized models, highlighting why ‘models’

btained with SOLA should strictly speaking be considered proxies
o a model, rather than an actual model. 

Throughout the paper, we will adopt a modern mathematical
otation similar to Al-Attar ( 2021 ), which is applicable to both
anach and Hilbert spaces. This operator-based formalism is par-

icularly well-suited for comparing and combining the SOLA and
LI methods, as it more readily clarifies the connections between

hese approaches. 

.1 Combining the DLI and SOLA branches into 

OLA-DLI 

.1.1 Deterministic linear inferences 

et d be some error-free data, m a model and G a linear forward
perator. We can express the model-data relationship as follows: 

G ( m ) = d. (1) 

e refer to such model-data relationships as ‘deterministic data
onstraints’, assuming the data are known exactly (no data noise).
he model belongs to a model space M , while the data reside in a
ata space D. In inversions, we aim to find the model solution from
he data by inverting the forward relation (eq. 1 ). Ho wever , in most
ases, the forward relation cannot be inverted due to insufficient or
nadequate data. For continuous models, this scenario can result in
ither no solutions or infinitely many solutions (Backus & Gilbert
967b ). In the absence of data noise, no solutions occur only when
he data lie outside the range of the forward operator, making them
ncompatible with the physical laws governing the system. Typically,
n such situations, we would employ a different forward relation.
hroughout this paper, we will assume that for any data d , there
xists at least one model such that d = G ( m ) (in other words, G
s surjective), leading to an infinite set of solutions, denoted by
S (see Fig. 1 a). Inversions can then be conducted by imposing
onstraints (regularizations) on the model space M until a single
odel, ˜ m , is ‘selected’. For instance, one might choose the model
ith the smallest average gradient (the flattest model), or with the

mallest norm. Ho wever , if the implicit assumptions of the chosen
egularization are incorrect, the resulting model may not accurately
epresent reality. 

We often seek specific properties of the true model m̄ rather than
he entire model itself. These properties, for example the average
tructure over some volume within the Earth or the depths of dis-
ontinuities, belong to a distinct space known as the property space
, follo wing the w ork of Al-Attar ( 2021 ). Therefore, we can define
 different (inference) problem as: 

iven that: 

G ( ̄m ) = d (2) 

Find: 

 ( ̄m ) = p̄ (3) 

here T (the property mapping) is a linear relation that extracts a
roperty of any model, and p̄ ∈ P represents the value extracted by
 when applied to the true model m̄ . It can be shown that in most
ractical situations, the desired property p̄ can take an y v alue gi ven
 finite number of deterministic data constraints (Backus 1970a ;
l-Attar 2021 ). In other words, given the data constraints, p̄ may

ake any value from the property space P (see Fig. 1 a), leaving us
nable to definiti vel y determine the property of the true model m̄ .
ackus ( 1970a ) demonstrated that this issue can be overcome by

ntroducing a norm bound M in the model space: 

 m ‖ M 

≤ M. (4) 

his constraint on the model space differs from constraints typically
mposed during regularization because it does not aim to isolate a
ingle model. Instead, the model norm bound restricts solutions to
 bounded subset of M . If the set of models satisfying the norm
ound is denoted by U M 

(eq. 4 ), then the set of solutions respecting
oth the norm bound and the data constraint is U M 

∩ S, which is
 bounded subset (Al-Attar 2021 ). Al-Attar ( 2021 ) further showed
hat this constraint results in the true property p̄ being confined
ithin a bounded subset P ⊂ P , provided that the norm of the

rue model is less than the chosen norm bound (see Fig. 1 b for a
isual representation of these concepts). Note that the subset P is
ot a sharp bound on the values of the true property, meaning that
 ( U M 

⋂ 

S) ⊆ P (theoretically, better approximations are possible).
ithout additional prior information, all properties in P are equally

ikely to represent the true property p̄ . 
If the model space M , data space D, and property space P 

re Hilbert spaces, and the forward and property mappings G, T 
re continuous linear mappings with G being surjective, then the
olution to eq. ( 3 ) with data and model norm bound constraints
eqs 1 and 4 ) is given by (Al-Attar 2021 ): 

p̄ ∈ { p ∈ P| 〈H 

−1 ( p − ˜ p ) , p − ˜ p 
〉 ≤ M 

2 − ‖ ˜ m ‖ 2 M 

} , (5) 
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(a)

(b)

Figure 1. Schematic of general linear inference problems, illustrating the 
effect of bounding the model space (see Table A2 for symbol definitions). 
Sets with thin lines for margins represent unbounded sets, while sets with 
double line margins represent bounded sets. The true model is denoted by m̄ 

and the least norm model solution is denoted by ˜ m . (a) When no bounds are 
imposed, the property of a model that respects the data constraint may take 
an y v alue in the property space, which is an unbounded set (see Al-Attar 
2021 , Theorem 2.2). In other words, T ( S) = P = P . (b) Applying the norm 

bound on the model space leads to the intersection between S and U M 

to be 
bounded, which gets mapped under T to a bounded subset of P . We thus 
have the following relation: T ( U M 

⋂ 

S) ⊆ P ⊂ P . 
where ˜ m is the least norm solution to the data constraint (eq. 1 ), and 
˜ p = T ( ̃  m ) is the desired property of the least norm solution. This 
result implies that the true property p̄ lies within a hyperellipsoid 
defined by the inequality in eq. ( 5 ). The shape of this hyperellipsoid 
is determined by the operator H, which is given by Al-Attar ( 2021 ): 

H = T T ∗ − T G 

∗( GG 

∗) −1 G T ∗. (6) 

It can further be shown that GG 

∗ is invertible (Al-Attar 2021 ), if the 
model and data space are Hilbert spaces, and if G is a continuous 
linear and surjective mapping (we provide proof of its surjectivity 
in Appendix B ). 

2.1.2 Considerations on the model norm bound 

The true model properties lie within the property bounds only if the 
norm of the true model is smaller than or equal to the norm bound. 
Therefore, it is crucial to choose a conserv ati ve norm bound in 
order to minimize the risk of inferring incorrect information about 
the true model. Typically, we select the norm bound to be greater 
than the norm of the least norm solution (which we will simply refer 
to as the least norm from here on). 

Higher norm bounds result in larger property bounds, which in 
turn reduces the inference power. If it is not possible to justify a 
suf ficientl y small norm bound that results in meaningful property 
bounds, then a least norm regularization should not be used either. 
At first glance, the norm bound might appear to be a stringent con- 
straint that is difficult to justify physically. In contrast, least norm 

regularization, commonly used in inversion problems, simply as- 
sumes that ‘the true model should have a small norm’. Ho wever , 
such regularization essentially selects a single model, which is actu- 
ally more stringent than the inequality constraint used in inference 
methods. 

Deriving a norm bound directly from physical arguments is often 
challenging, but it is possible in specific cases. For example, when 
modelling the Earth’s magnetic field using spherical harmonic co- 
efficients, physical constraints like power dissipation can provide a 
norm bound. In seismology, point-wise upper bounds on properties 
are often more accessib le. F rom these bounds, a model norm bound 
can be derived by constructing a piecewise function m̄ ( x) ≤ b( x) , 
leading to: ∫ 

�

m̄ 

2 d� ≤
∫ 

�

b 2 d� = M 

2 . 

While this approach transforms point-wise bounds into an L 2 

norm bound, it often overestimates the bounds, resulting in overly 
large property bounds. A more precise alternative would be the 
supremum norm: 

‖ m ‖ ∞ 

= sup 
x∈ �

| m ( x) | . 

Alternati vel y, bounds based on model regularity (e.g. smoothness 
constraints) may be adopted, but they involve Sobolev spaces that 
account for deri v ati ves. Although such approaches are more rigor- 
ous, they are mathematically complex and not fully developed, as 
discussed in Al-Attar ( 2021 ). Here, we use the L 2 norm for sim- 
plicity as the exploration of alternative norms is beyond the scope 
of our work, but we acknowledge that other norms may be better 

suited. 

art/ggaf131_f1.eps
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.1.3 SOLA and resolving kernels 

e can specificize the DLI inference problem to obtain the theory
f (Backus 1970a ) by assuming the following form for the data and
roperty mapping: 

[ G ( m )] i = 〈 K i , m 〉 M 

(7) 

[ T ( m )] k = 〈 T ( k) , m 〉 M 

, (8) 

here 〈 ·, ·〉 M 

denotes the model space inner product, K i ∈ M are
ata sensitivity kernels, and T ( k) ∈ M are target kernels. Then,
qs ( 5 ) and ( 6 ) correspond to the solution of Backus ( 1970a , eq. 4 ).
e note that only the target kernels T ( k) and sensitivity kernels K i 

ppear in this formulation; resolving kernels are neither required
or used. 

Resolving kernels do play a role in SOLA-type linear inferences,
 here the prob lem described by eqs ( 2 ) and ( 3 ) is ‘solved’ without

ncorporating prior information on the model norm bound. How-
 ver, the SOLA frame work usuall y assumes an e ven more specific
orm for the data and property mapping than that shown in eqs ( 7 )
nd ( 8 ), namely: 

[ G ( m )] i = 

∫ 
�

K i m d�, (9) 

[ T ( m )] k = 

∫ 
�

T ( k) m d�, (10) 

hich corresponds to choosing the model space inner product to be

〈 f, g 〉 M 

= 

∫ 
�

f gd�. 

nd the model space to be some corresponding function space,
uch as L 

2 [ �] , where � is some spatial domain. This choice of
nner product, which is normally implicitly assumed in SOLA-type
nference problems, has implications for the norm bound and its
f fecti veness. In particular, using this inner product leads to the
ollowing norm: 

 m ‖ M 

= 

∫ 
�

f 2 d�. (11) 

he goal of SOLA is to find some real weights x ( k) 
i such that (Zaroli

019 ): 

∫ 
�

T ( k) m̄ d� ≈
∫ 

�

N d ∑ 

i 

x ( k) 
i K i m̄ d� (12) 

here N d is the number of sensitivity kernels and the dimension of
he data space D = R 

N d . The resolving kernels are then defined to
e: 

R 

( k) = 

N d ∑ 

i 

x ( k) 
i K i (13) 

he resulting SOLA solution is given by: 

rgmin 
x 

( k) 
i 

[ ∫ 
�

( T ( k) −
N d ∑ 

i 

x ( k) 
i K i ) 

2 d�

] 
(14) 

.t. 
∫ 

�

R 

( k) d� = 1 . (15) 

his constrained optimization problem will provide the weights
hat will produce unimodular resolving kernels similar to the target
er nels. Subsequently, the tr ue proper ties can be approximated by: 

 T ( ̄m )] k ≈ [ R ( ̄m )] k = 

∫ 
R 

( k) m̄ d�. (16) 

�

f we drop the unimodularity condition (eq. 15 ), then it can be
hown (Appendix C ) that the solution to the optimization problem
n eq. ( 14 ) is the same as the solution to: 

∫ 
�

T ( k) K j d� −
N d ∑ 

i 

(∫ 
�

K j K i d�

)
x ( k) 

i = 0 . (17) 

t is obvious from eqs ( 9 ) and ( 10 ) that: ∫ 
�

T ( k) K j d� = [ T G 

∗] k j , (18) ∫ 
�

K j K i d� = [ GG 

∗] j i . (19) 

f we further define X ki = x ( k) 
i , then we find: 

X = T G 

∗( GG 

∗) −1 . (20) 

herefore, X : D → P is a linear mapping that maps from the data
pace to the property space. In the absence of the unimodularity
ondition (eq. 15 ), X ( d) will be the solution in the SOLA frame-
ork, obtained here without the need for a model norm bound. It is
lso obvious that: 

 = XG = T G 

∗( GG 

∗) −1 G (21) 

his is the same operator that can be recognized within the definition
f H in eq. ( 6 ). This shows that resolving kernels are implicitly
resent in the solution of the norm-bound (DLI) branch of inference
ethods. In fact, we have the relation: 

 = ( T − R )( T − R ) ∗, (22) 

hich shows that the matrix H encodes the difference between
esolving kernels and target kernels. This difference arises due to
ata incompleteness and can only be quantified in the property space
hen norm prior bounds on the model space are incorporated. 

.1.4 The combined SOLA-DLI framework 

fter establishing the link between the DLI and SOLA branches,
ombining the two primarily involves a practical step. This step
ntails calculating both the property bounds (using eq. 5 ) and the
esolving kernels (using eq. 20 ), and interpreting the final result
sing both. 

In addition, we also introduce a small modification to eq. ( 5 ). It
an be shown that if eq. ( 5 ) holds, the following is also true (see
ppendix D3 ): 

p̄ ( k) ∈ 

[
˜ p ( k) − ε( k) , ˜ p ( k) + ε( k) 

]
, (23) 

here 

( k) = 

√ (
M 

2 − ‖ ̃  m ‖ 2 M 

)
H kk . (24) 

˜ p = T ( ̃  m ) = R ( ̄m ) . (25) 

q. ( 23 ) represents a hyperparallelepiped in P that encloses the
yperellipsoid defined by eq. ( 5 ). This provides more conserv ati ve
rror bounds. The rationale for this modification is twofold. First,
q. ( 5 ) requires the computation of the full matrix H and solving a
ystem of linear equations involving H 

−1 . In contrast, eq. ( 23 ) only
eeds the diagonal terms of H, thus decreasing the computational
ost significantl y. Secondl y, while eq. ( 5 ) incorporates information
bout the trade-offs between error bounds of different properties,
his information is often difficult to visualize and interpret in prac-
ice. Conversely, eq. ( 23 ) can be easily plotted (visual explanation as
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the discontinuities of the true model. 
to why this is the case is given in Fig. A1 ), making it more practical 
for applications. 

Historically, the DLI branch has been applied primarily to models 
involving a single physical parameter, whereas the SOLA approach 
has also been employed for cases where the data depend on multiple 
physical parameters simultaneously (e.g. Masters & Gubbins 2003 ; 
Restelli et al. 2024 ). This historical distinction may partly explain 
why resolving kernels have traditionally not been used in the DLI 
branch, as their utility becomes more significant when dealing with 
multiple physical parameters. We will further explore the increased 
significance of resolving kernels in the context of multiple physical 
parameters in Section 2.3 , where we discuss the concept of contam- 
inant kernels. Ho wever , given the importance of the target kernels, 
we first revisit these in the next section. 

2.2 Choice of tar g et kernels 

Different information about the unknown model can be extracted 
by choosing appropriate target kernels, which need to be carefully 
designed if we interpret the results through them. To illustrate this, 
we introduce a simplified setup, where we assume the model to 
be a triplet of piece-wise continuous and bounded functions m = 

( m 

1 , m 

2 , m 

3 ) defined on the interval [0,1]. This leads to a 1-D 

inference problem, ho wever , the results can be easily generalized. 
The true model is assumed to be known and is plotted in Fig. 2 . 
This model is arbitrary and has no physical significance. 

2.2.1 Local average targets 

Previous studies have primarily used the box car function as a target 
kernel for its simplicity and ease of interpretation—it gives a uni- 
form local average (Masters & Gubbins 2003 ; Restelli et al. 2024 ). 
Ho wever , many other types of target kernels could be used to obtain 
local a verages. Here, w e introduce three different averaging target 
kernels: 

Uniform Local Average (for reference): 

T ( k) 
U ( r ) : = 

{
C r ∈ V k 

0 else 
(26) 

Gaussian Local Average: 

T ( k) 
G 

( r ) : = C exp 

[ 
−
∥∥r − r k 

∥∥2 

2 

2 σ 2 

] 
r ∈ � (27) 

Bump Function Average: 

T ( k) 
B ( r ) : = 

{ 

C exp 
[ 

w 2 

2( r −r ( k) ) 2 −w 2 

] 
r ∈ V k 

0 else 
(28) 

where 

V k = 

[ 
r ( k) − w 

2 
, r ( k) + 

w 

2 

] 
(29) 

is the compact support of the boxcar and bump function with width 
w, σ is the standard deviation of the Gaussian, and C is in each case 
an appropriate normalization constant that ensures the unimodu- 
larity of each target kernel. Examples of these averaging kernels 
are plotted in Fig. 3 . Using these target kernels we can define, for 
example, the following property mappings for physical parameter 
m 

1 : 

p̄ 1 , ( k) 
U/G/B = T U/G/B ( m ) = 

∫ 1 

T 1 , ( k) 
U/G/B ( r ) m 

1 ( r )dr. (30) 

0 
The property vector extracted by each such property mapping (uni- 
form/Gaussian/bump) is a vector of local averages centred at a set 
of points { r ( k) } that we call ‘enquiry points’. In Fig. 3 , we also 
plot the property vectors p̄ 1 , ( k) 

U/G/B for 1000 e venl y spaced enquiry 
points (right column). The grey hatched regions are parts of the 
domain where the target kernels T 1 , ( k) 

U/G/B are clipped and therefore 
their associated results uninterpretable. 

Each of these target kernels has advantages and disadvantages. 
The boxcar function (Restelli et al. 2024 ) is simple and has compact 
support, providing a clear interpretation of the resolution of these 
kernels. Ho wever , most sensitivity kernels used in seismology are 
smooth, typicall y gi ving rise to poor resolving kernels that do not 
resemb le bo xcar functions. Consequently, the property error bounds 
are large. 

Gaussian targets are often better reconstructed and thus lead to 
better constrained property values. They are, ho wever , not defined 
on a compact domain and restricting a Gaussian to a compact do- 
main leads to clipping. A clipped Gaussian is no longer a Gaussian, 
and different centring of the Gaussian leads to different clipping 
and therefore a ‘non-uniform’ interpretation of the property values. 
If most of the Gaussian is located well within the bounds of the 
model domain, then the errors introduced by clipping can be negli- 
gible, but not readily quantifiable. For such target kernels we define 
a ‘width’ that contains some large and arbitrary percentage of the 
function’s weight (such as 90 per cent) and pretend as if the entire 
weight of the function is concentrated in this region. 

Bump functions are both smooth and defined on a compact sup- 
port, therefore offering some of the advantages of both boxcars 
and Gaussian targets. The one shown here is just one example of a 
family of functions with similar characteristics. 

2.2.2 Local gradient targets 

If we want to obtain some local estimate of the gradient of a 1-D 

physical parameter such as: 

p̄ l, ( k) = 

∫ 1 

0 
T l, ( k) dm 

l 

dr 
dr, (31) 

we can use integration by parts to obtain: 

p̄ l, ( k) = −
∫ 1 

0 

dT l, ( k) 

dr 
m 

l dr + 

[
T l, ( k) m 

l 
]1 

0 
. (32) 

For target kernels T l, ( k) with compact support eq. ( 32 ) will reduce 
to: 

p̄ l, ( k) = −
∫ 1 

0 

dT l, ( k) 

dr 
m 

l dr (33) 

in the interval where the target kernels are not clipped. For any other 
target kernel, the second term will not necessarily be 0. Ho wever , it 
will be very close to zero if the target kernel is centred well within 
the bounds of the domain. Therefore, we can use eq. ( 33 ) to define 
new target kernels that extract local gradients of the true model. 

In the bottom row of Fig. 3 we plot the deri v ati ve of a Gaussian, 
Bump and a Triangular function. The deri v ati ve of a Boxcar gives 
a sum of Dirac delta distributions. These cannot be used in our 
framework as they do not belong to a useful Hilbert space. Instead, 
w e ha ve opted for the deri v ati ve of a triangular function, which 
yields a Haar function. It is clear from Fig. 3 (d) that the true property 
values obtained using the different gradient target kernels pick out 
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Figure 2. An arbitrary synthetic ‘true model’. m 

j denotes the physical parameters of the model. 

 

o  

o  

u  

a  

d  

p  

t  
The idea of using different target kernels to extract different types
f information about the unknown model has been applied previ-
usl y in helioseismolo gy b y Pijpers & Thompson ( 1994 ). They
sed Gaussian target kernels for extracting average information,
nd deri v ati ves of the Gaussian to extract first and higher order
eri v ati ves of the model. Ho wever , as far as we are aware, this ap-
roach has not yet been used in seismic tomography. More impor-
antly, the work of Pijpers & Thompson ( 1994 ) regard this approach

art/ggaf131_f2.eps
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Figure 3. Examples of averaging (a) and gradient (c) target kernels and corresponding properties of model parameter m 

1 (b and d) obtained using these target 
kernels. First column: averaging and gradient target kernels with width 0.6. Second column: property values as a function of 1000 enquiry points for different 
local averages and gradients of the true model using target kernels with width 0.1. The grey hatched regions represent parts of the domain where the target 
kernels are clipped (half-width of the target kernels). The target kernels for physical parameters m 

2 , m 

3 are 0 since we are not interested in these parameters. 
as an inversion, whereas we believe it should be considered as an 
inference problem instead. While Lau & Romanowicz ( 2021 ) in- 
vestigated discontinuities inside the Earth using a SOLA approach, 
they used scalar value targets for the change across discontinuity 
and half-Gaussian target kernels to determine volumetric trade-offs. 

2.3 Resolving and contaminant kernels 

In seismology, we often analyse data that depend on multiple physi- 
cal parameters, for example, compressional wave speed ( v p ), shear 
wave speed ( v s ), and density ( ρ). In general, this dependence can 
be expressed as: 

[ G ( m )] i = 

N m ∑ 

j 

∫ 
�

K 

j 
i m 

j d�, (34) 
where N m 

represents the number of physical parameters. The prop- 
erty mapping can then be described by: 

[ T ( m )] k = 

N m ∑ 

j 

∫ 
�

T j, ( k) m 

j d�. (35) 

If we consider each physical parameter as residing in its own 
Hilbert space ( m 

j ∈ M j ), the model space can be defined as the 
direct sum of these individual spaces. Consequently, a model is 
represented as a tuple: 

m = ( m 

1 , m 

2 , . . . , m 

N m ) . (36) 

Fur ther more, a nor m bound for this composite model space can 
be derived from independent norm bounds applied to each physical 

art/ggaf131_f3.eps
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arameter. This is given by: 

 m ‖ M 

= 

N m ∑ 

j 

‖ m 

j ‖ M j . (37) 

The solution for the property bounds is then provided by eq. ( 5 ),
hile the corresponding resolving kernels are expressed as: 

R 

j, ( k) = 

N d ∑ 

i 

x ( k) 
i K 

j 
i . (38) 

It is important to note that every target kernel has an associated
esolving kernel. When we are interested in a specific property of
he l-th physical parameter, we typically set all the target kernels
ssociated with other physical parameters to zero. Ideally, their
ssociated resolving kernels would then also be zero or close to
ero. Ho wever , in practice, these resolving kernels are rarely zero.
his discrepancy increases the property bounds, making it more
ifficult to constrain the desired property. This issue ef fecti vel y
ighlights the trade-offs that exist between physical parameters,
hus providing useful information when interpreting the results.
otably, if a property of the l-th parameter strongly trades off with

he l ′ -th parameter, this will be visible in the l ′ -th resolving kernel. 
Any resolving kernel that is non-zero when it should ideally be

ero is referred to as a contaminant kernel. Lau & Romanowicz
 2021 ) used such contaminant kernels to quantify errors arising
rom trade-offs within a SOLA context. By using the model norm
ound in our SOLA-DLI approach, we ef fecti vel y and automaticall y
ccount for these trade-offs, as they are integrated into the property
ounds. 

.4 Obtaining discretized models through tar g et kernels 

ne percei v able downside of linear inferences, such as SOLA-DLI,
s the seeming impossibility of obtaining models that cover the full
patial domain (Valentine & Sambridge 2023 ). We illustrate here
ow SOLA-DLI can in fact be used to obtain discretized models by
hoosing appropriate target kernels, and discuss some advantages
ompared to simpler, classic inversions. 

Consider a model m ∈ M related to some data d ∈ D by: 

 i = [ G ( m )] i = 〈 K i , m 〉 M 

. (39) 

 common method to remov e non-uniqueness, besides re gulariza-
ion, is discretization. Typically, a set of or thonor mal basis functions
 B l } ∈ M is chosen and any model in M is projected on the sub-
pace formed by the span of this set, leading to a parallel m 

‖ and
erpendicular m 

⊥ component of the model (i.e. m 

‖ is the component
hat can be expressed with { B l } and m 

⊥ is the residual term): 

 = m 

‖ + m 

⊥ , (40) 

 

‖ = 

∑ 

l 

p l B l → projection , (41) 

 

⊥ = m − m 

‖ , (42) 

here p l are the coefficients given by the projection of m onto the
asis functions: 

p l = 〈 B l , m 〉 M 

. (43) 

e can then reformulate the initial inverse problem as: 

Find { p l } s.t. 

G 

( ∑ 

l 

p l B l 

) 

= d i − G ( ̄m 

⊥ ) . (44) 
he data correction term G ( ̄m 

⊥ ) subtracts from the original data the
omponent corresponding to the part of the true model that is not
ithin the span of the basis functions. In real applications, this term

an never be computed since we do not know the true model m̄ , nor
ow much of it is outside the span of { B l } . This term is therefore
ypically omitted and the equation solved in practice is just given
y: 

G 

( ∑ 

l 

p l B l 

) 

= d i (45) 

hich, combined with eq. ( 39 ), leads to the discretized inverse
roblem: 

 i = 

∑ 

l 

〈 K i , B l 〉 p l (46) 

n the seismic tomography literature, the matrix 〈 K i , B l 〉 is often
enoted b y G . Howe ver, we will not use that notation here since we
lready have a distinct (but related) use of the letter G . 

When the number of coefficients p l is chosen to be smaller than
he number of data, such that eq. ( 46 ) is overdetermined, it is often
olved in a least square (or regularized least square) manner to pro-
uce the coefficients { ̂  p l } . These are systematicall y dif ferent from
he true coefficients { ̄p l } , because the correction term G ( ̄m 

⊥ ) is ig-
ored. Including more data while keeping the same basis functions
 B l } will not eliminate the systematic error caused by omitting the
orrection term. In order to converge to the true solution { ̄p l } , one
as to increase both the number of data and the number of basis
unctions in the expansion. Increasing the number of basis functions
hrinks the space in which m̄ 

⊥ resides and thus decreases the size
f the correction term G ( ̄m 

⊥ ) . Some methods exist to mitigate or
liminate the systematic error introduced by ignoring the data cor-
ection. Trampert & Snieder ( 1996 ), for example, refer to the effect
f the uncorrected data as leakage, and offer a method of suppress-
ng it based on soft priors. A different method of overcoming this
ssue is using quadratic bounds on the model space (Backus 1988a ),
hich we will discuss in the SOLA-DLI framework. 
The inverse problem discussed above (eq. 46 ) can be turned into

n inference problem by defining the property mapping as: 

 T ( m )] l = 〈 B l , m 〉 M 

= p l . (47) 

y also providing a model norm bound, the basis coefficients can
e solved for using eq. ( 5 ). 

As the number of data increases, the bounds on the coefficients
ecrease (assuming error-free data), and the mid value of these
ounds approaches the true property. This contrasts with the be-
aviour of a simple least-norm solution that–without the addition
f more basis functions–will converge towards a systematically in-
orrect answer. Therefore, framing the problem as an inference
roblem, and using norm bounds, we can avoid the ‘leakage prob-
em’. This is basically the same idea as that of Backus ( 1988a ) since
 norm bound is just a specific case of a quadratic prior. 

This approach and other similar ones have pre viousl y been ex-
lored b y se v eral authors (e.g. P arker 1977 ; Al-Attar 2021 ), es-
ecially in the context of geomagnetic modelling problems (e.g.
ackus 1988a , 1989 ). Ho wever , these studies used mostly spherical
armonics expansions of the model. In the spirit of Section 2.2 , we
ote that the choice of target kernels (implicitly the basis function
xpansion in this case) has an impact on the size of the property
ounds (here the expansion coefficients), which mirrors the idea
hat not all basis function expansions are created equal, some of
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them being naturally better constrained by the data geometry than 
others. 

Once the property bounds have been found, they can be sampled 
and mapped back to the model space using the adjoint of the prop- 
erty mapping, thereby producing actual models. Since this method 
generates a family of models rather than a single model, it is unclear 
which particular model should be selected if one intends to run an 
iterativ e inv ersion based on this method. 

3  A P P L I C AT I O N S  

We use three case studies to showcase the advantages and capabili- 
ties of the SOLA-DLI method introduced in the previous Section. In 
Case 1 (Subsection 3.1 ), we show the effect of the prior model norm 

bound and choice of target kernels on the solution, illustrating how 

different types of properties can be constrained. In Case 2 (Sub- 
section 3.2 ), we illustrate SOLA-DLI can be utilized to perform a 
simple resolution and trade-off analysis, even without data errors. 
Finally, in Case 3 (Subsection 3.3 ), we demonstrate how discretized 
model solutions can be obtained using SOLA-DLI, comparing the 
results with a least-squares inversion solution. 

3.1 Case 1: effect of different tar g et kernels 

In this completely synthetic case study, we show how the choice 
of target kernels influences the inference results. We also illustrate 
how the prior information and the desired resolution change the 
local property estimates. 

3.1.1 Setup 

We consider a 1-D model space containing three physical parame- 
ters m 

1 , m 

2 , m 

3 , all of which are piece-wise continuous functions 
defined on the interval [0,1]. The synthetic true model (Fig. 4 ) is 
generated quasi-randomly and has no physical meaning. 

The model-data relationship for d i with i ∈ { 1 , 2 , .., N } is given 
by: 

d i = [ G ( m 

1 , m 

2 , m 

3 )] i = 

∫ 1 

0 
K 

1 
i ( r ) m 

1 ( r )dr 

+ 

∫ 1 

0 
K 

2 
i ( r ) m 

2 ( r ) dr + 

∫ 1 

0 
K 

3 
i ( r ) m 

3 ( r )dr. (48) 

For each physical parameter, the sensitivity kernels are produced 
quasi-randomly using the equation: 

K 

j 
i ( r ) = 

1 

σ
√ 

2 π
exp 

(
− ( r − μi, j ) 2 

2 σ 2 

)
sin ( ωr ) 

∑ 

q 

c q ( r − r q ) 
2 (49) 

where μi, j , c q , r q , ω are randomly generated (see Fig. 5 ). We choose 
to use N = 150 (e.g. 150 observations) with the sensitivity kernels 
computed for each physical parameter. To simulate the lack of data 
sensitivity to a particular region (e.g. no S -wave sensitivity in the 
Earth’s outer core), we manually set the sensitivity kernels for m 

2 

to zero in the interval [0 . 5 , 0 . 75] . The synthetic (error-free) data are 
then produced using eq. ( 48 ) combined with the synthetic sensitivity 
kernels and the synthetic true model. As target kernels we use those 
defined in eqs ( 26 ), ( 27 ) and ( 28 ) choosing a width of 0.2. 

The least norm solution to this problem (eq. 48 ) is gi ven b y the 
Moore–P enrose right-in verse: 

˜ m = G 

∗( GG 

∗) −1 d (50) 
and shown in Fig. 6 . This is a regularized inverse solution obtained 
by selecting the solution with the least norm from the set of all 
possible solutions. We note that in this case the least norm solu- 
tion approximates the true model reasonably well, except in the 
regions with no sensitivity (where the solution is set equal to zero), 
indicating that the true model norm is very close to the least norm. 

To solve the SOLA-DLI inference problem, upper bound func- 
tions b i are chosen arbitrarily (Fig. 4 ) such that: ∣∣m 

j ( r ) 
∣∣ ≤ b j ( r ) ∀ r ∈ [0 , 1] , (51) 

which leads to the following upper bound on the model norm: 

∥∥m 

j 
∥∥
M 

j = 

√ ∫ 1 

0 
( m 

j ) 2 dr ≤
√ ∫ 1 

0 
( b j ) 2 dr = M 

j , (52) 

‖ m ‖ M 

≤ M = M 

1 + M 

2 + M 

3 . (53) 

In real applications, the upper bound functions b j should be cho- 
sen carefully based on physical arguments, for example using con- 
straints from mineral physics, as discussed already in Section 2.1.2 . 

3.1.2 Local averages and gradients 

As introduced in Section 2.2 , we consider three types of local av- 
erages (uniform local a verages, Gaussian a verages and bump av- 
erages) and three types of locally averaged gradients (triangular 
averaged gradients, bump averaged gradients and Gaussian aver- 
aged gradients). In this case study, we are specifically interested in 
obtaining these properties for parameter m 

2 given its region of no 
sensiti vity. We e v aluate the properties at 100 equall y spaced inquiry 
points in the spatial domain, with the results plotted in Figs 7 and 8 . 

For each type of property, at each of the 100 enquiry points, the 
solution (eq. 23 ) provides both an upper and a lower bound. Fig. 7 
shows that the uniform local average is the least constrained prop- 
erty, while the Gaussian average is the best constrained. This result 
is not surprising, given that the sensitivity kernels are Gaussians 
modulated by polynomial and sinusoidal functions. If the sensitiv- 
ity kernels were more similar to boxcar functions, we should expect 
the uniform local averages to be better constrained. 

Regions with no sensitivity are poorly constrained, as here the 
only constraint comes from the model norm bound. While it is un- 
surprising that some properties are better constrained than others, 
it is particularly notable that the property bounds for the local av- 
erages are so large that they provide little information about the 
tr ue proper ty v alues, e v en in re gions with data sensitivity. Con- 
v ersely, the Gaussian av erages yield such tight bounds that we can 
be highly confident in the actual property values, assuming that the 
prior information is correct. These distinct differences in the ability 
to constrain the property are significant, as we are often interested 
in extracting meaningful information about the true model, rather 
than obtaining a specific type of average. Thus, it is important to 
recognize that the choice of averaging type can significantly impact 
how much information is obtained. 

When we aim to obtain locally averaged gradients as properties, 
smoother target kernels again lead to significantly better property 
bounds (Fig. 8 ), similar as noted for local averages. Notice ho wever , 
that while the resolving kernels look similar, the property bounds 
of the gradients are typically larger than for the averages (compare 
Figs 7 and 8 ). 

In the absence of unimodularity conditions, the SOLA solution 
(‘approximate property’) is obtained by mapping the true model 
through the approximate mapping R . Because the true model is 
close to the least norm model, a comparison between the true and 
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(a)

(b)

(c)

Figure 4. Case 1: True model and model norm bounds. Panels (a)–(c) show the synthetic quasi-randomly generated true model (comprised of three physical 
parameters) and some arbitrary piece-wise upper bound functions ( b i ) used for computing the norm bound. In each panel, we present both the physical 
parameter (black), and the absolute value of the physical parameter (blue). 

a  o  
pproximate property values will give the false impression that it

p  
utperforms the DLI method. Ho wever , we must remember that ap-
roximate property values do not provide us the desired information
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(a)

(b)

(c)

Figure 5. Case 1: Sensitivity kernels. Panels (a)–(c) show the synthetic quasi-randomly generated sensitivity kernels for physical parameters m 

1 , m 

2 , m 

3 . The 
region with no sensitivity to m 

2 is shaded in grey. 
about the true property values. In addition, the approximate property 
values must be interpreted through the resolving kernels, which can 
be rather different from the target kernels, and also vary in shape 
from one enquiry point to another. Fur ther more, we believe that the 
SOLA method also benefits from better designed target kernels, as 

art/ggaf131_f5.eps
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Figure 6. Case 1: least norm solution for ( m 

1 , m 

2 , m 

3 ) obtained using eq. ( 48 ). 

t  

o
3
hey can lead to better resolving kernels and an easier interpretation

f the results. 

W  

e  

F  
.1.3 Effect of the prior model norm bound 

hen we change the norm bound prior information, only the prop-
rty error bounds are affected (see eq. 24 ). This is illustrated in
 ig. 9 , w here we show results for three different upper bounds

art/ggaf131_f6.eps
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Figure 7. Case 1: SOLA-DLI solutions for three different types of local average properties. First column: solution bounds for three types of local averages of 
physical parameter m 

2 e v aluated at 100 e venl y spaced enquiry points. Second column: target and resolving kernels for each type of property at the enquiry 
point located at r k = 0 . 3 with width 0.2. The approximate property represents the SOLA solution in the absence of the unimodularity condition, which is 
mathematically just the true model mapped through the approximate mapping R . 
on the true model. Bound 3 is the most conserv ati ve, assuming a 
constant function three times larger than the maximum of the true 
physical parameter. Bounds 1 and 2 are tighter and therefore assume 
more prior knowledge. The bottom panel of the same figure illus- 
trates that, as expected, tighter nor m bounds lead to tighter proper ty 
bounds. In all cases, the range remains centred on the approximate 
property. It is interesting to note that restricting the bounding func- 
tion b j in some local region does not lead to a tighter property 
bounds at an enquiry point in the same region, but rather it will lead 
to a uniform decrease of the property bounds at all enquiry points. 

3.1.4 Effect of target kernel width 

Changing the width of the target kernels can be interpreted as chang- 
ing the resolution of the property e v aluated at a given enquiry point. 
To investigate this, we have varied the target width between 1 and 
100 per cent of the domain width and computed the relative error 
bounds for all the enquiry points and widths. The results are plotted 
in Fig. 10 . The relative error bound shown in the first column is 
defined as: 

e ( k) = 

ε( k) 

max ( ̃  p ) − min ( ̃  p ) 
(54) 

where ˜ p is the property of the least norm model solution ˜ m . This 
metric has been chosen as the absolute error ε is not a good metric 
for determining whether a property is well constrained, while the 
classic relative error defined as ε/ ̄p cannot be computed without 
knowing the true property p̄ . While there is no quantitative rule for 
what constitutes an unacceptable high relative property error bound, 
we belie ve an y relati ve error higher than 100 per cent is ‘certainly 
too high’, and relative errors less than 10 per cent are ‘generally 
good’. 

In general, we find that for all target kernel types the relative error 
bounds increase when we decrease the width of the target kernel 
(i.e. increase resolution). In addition, regions with no sensitivity 
al wa ys lead to large relative errors. As expected, the width of the 
uninterpretable regions at the edge of the domain increases with 
lar ger tar get kernel width (decreasing resolution) as the half-width 
of the kernel increases. Finally, in this setup, we find that particular 
properties, e.g. Gaussian averages, are constrained better (i.e. lower 
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Figure 8. Case 1: SOLA-DLI solutions for three different types of local averaged gradient properties, similar to Fig. 7 . 
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elative error bounds) than uniform or bump local averages, for all
nquiry points and for target kernel widths (i.e. all resolutions),
ikely due to the fact that Gaussian-like sensitivity kernels were
sed. 

This case study illustrates the general notion that we typically use
nference methods to answer specific questions about a true model
ather than finding the entire model itself. In SOLA-DLI, these
uestions are encoded in our chosen target kernels, which should
e carefully designed to improve the property bounds and facilitate
traightforward interpretations. The differing extent to which we
re able to retrieve different target kernels effectively shows that
ur data can answer some questions better than others. 

.2 Case 2: quasi synthetic normal mode application 

n this quasi-synthetic case study, we illustrate how to use SOLA-
LI to conduct a simple resolution analysis without real data or
odel values nor any prior information, based solely on the sen-

itivity kernels of the data set. We also illustrate how the results
f such a resolution analysis can be linked to trade-offs between
hysical parameters. 
.2.1 Setup 

e consider a model formed by the triplet m =
 δ ln ( v s ) , δ ln 

(
v p 
)
, δ ln ( ρ) ) , where v s is shear-wave speed, v p 

s compressional-wave speed, and ρ is density (Fig. 11 ). Each
hysical parameter is assumed to be a piece-wise continuous
unction defined over the interval [0 , R E ] where R E is Earth’s
adius (approximately 6371 km). We aim to constrain Gaussian
verages and gradients of this synthetic true model using realistic
ormal mode sensitivity kernels (Woodhouse & Dahlen 1978 ).
pecifically, we select the same modes as in the SP12RTS data set
Koelemeijer et al. 2016 ; Restelli et al. 2024 ), that is, 143 modes
ith their sensitivity to δ ln ( v s ) , δ ln 

(
v p 
)

and δ ln ( ρ) concentrated
ostly in the mantle (see Fig. 12 ). 

.2.2 Resolution analysis 

efore introducing any data or model values, we are able to perform
 simple resolution analysis to investigate where and on what spatial
cale our data contain information regarding the Earth model. While
he SOLA-DLI solution itself depends on the model norm bound via
M (see eq. 24 ), indirectly on the data via ‖ ˜ m ‖ M 

(see eq. 25 ), and on
he relationships between the target kernels and sensitivity kernels
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(a)

(b)

(c)

(d)

Figure 9. Case 1: effect of prior norm bound on the property bounds. Panels 
(a)–(c) indicate the levels of three different upper bounds on all three model 
parameters of the true model. Our choice of norm bound functions results in 
the following prior norm bounds ( M 

i ): 2.44 (Bound 1), 3.89 (Bound 2) and 
4.34 (Bound 3), which are all larger than the true model norm of 0.32. (d) 
Solutions corresponding to the three different model upper bounds, using 
a bump average for m 

2 as example. Tighter norm bounds lead to tighter 
constraints on the desired properties. 
via H (see eqs D14 –D23 ), the resolving kernels only depend on the 
data geometry, that is, the data sensitivity kernels. 

The diagonal elements of the matrix H can be shown to equal: 

H kk = 

N m ∑ 

j 

∥∥T j, ( k) − A 

j, ( k) 
∥∥2 

M j 
(55) 

which essentially quantifies the cumulative difference between our 
target and resolving kernels. Using H we can also define the resolv- 
ing misfit as a more useful metric: 

R k = 

√ 

H kk ∑ N m 
j 

∥∥T j, ( k) 
∥∥
M j 

= 

√ ∑ N m 
j 

∥∥T j, ( k) − A 

j, ( k) 
∥∥2 

M j ∑ N m 
j 

∥∥T j, ( k) 
∥∥
M j 

(56) 

which is a generalization of the ‘resolution misfit’ defined in Restelli 
et al. ( 2024 ). The resolving misfit is 0 when all the resolving kernels 
associated with some property e v aluated at r ( k) are equal to the 
corresponding target kernels. This would mean that our data contain 
exact information about the desired property and the property error 
bounds are 0. On the other hand, the resolving misfit is equal to 
1 when our resolving kernels are zero, which would correspond to 
a complete lack of sensitivity of our data to the desired property. 
It is important to note that the computation of the resolving misfit 
does not use the data vector d nor any prior model information, 
it only uses the ‘geometry of the data set’ (Latallerie et al. 2024 ). 
Fig. 13 illustrates the information that is provided by the resolving 
misfit (left column). As indicated by a low resolving misfit (darker 
shades of blue), our data mostly contain information in the mantle, 
as expected from this selection of sensitivity kernels. The resolving 
misfit is also typically low for wide target kernels ( > 18 per cent 
domain width, or more than 1000 km). Wide g radient ker nels can 
be better recovered in the mantle, while wide averaging kernels can 
be better recovered in the lower outer core, again indicating that our 
choice of target (i.e. property) is important. 

3.2.3 Trade-offs between physical parameters 

When our data are sensitive to two or more physical parameters, it 
may become difficult or impossible to obtain properties of a single 
parameter in isolation from the others. These trade-offs between 
physical parameters pose problems for interpretations, particularly 
in regions such as the lower mantle where the sensitivity of normal 
modes to seismic velocities and density is similar. 

Our setup with SOLA-DLI, where we explicitly set the target 
kernels for parameters not of interest to zero, enables us to easily 
visualize and consider model parameter trade-offs. Suppose we are 
interested in some local property of δ ln ( ρ) , for example the Gaus- 
sian local average density in the deep mantle or the density jump 
across the 660 discontinuity as characterized by a Gaussian gradient 
(Lau & Romanowicz 2021 ). If we choose low resolution (wide) tar- 
get kernels (middle column), we find that the resolving kernels for 
δ ln ( ρ) match the target kernels well (Fig. 13 ). Furthermore, the re- 
solving kernels for δ ln ( v s ) and δ ln 

(
v p 
)

also match their respective 
target kernels, which are just zero. Such zero or near zero resolving 
kernels indicate that the trade-off between the physical parameter 
of interest and the other physical parameters is small. Ho wever , if 
we choose higher resolution (thin) target kernels (right column), 
we notice that the resolving kernels are struggling to match their 
respective target kernels. The resolving kernels for δ ln 

(
v p 
)

and par- 
ticularly δ ln ( v s ) are far from zero, indicating significant trade-offs 
with the desired property of density, which are regarded as contam- 
inants . Such trade-offs between physical parameters are naturally 
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Figure 10. Case 1: relative error bounds with examples of resolving kernels compared to their target kernels. The different rows correspond to different types 
of target kernels, for example, uniform local a verage (top), bump a verage (middle) and Gaussian a verage (bottom). In the three columns, we show (a) the 
relative error bounds e; (b) examples for wide target and resolving kernels, corresponding to the red squares in panels (a) and (c) examples for narrow target 
and resolving kernels, corresponding to the black squares in (a). 

t  

b  

t  

w  

i  

‘

3
S

T  

i  

a  

t

3

H  

d  

M

d

w  

e
 

e

a  

b

m

T  

v

d

aken into account by SOLA-DLI and typically result in higher error
ounds on the property. If instead we would account for the sensi-
ivity to δ ln 

(
v p 
)

and δ ln ( v s ) by scaling the sensitivity kernels, we
ould obtain tighter bounds, at the expense of assuming more prior

nformation, similar to the results of Restelli et al. ( 2024 ) using the
3-D noise’ approach in their SOLA inversions. 

.3 Case 3: discretized inversions using continuous 
OLA-DLI 

his final case study serves to illustrate how we can obtain a fam-
ly of discretized model solutions using SOLA-DLI, and how this
pproach compares to a typical least-squares inversion model solu-
ion. 

.3.1 Setup 

ere, we consider a model m with only one physical parameter,
enoted also m (see the true model in Fig. 14 a). Our model space
 is P Cb[0 , 1] and the data are given by: 

 i = 〈 K i , m 〉 M 

, (57) 

here K i are some quasi-randomly functions, generated again using
q. ( 49 ) (see Fig. 14 b). 

In this setup, we choose to discretize the model using a Fourier
xpansion. The resulting basis functions are (see Fig. 14 c): 

B l ( r ) = 

⎧ ⎨ 

⎩ 

1 , l = 0 √ 

2 sin 
(
2 π l+ 1 

2 r 
)
, l odd √ 

2 cos 
(
2 π l 

2 r 
)
, l even 

(58) 

nd a possible model expansion with Fourier coefficients p l is given
y: 

 ( r ) ≈
∑ 

l 

p l B l ( r ) . (59) 

he discretized model–data relation used for the least-squares in-
ersion is: 

 i = 

∑ 

l 

〈 K i , B l 〉 M 

p l = 

∑ 

l 

	 

∗
il p l , (60) 
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Figure 11. Case 2: arbitrary quasi-random synthetic true model and the upper bound functions used to compute the prior upper bound norm. 
where (see also Appendix D2 ): 

	 

∗
i j = 〈 K i , B l 〉 M 

. (61) 
This leads to the following least-squares solution for p l : 

ˆ p = ( 	 	 

∗) −1 	 d. (62) 
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Figure 12. Case 2: normal mode sensitivity kernels for (a) δ ln ( v s ) , (b) δ ln 
(
v p 
)

and (c) δ ln ( ρ) , obtained using a modified version of OBANI based on the 
work of Woodhouse & Dahlen ( 1978 ). The shaded region indicates the depth range of the outer core, where the sensitivity to v s is zero. 
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Figure 13. Case 2: resolution analysis for a Gaussian average (top) and gradient (bottom) target for δ ln ( rho ) using realistic mode sensitivity kernels. The 
resolving misfit (left) and kernels (middle and right) can be computed without the need for data or any prior norm bound information. The middle and 
right panels illustrate the target and resolving kernels for a wide and thin target, including the contaminant kernels that indicate trade-offs between physical 
parameters. 
Using the least-squares solution { ̂  p l } , we can thus find the corre- 
sponding model solution by using the Fourier expansion: 

ˆ m = 

∑ 

l 

ˆ p l B l . (63) 

To obtain the SOLA-DLI solution, we consider the Fourier co- 
efficients p l to be elements of a property vector obtained from the 
property mapping: 

p l = [ T ( m )] l = 〈 B l , m 〉 M 

. (64) 

We also introduce a prior model norm bound (see Fig. 14 a). This 
leads to the following SOLA-DLI problem: 

Given 

d i = 〈 K i , m 〉 M 

(65) 

Find 

p l = 〈 B l , m 〉 M 

. (66) 

This problem is readily solved using eq. ( 23 ) to obtain upper and 
lower bounds for the possible values of the Fourier coefficients: 

p̄ l ∈ [ ̃  p l − εl , ˜ p l + εl ] . (67) 

In this case ˜ p l are the Fourier coefficients of the least norm solution 
to eq. ( 57 ), which are not to be confused with the single least- 
squares solution ˆ p l . In contrast, the property bounds obtained from 

SOLA-DLI (eq. 67 ) offer a family of solutions that can be sampled. 

3.3.2 Discr etized least-squar es versus SOLA-DLI solution 

We compute both the least-squares and discretized SOLA-DLI so- 
lution using different number of data points (50, 70 or 100), solving 
for 29 Fourier coef ficients. SOLA-DLI initiall y provides property 
bounds on the Fourier coefficients, and we therefore have to draw 

samples from these distribution for each Fourier coefficient distri- 
bution to obtain a possible model solution, illustrated in Fig. 15 . 

When using few data (Fig. 15 , the least-squares inversion gener- 
ally struggles to retrieve Fourier coefficients close to the true ones, 
while the bounds of the SOLA-DLI solution al wa ys encompass 
the true coefficients (true properties). That said, for certain Fourier 
coefficients and in certain parts of the model, the least-squares solu- 
tion does appear to approach the true property (Fourier coefficients) 
and the true model better than the SOLA-DLI solution. Increasing 
the number of data to 70 leads to a better least-squares solution, 
especially for the first 10 Fourier coefficients, and tighter bounds 
of the SOLA-DLI solution. Ho wever , it no w becomes clear that 
the SOLA-DLI bounds offer more accurate information, al wa ys en- 
compassing the true Fourier coefficients and better resembling the 
true model compared to the least-squares solution. When we fur- 
ther increase the number of data points to 100 (see Figs 15 c and f), 
we note that the SOLA-DLI solution converges closely to the true 
Fourier coefficients and model, while the least-squares inversion 
systematicall y de viates. 

In our synthetic setup, it is possible to explicitly compute the data 
correction term, which captures the components of the true model 
that are not within the span of the basis functions (see Section 2.4 , 
eq. 44 ). When we correct the data, using our knowledge of the true 
model, we find that the least-squares inversion solution converges 
to the true Fourier coef ficients, e ven for few data (Fig. 16 ). This 
demonstrates the equi v alence of the discretized least-squares and 
SOLA-DLI solutions. Ho wever , in real w orld applications, when the 
true model is unknown, this data correction term cannot be com- 
puted. Consequently, the SOLA-DLI solution should be preferred 
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Figure 14. Case 3: Model setup and kernels. (a) True model m with the upper bound function used to compute the prior model norm bound. (b) Synthetic 
quasi-random sensitivity kernels. (c) Examples of four Fourier basis functions. 

o  

b  

b  

w

ver the discretized least-squares inversion method. As mentioned
efore, there are other methods (e.g. Trampert & Snieder 1996 ) for
ypassing or approximating the effect of the data correction term,
hich should also be preferred over a simple least norm inversion. 
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Figure 15. Case 3: comparison between least-squares and SOLA-DLI solution for a model discretized using Fourier basis functions. (a–c) Fourier coefficients 
from discretized least-squares inversion and bounds of the SOLA-DLI solution using (a) 50 data points, (b) 70 data points and (c) 100 data points. (d–f) 
Discretized model solution from discretized least-squares and two samples from the SOLA-DLI property bounds using (d) 50 data points, (e) 70 data points 
and (f) 100 data points. 

Figure 16. Case 3: comparison between Fourier coefficients obtained using SOLA-DLI and the discretized least-squares method with an additional data 
correction term, using (a) 50 data points, (b) 70 data points and (c) 100 data points. A comparison with the least-squares solutions in Fig. 15 indicates that the 
data correction leads to the systematic error in the Fourier coefficients. 
4  D I S C U S S I O N  

In this contribution, we have introduced the SOLA-DLI framework, 
which combines the advantages of both DLI and SOLA branches 
of inferences. At present, we have focused on error-free data, as the 
fundamental distinction between the two branches lies in their treat- 
ment of uncertainties arising from incomplete data, not from how 

data noise is incorporated. Ho wever , for any real-w orld application, 
it is essential to address data noise. Al-Attar ( 2021 ), Parker ( 1977 ) 
and Backus ( 1970a ) have each proposed methods for incorporating 
noise into DLI-based approaches. Since the SOLA-DLI framework 
integrates both methodologies, we can draw upon these existing 
approaches and adapt them as necessary to introduce data noise 
into the framework. There are numerous ways to achieve this, but it 
is not yet clear which approach would best balance computational 
efficiency with the need to produce property bounds that are not 
e xcessiv ely large. Depending on the chosen approach, the matrix X
may be affected by noise, which would alter the final form of the 
resolving kernels. Ho wever , this does not render them unusable or 
uncomputable, and crucially, it does not alter their interpretation. 
We believe that the selection of target kernels also remains impor- 
tant, but in the presence of data noise, a particular set of target 
kernels A may perform better than another set B, whereas in the ab- 
sence of noise, set B might outperform set A . This variability does 
not undermine the points that we make in the present contribution, 
which is that some target kernels are more ef fecti ve than others. A 

potential direction for future research could be target optimization, 
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here, given a set of data, the goal is to identify those target kernels
hat produce the most ef fecti ve constraints from a family of, for ex-
mple, a veraging w eight functions. We anticipate that the methods
ehind such an optimization algorithm would need to account for
ata noise. 

We expect that the careful treatment of target kernels will become
ore involved when going to 2-D or 3-D cases (e.g. Zaroli 2016 ;
atallerie et al. 2022 ; Freissler et al. 2024 ). Ho wever , it also opens
p more possibilities. In higher dimensions, we can design target
ernels sensitive to directional gradients or local curvature using
ernels that represent smoothed Laplacian operators. Such target
ernels would for example amplify the presence of a gap between
wo peaks rather than smoothing the peaks into one, which could
e useful for studying plumes (similar to the idea of point-spread
unctions of Fichtner & Trampert 2011 ). Another possible extension
f our work would be to replace the deterministic prior information
ith probabilistic information by placing a prior measure on the
odel space, which can be updated using noisy data measurements

nd propagated into the property space. Backus ( 1970a ) already
entioned such a modification and Al-Attar ( 2021 ) added to this

iscussion. Such a modification would lead to yet another possible
echanism for dealing with data noise. 
The introduction of prior model information via the model norm

ound is of g reat impor tance in the SOLA-DLI method. The model
orm bound ( L 2 norm) chosen here is the most common due to its
athematical simplicity, but as pointed out by Al-Attar ( 2021 ) and

iscussed in Section 2.1.2 , there might be better prior constraints.
ther model norms may allow to place bounds on the maximum
oint-value of the true model, or its gradients (smoothness) (Stark
 Hengartner 1993 ). Such modifications may necessitate the use

f more general spaces than Hilbert spaces, which adds significant
heoretical complications. We refer the interested reader to Al-Attar
 2021 ) for the required theoretical modifications. 

The computational cost of the methods presented arises from
ultiple sources. Computing the matrices 
 ( N d × N d ) and 	

 N p × N d ) requires at most N m 

( N 

2 
d / 2 + N p N d ) integrations for N m 

odel parameters, with the cost depending on the sensitivity and
arget kernels used. Sensitivity kernels, especially in the case of
nite-frequency adjoint methods, can be expensive to compute. If
ensitivity kernels already exist, the integration cost for SOL-DLI
epends only on the number of kernels and the integration scheme.
ince 
 

−1 is rarely computed explicitly, applying it involves solving
N p + 1 linear systems, similar to the cost of obtaining a SOLA or

LI solution without data noise (Al-Attar 2021 ), and much lower
han the classic Backus–Gilbert method (Backus & Gilbert 1970 ;
ijpers & Thompson 1992 ). For SOLA-DLI, these N p + 1 solves
ield the final solution, while normal DLI requires additional com-
utations involving H 

−1 to assess the hyperellipsoid constraints.
hen accounting for data noise, the cost depends on the method

sed to incorporate it, which will likely be adapted from existing
OLA or DLI approaches. Thus, the total cost of SOLA-DLI is
xpected to be comparable to DLI or SOLA, making it computa-
ionall y attracti ve for inference problems. 

 C O N C LU S I O N  

n this contribution, we have presented the theory and possible appli-
ations of the SOLA-DLI framework, which combines the Backus–
ilbert based SOLA method with DLI. To derive this framework,
 e ha ve first demonstrate the links betw een these two branches of

nference methods, before showing how the combined framework
s capable of providing a more comprehensive analysis. We have
articularly emphasized the distinction between interpreting results
hrough target kernels versus resolving kernels. As a result, tar-
et kernel design is significantly more important in SOLA-DLI. In
ddition, the framework is capable of incorporating multiple phys-
cal parameters, with trade-offs captured by contaminant kernels.
ur ther more, w e ha ve demonstrated how discretized models can
e obtained using these linear inference methods, highlighting the
dv antages and disadv antages associated with dif ferent approaches.
ll of these theoretical aspects are practically demonstrated through

hree synthetic, noise-free case studies, with software provided to
nable the reader to explore these further themselves. 
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A P P E N D I X  A :  OV E RV I E W  O F  

I N F E R E N C E  M E T H O D S  

In this apppendix, we present an informal overview of inference 
methods in the absence of data noise. We consider the most general 
form of an inference problem to be (see also Fig. 1 b): 

Given: 

G ( ̄m ) = d 

Find: 

T ( ̄m ) = p̄ 

where 

G : M → D 

T : M → P

The true model m̄ is unknown, and we only have data constraints 
at our disposal to find some properties p̄ of that true model. In 
general, there are six choices we have to make before attempting to 
solve this problem: we must decide what G, T , M , D, P are, and 
whether we want to introduce prior information or not, which we 
will discuss below. 

A1 Choice of D, P, M and T 

For most applications, we are only able to measure a finite number of 
data and we are typically interested in a finite number of properties. 
In addition, the data and properties are usually real. Therefore, in 
most cases there is only one option for the data space D and property 
space P: they are R 

N d and R 

N p where N d , N p are the number of 
data, and the number of properties, respecti vel y. 

The model space M is most often a function space or a finite 
dimensional real vector space. On a more fundamental level, we 
are interested in whether the space is simply a Banach space or if 
it possesses an inner product structure, making it a Hilbert space. 
Some authors have proposed solutions to inference problems in 
Banach spaces (e.g. Stark 2008 ; Al-Attar 2021 ), while most others 
have focused on the more structured Hilbert space (e.g. Backus & 

Gilbert 1967b ; Backus 1970a ; Pijpers & Thompson 1994 ; Zaroli 
2016 ; Al-Attar 2021 ), as this simplifies the mathematics. 

The property mapping T is typically chosen to be a linear func- 
tional, as most inference problems focus on point e v aluation, basis 
coefficients, or local averages, all of which are linear functionals. 
In this paper, we argue that a more careful consideration of these 
functionals can lead to improved results in inference prob lems, par - 
ticularly in the context of SOLA/DLI-type inference problems (as 
discussed in Section 2.2 ). 
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Table A1. Comparison of different Backus–Gilbert based inference methods with noise-free data. Note that the original papers use A instead of R for resolving 
(or averaging) kernels, but we prefer the general R as we consider a range of targets. 

Original Backus–Gilbert 
(BG) SOLA 

Deterministic linear 
inferences (DLI) SOLA-DLI 

Solution p̄ ≈ ∫ 
�

R ̄m d� where 
R = 

∑ 

i x i K i and x i 
minimize 

∫ 
�

J 2 R 

2 d� s.t. ∫ 
�

Rd� = 1 

p̄ ≈ ∫ 
�

R ̄m d� where 
R = 

∑ 

i x i K i and x i 
minimize 

∫ 
�

( R − T ) 2 d�

s.t. 
∫ 
�

Rd� = 1 

〈
H 

−1 ( p − ˜ p ) , p − ˜ p 
〉 ≤

M 

2 − ‖ ˜ m ‖ 2 M 

p̄ ∈ ˜ p + [ −ε, + ε] where 
ε = √ 

( M 

2 − ‖ ˜ m ‖ 2 M 

) diag( H) 

Prior information None None ‖ m̄ ‖ ≤ M ‖ m̄ ‖ ≤ M

Interpretation of results Resolving kernel Resolving kernel Target kernel Target kernel ( + Resolving 
kernels) 

Contaminant kernels 
used? 

No Yes No Yes 

Can produce 
model/model Proxy 

Model proxy Model proxy Model Model 

References Backus & Gilbert ( 1967b , 
1968a , 1968b , 1970 ) 

Oldenburg ( 1981 ), Pijpers 
& Thompson ( 1994 ), 

Masters & Gubbins ( 2003 ), 
Zaroli ( 2016 , 2019 ) 

Backus ( 1970a , b , c ), 
Parker ( 1977 ), Al-Attar 

( 2021 ) 

This contribution 

Tab le A2. Tab le summarizing the main mathematical symbols used in the manuscript. Elements are grouped on columns and rows depending on the 
relationships between them. For example, m̄ is part of the model space M and is related to d̄ through G , which is determined by K . Similarly, ˜ p is related to 
m̄ through R and to ˜ m through T . 

M D P
Model space Data space Property space Mapping Kernels 

m̄ : TRUE model d̄ : TRUE data G: forward mapping K: sensitivity kernels 
m̄ : TRUE model p̄ : TRUE property T : property mapping T: target kernels 
m̄ : TRUE model ˜ p : approximate property R : approximate mapping R: resolving kernels 
˜ m : least norm model ˜ p : approximate property T : property mapping T: target kernels 

ε: property error H: hyperellipsoid matrix 
j : physical parameter index i : data index k: property index 
N m 

: number of physical 
parameters 

N d : number of data N p : number of properties 
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2 Choice of forward mapping G 

e are now left with making the two most important decisions.
irst, we need to decide whether G is a linear or non-linear map-
ing. Most often, the forward problem is non-linear, which leads to
omplicated inference problems. While there is some work on this
ront in the inference field (Snieder 1991 ), the problem is generally
oo difficult to tackle analytically or requires vast computational
esources. For this reason, inference problems usually assume G to
e linear and bounded (and therefore continuous when dealing with
ormed spaces), resulting in linear inferences. 

For linear inferences, we can delve deeper into the structure of
G . If M is a Hilbert space, G is often defined as a vector of inner
roducts with some known members of M (commonly referred to
s sensitivity kernels in seismology) (e.g. Backus 1970a ). SOLA
ethods, for instance, specifically use the L 2 inner product on the
odel space L 2 [ �] with � some spatial domain, leading to the
ell-known form of the forward operator seen in eq. ( 9 ). 
More complicated linear forward mappings can be used if we

onsider that data frequently depend on multiple physical param-
ters, such as shear and compressional wave speeds, as well as
ensity. These problems can be addressed by considering M as
 direct sum of Hilbert spaces, which itself forms a Hilbert space
e.g. Lau & Romanowicz 2021 ), and a forward mapping of the form
iven in eq. ( 34 ). In this paper, we argue that under such choices,
he analysis provided by SOLA methods offers insights that are not
eadily accessible through DLI methods alone. 
3 Without prior information 

he last, and arguably the most important decision, concerns prior
nformation. We note that the choices of M , D and G already
ncode some level of prior information. Ho wever , when referring
o additional prior information, we assume that these choices have
lready been fixed. If we decide not to use any additional prior
nformation, we would follow along the route of MOLA/SOLA

ethods (e.g. Backus & Gilbert 1970 ; Oldenburg 1981 ; Pijpers
 Thompson 1994 ; Zaroli 2016 ). For these methods, it can be

hown that we typically cannot directly infer T ( ̄m ) = p̄ . Instead of
btaining the properties of interest, we must settle for approximate
roperties R ( ̄m ) (see Fig. A1 ). Given only the data values and
eometry, the goal is then to construct an approximate mapping R
uch that: 

 = XG, where R : M → P and X : D → P . 

n essence, this involves determining the N d × N p elements of the
X mapping. The original method of Backus and Gilbert (Backus &

ilbert 1967a , b , 1968b , a , 1970 ) proposed an approximate mapping
esigned to obtain the highest-resolution local averages at N p points
f the unknown model. This mapping is obtained by minimizing the
ost functions for each point one by one (see Fig. A1 ): 

∫ 
( J ( k) A 

( k) ) 2 d�, s.t. 

∫ 
A 

( k) = 1 

� �
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where J ( k) is a weight function with increasing weight further away 
from the k-th point where maximum resolution is desired. In con- 
trast, for SOLA Pijpers & Thompson ( 1994 ) constructed an ap- 
proximate unimodular mapping that resembles the predefined T by 
minimizing the cost function: 

Tr [ ( T − R )( T − R ) ∗] , subject to R (1) = 1 , 

where 1 represents the constant function on the left-hand side and 
the N p -dimensional vector of ones on the right-hand side. This is the 
most generic formulism, a more specific form is given in Fig. A1 . 
It turns out that solving the SOLA optimization problem is com- 
putationall y more ef ficient than solving the optimization problem 

needed for the original Backus–Gilbert method (Pijpers & Thomp- 
son 1992 ; Al-Attar 2021 ). This is due to the fact that the matrix to 
be inverted for SOLA depends only on the sensitivity kernels, while 
for the Backus–Gilbert method it depends on both the sensitivity 
kernels and the spatially dependent functions J k , and thus needs to 
be inverted again for each k-th point. 

For linear inferences on a Hilbert model space, where the forward 
mapping is defined via projections onto sensitivity kernels, the ap- 
proximate mapping R is associated with resolving kernels. These 
resolving kernels offer valuable insights into the interpretation of 
the approximate properties R ( ̄m ) . Even if data noise is ignored, the 
resolving kernels will be imperfect due to data incompleteness and 
trade-offs between physical parameters. The shape of these resolv- 
ing kernels thus provides information about data limitations and 
parameter trade-offs. 

A4 With additional prior information 

If we introduce additional prior information, we have the choose 
between soft and hard prior information Backus ( 1988b ). Hard 
priors are those where we assume that the true model must lie 
with 100 per cent certainty within a subset of the model space. 

The norm bound used in this paper is an example of a hard 
quadratic bound (see more here, Backus 1989 ). In this paper, we re- 
fer to linear inferences with hard prior information as DLI methods 
(Deterministic Linear Inferences) due to the deterministic nature of 
the prior information (Al-Attar 2021 ). Ho wever , in the literature, 
these kind of problems are also referred to as Confidence Interval 
Sets as the solutions are intervals in which the property is found 
(Backus 1988a ). 

Soft bounds can be imposed, for example, by introducing a soft 
prior via a regularization term that penalizes some undesired feature 
of the model (for example, penalizing large norms). Soft priors via 
penalty terms may be considered ‘softer’ from the perspective that 
we prefer some models to be penalized more than others, based on 
our belief that they are less likely to be true. Ho wever , in practice, 
an optimization process is carried out, resulting typically in a single 
solution. This solution strikes a balance between fitting the data 
and minimizing the penalty. Ho wever , this is a single solution, and 
the act of optimizing a penalized cost function ef fecti vel y collapses 
the model space to a single point (thus solving the problem of 
non-uniqueness) and will reject any other model. In contrast, a 
hard prior will immediately remove some models that are deemed 
unacceptable, but it will usually keep many others that are deemed 
acceptable, without discriminating between them. Therefore, a hard 
prior will be more inclusive and less stringent than a penalty-based 
soft prior. 

Soft prior assumptions and similar regularizations are essential 
in inversion methods, as they help address non-uniqueness, which 
cannot be resolved without such constraints. This is why inference 
methods like DLI tend to have lower precision–their assumptions 
are too weak to break the non-uniqueness. Essentially, these meth- 
ods trade precision for accuracy, as weaker assumptions reduce the 
likelihood of introducing bias into the solution. 

Another way to impose a soft bound is by making the model 
space a probabilistic space with a measure to describe our prior 
kno wledge. This w ould eliminate some sets of models that have 
zero probability, but it will usually keep many models, giving higher 
probability to some compared to others. Ov erall, we believ e that the 
hard priors used in this paper are less stringent than penalty-based 
soft priors, but more stringent than probabilistic soft priors. 

A P P E N D I X  B :  S U R J E C T I V I T Y  o f  G 

An inverse problem requires three components: model space M , 
data space D and a forward relation G : M → D. In our case, let 
M = L 2 ( �) , a Hilbert space defined on a compact domain � ⊂
R , and D = R 

N d for some N d ∈ N . As discussed in Section 2.1.3 
(eq. 9 ), the forward relation is defined as: 

[ G ( m )] i = 

∫ 
�

K i ( x ) m ( x ) dx . (B1) 

with x ∈ �. To demonstrate that G is surjective, we utilize its dual 
G 

′ . The dual space M 

′ consists of linear forms m 

′ ∈ M 

′ defined 
on M that map elements m ∈ M to R : 

m 

′ : M → R 

Since M is a Hilbert space, the Riesz Representation Theorem 

establishes an isomorphism L M 

: M 

′ → M . This means that for 
each m ∈ M , there exists a unique m 

′ ∈ M 

′ such that 

L M 

( m 

′ ) = m. 

Similarly, the dual space of the data space D is D 

′ with an iso- 
morphism L D : D 

′ → D. If G : M → D, then the dual mapping is 
defined by 

d ′ ( G ( m )) = ( G 

′ ( d ′ ))( m ) , ∀ m ∈ M , ∀ d ∈ D

Rearranging gives: 

d ′ ( d) = m 

′ ( m ) . 

We can express the relationship between the spaces as: 

m 

′ = L M 

◦ G 

′ ◦ L 

−1 
D ( d) . 

We can define G 

∗, the adjoint of G , as: 

G 

∗ = L M 

◦ G 

′ ◦ L 

−1 
D . (B2) 

An equi v alent definition states: 

〈 G ( m ) , d〉 D = 〈 m, G 

∗( d) 〉 M 

, ∀ d ∈ D, m ∈ M (B3) 

where 〈 ·, ·〉 M 

denotes the inner product on M and similarly 〈 ·, ·〉 D 
is the inner product on D. This implies 

G 

∗( d) = 

N d ∑ 

i 

d i K i ( x) . 

where x ∈ �. We can now prove the surjectivity of G . 

Proof. According to Proposition 2.1 from Al-Attar ( 2021 ), G is 
surjective if and only if ker ( G 

′ ) = { 0 } , where 

ker ( G 

′ ) = { d ′ ∈ D 

′ | G 

′ ( d ′ ) = 0 } . 
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sing the relation between the dual and the adjoint of G (eq. B2 ),
e find that: 

G 

′ = L 

−1 
M 

G 

∗L D 

here we have omitted the composition symbol ‘ ◦’. Therefore, we
ave to show that: 

ker ( L 

−1 
M 

G 

∗L D ) = { 0 } . 

e will show this by assuming the contrary and showing that it
eads to a contradiction. Let us assume that there exists a d ′ ∈
 

′ , d ′ �= 0 such that L 

−1 
M 

G 

∗L D ( d ′ ) = 0 ∈ M 

′ . We know that L D is
n isomorphism, therefore L D ( d ′ ) ∈ D and L D ( d ′ ) �= 0 . Applying
he adjoint of G , we have: 

G 

∗( L D ( d 
′ )) = 

N d ∑ 

i 

[ L D ( d 
′ )] i K i ( x) 

o wever , { K i } are linearly independent, therefore 

G 

∗( L D ( d 
′ )) = 

N d ∑ 

i 

[ L D ( d 
′ )] i K i ( x) = 0 ∈ M iff L D ( d 

′ ) = 0 

which we already know is not the case. This means that
G 

∗( L D ( d ′ )) �= 0 ∈ M . Since L 

−1 
M 

is bijective, the non-zero element
G 

∗( L D ( d ′ )) gets mapped onto a non-zero element of M 

′ , which
ontradicts the initial assumption. �

As a final note, we want to emphasize that the approximate nature
f the theory does not imply that G is not surjective (as we have
ro ven abo ve). 

P P E N D I X  C :  X F RO M  S O L A  

or SOLA inferences, in the absence of unimodularity conditions,
e want to solve: 

rgmin 
x 

( k) 
i 

[ ∫ 
�

( T ( k) −
N d ∑ 

i 

x ( k) 
i K i ) 

2 d�

] 
. (C1) 

athematically, this is a multi-objective minimization problem, be-
ause we want to find x ( k) 

i that minimize concomitantly all squared
ifferences between the targets and their corresponding averaging
ernels. Since we give the same importance to each target-resolving
ernel error we want to minimize, we can use the classic Pareto
ethod. In other words, we try to minimize: 

rgmin 
x 

( k) 
i 

⎡ 

⎣ 

N p ∑ 

k 

∫ 
�

( T ( k) −
N d ∑ 

i 

x ( k) 
i K i ) 

2 d�

⎤ 

⎦ . (C2) 

n practice, the minimization problem for each property can be
olved independently for all other properties (mathematically equiv-
lent to eq. C2 ). This leads to an embarrassingly parallel algorithm
Zaroli et al. 2017 ). 

Using matrix calculus, the solution can readily be found. We first
ake the gradient of eq. ( C2 ) and set it to zero: 

∂ 

∂x ( q) 
l 

N p ∑ 

k 

[ ∫ 
�

( T ( k) −
N d ∑ 

i 

x ( k) 
i K i ) 

2 d�

] 
= 0 . (C3) 
ecause 

∂ 

∂x ( q) 
l 

( 

T ( k) −
N d ∑ 

i 

x ( k) 
i K i 

) 2 

= −2 

( 

T ( k) −
N d ∑ 

i 

x ( k) 
i K i 

) 

×
⎛ 

⎝ 

N m ∑ 

j 

∂x ( k) 
j 

∂x ( q) 
l 

K j 

⎞ 

⎠ 

q. ( C3 ) becomes: 

− 2 

N p ∑ 

k 

∫ 
�

( T ( k) −
N d ∑ 

i 

x ( k) 
i K i ) 

⎛ 

⎝ 

N m ∑ 

j 

∂x ( k) 
j 

∂x ( q) 
l 

K j 

⎞ 

⎠ d� = 0 (C4) 

t is obviously that: 

∂x ( k) 
j 

∂x ( q) 
l 

= δl j δqk , 

hich can be substituted in eq. ( C4 ) to obtain: ∫ 
�

( T ( q) −
N d ∑ 

i 

x ( q) 
i K i ) K l d� = 0 . (C5) 

eparating the integral in eq. ( C5 ), we now get: 

N d ∑ 

i 

x ( q) 
i 

∫ 
�

K i K l d� = 

∫ 
�

T ( q) K l d�. 

his can be written in matrix form as: 

X
 = 	, 

here 


 il = 

∫ 
�

K i K l d�

	 ql = 

∫ 
�

T ( q) K l d�

X qi = x ( q) 
i . 

his finally gives us: 

X = 	
 

−1 (C6) 

hich is equi v alent to the eqs ( 18 ), ( 19 ) and ( 20 ). 

P P E N D I X  D :  E L E M E N T S  N E E D E D  F O R  

H E  D E R I VAT I O N  O F  T H E  S O L A - D L I  

O LU T I O N  

n this appendix, we derive some further equations and equalities
elated to the material presented in Section 2.1 . 

1 Data-model relationships 

iven a model m = ( m 

1 , m 

2 , ... ) , the relationship between the
odel and data is defined by: 

 i = [ G ( m )] i = 

N m ∑ 

j 

〈 
K 

j 
i , m 

j 
〉 
M j 

. (D1) 

t is useful to define: 

G 

j ( m ) = 

〈 
K 

j 
i , m 

j 
〉 
M j 

(D2) 

G = 

N m ∑ 

j 

G 

j . (D3) 
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Figure A1. Illustration of the relationship between the hyperellipsoid de- 
fined in eq. ( D25 ) and the hyperparallelepiped defined in eq. ( D27 ) for the 
case when the property space is 2-D. p 1 and p 2 could represent, for example, 
two local averages at two different spatial locations. The dark shaded ellipse 
contains all the possible combinations of these two properties given by the 
tighter inequality of eq. ( D25 ). The lighter grey shaded rectangle contains 
all the possible combinations of these two properties under the simplified 
inequality in eq. ( D27 ). 
The adjoint of G is defined in eq. ( B3 ) and repeated for convenience: 〈
G ( m ) , d ′ 

〉
D = 

〈
m, G 

∗( d ′ ) 
〉
M 

(D4) 

for all m ∈ M and d ′ ∈ D. We expand the LHS: 

N d ∑ 

i 

N m ∑ 

j 

〈 
K 

j 
i , m 

j 
〉 
M j 

d ′ i = 

〈
m, G 

∗( d ′ ) 
〉
M 

. (D5) 

For the RHS, we use the formula for the inner product in the direct 
sum space M : 

〈 a, b 〉 M 

= 

N m ∑ 

j 

〈
a j , b j 

〉
M j 

, (D6) 

where a, b are some members of M . Therefore, we write 

N d ∑ 

i 

N m ∑ 

j 

〈 
K 

j 
i , m 

j 
〉 
M j 

d ′ i = 

N m ∑ 

j 

〈
m 

j , G 

j∗( d ′ ) 
〉
M j 

. (D7) 

Taking the sum over i inside, we can also write: 

N m ∑ 

j 

〈 
N d ∑ 

i 

d ′ i K 

j 
i , m 

j 

〉 
M j 

= 

N m ∑ 

j 

〈
m 

j , G 

j∗( d ′ ) 
〉
M j 

(D8) 

and we identify: 

G 

j∗( d ′ ) = 

N d ∑ 

i 

d ′ i K 

j 
i , (D9) 

G 

∗ = ( G 

1 ∗, G 

2 ∗, ... ) . (D10) 

G 

∗ maps elements from the data space to elements (tuples) in the 
model space. A similar approach shows that the adjoint of the prop- 
erty mapping T is given by: 

T j∗( p) = 

N p ∑ 

k 

p ( k) T j, ( k) , (D11) 

T ∗ = ( T 1 ∗, T 2 ∗, ... ) . (D12) 

D2 H matrix 

The H matrix introduced in Section 2.1 quantifies the difference 
between the target and resolving kernels. It is defined by Al-Attar 
( 2021 , see eq. 2.84) as: 

H = H H 

∗, (D13) 

H = T − R , (D14) 

where R is the ‘approximate mapping’, given by: 

R = T G 

∗( GG 

∗) −1 G. (D15) 

This mapping takes any model m ∈ M into the data space d ∈ D, 
then finds the least norm solution to G ( m ) = d and maps this least 
norm solution into the property space. When applied to one of the 
possible model solutions U M 

⋂ 

S (see Fig. 1 b), it gives the property 
of the model solution that has the smallest norm. Combining ( D13 ), 
( D14 ) and ( D15 ) we obtain: 

H = 

( T − R 

) ( T − R 

) ∗, (D16) 

H = T T ∗ − T G 

∗( GG 

∗) −1 G T ∗. (D17) 

Let us denote 


 : = GG 

∗. (D18) 
Using a simple application of eqs ( D1 ) and ( D10 ), we can then 
easily obtain: 


 iq = 

N m ∑ 

j 

〈 
K 

j 
i , K 

j 
q 

〉 
M j 

. (D19) 

Similarly, we denote: 

χ : = T T ∗, (D20) 

χk,l = 

N m ∑ 

j 

〈
T j, ( k) , T j, ( l) 

〉
M j 

(D21) 

and 

	 : = T G 

∗, (D22) 

	 ki = 

N m ∑ 

j 

〈 
T j, ( k) , K 

j 
i 

〉 
M j 

. (D23) 

Using the definitions of 
, χ, 	 we can write ( D17 ) as: 

H = χ − 	 
 

−1 	 

T . (D24) 

Fig. A1 provides a visualization of the ellipse in the property space 
as determined by H when only two properties are considered. 

D3 Error bounds 

The error bounds defined in eqs ( 23 ) and ( 24 ) are derived from the 
property bounds defined by Al-Attar ( 2021 , see eq. 2.84) as: 〈
H 

−1 ( p − ˜ p ) , p − ˜ p 
〉
P ≤ M 

2 − ‖ ˜ m ‖ 2 M 

(D25) 

Eq. ( D25 ) describes a hyperellipsoid centred on ˜ p with major axes 

gi ven b y the eigenv alues of H 

−1 scaled b y 
√ 

M 

2 − ‖ ˜ m ‖ 2 M 

. If the 
matrix H is diagonal, then the inverse is trivial to find and the 
hyperellipsoid has its major axes aligned with the coordinate axes 
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f the property space. In all other cases, the hyperellipsoid will
ave some arbitrary orientation and H will be difficult to invert
umerically. 

To avoid numerical complications, we use here a different, more
elaxed approximation for the error bounds given in the form: 

 p − ˜ p ‖ 2 P ≤ ( M 

2 − ‖ ˜ m ‖ 2 M 

) diag ( H) (D26) 

here diag ( H) is the diagonal of H. We can also write this in
omponent form: 

p ( k) − ˜ p ( k) 
∥∥2 

P ≤ ( M 

2 − ‖ ˜ m ‖ 2 M 

) H kk (D27) 

nequality ( D27 ) describes a hyperparallelepiped that contains the
rror bounds of ( D25 ) with sides parallel to the coordinate axes of P
see Fig. A1 ). As this approximation does not require the inversion
f the Hmatrix, it is computationally advantageous. Visually, the hy-
erellipsoid fits ‘perfectly’ inside the hyperparallelepiped (Fig. A1 ),
ut the error bounds of the hyperparallelepiped are easier to visu-
lize in a static plot (see for example first column of Fig. 7 ). The
yperellipsoid encodes the correlations between the error bounds
f the various components of the property vector (such as the cor-
elation between the error bounds of two different local averages).
lotting the bounds for each component of the property vector
imultaneously would therefore be very difficult, since the error
ounds of each property component would depend on the values
f the bounds on all other property components. The hyperparal-
elepiped ignores these correlations, simplifying thus the plotting.
o wever , it overestimates the property bounds, which will likely
ake it more difficult to interpret the property values. 
To show how ( D27 ) arises from ( D25 ), we need to prove the

ollowing: 

Given that 

x T A 

−1 x ≤ b (D28) 

Show that 

x 2 k ≤ bA kk (D29) 

here x = ˜ p − ε, A = H and b = M 

2 − ‖ ˜ m ‖ 2 M 

. To prove this, we
tart by finding the maximum extent of the hyperellipsoid ( D28 )
long the k th coordinate axis, which can be described mathemati-
ally as: 

ind max ( c T x) (D30) 

iven that x T A 

−1 x ≤ b. (D31) 

here c T will be chosen later to be a vector with all entries 0 except
he k th one. We shall use the Lagrangian approach to solve this
roblem. We introduce the slack constant s and use it to transform
he inequality ( D31 ) into an equality (slack constraint): 

x T A 

−1 x − b + s 2 = 0 . (D32) 

et λ be a Lagrange multiplier. The problem then becomes finding
he extremum points of the Lagrangian: 

f ( x, λ) = c T x + λ( b − x T A 

−1 x − s 2 ) . (D33) 
C © The Author(s) 2025. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License ( h
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ifferentiating f with respect to x and setting the result to zero
eads to: 

 − 2 λA 

−1 x = 0 . (D34) 

ote that λ = 0 leads to c = 0 , which is a contradiction. Therefore
 e must ha ve λ �= 0 and s 2 = 0 , which means that our constraint is

ctive. Assuming A 

−1 to be invertible, we obtain: 

x = 

Ac 

2 λ
. (D35) 

e next differentiate f with respect to λ (using s 2 = 0 since we have
hown the constraint to be active) to obtain the second Lagrange
quation. Setting the result equal to zero leads to: 

 − x T A 

−1 x = 0 . (D36) 

ubstituting ( D35 ) into ( D36 ) and rearranging for b, we obtain: 

 = 

(
Ac 

2 λ

)T 

A 

−1 Ac 

2 λ
. (D37) 

ince A is symmetric this leads to: 

2 = 

c T Ac 

4 b 
. (D38) 

ssuming that A is positive definite (its eigenvalues give the lengths
f the hyperellipsoids’ major axes), we must have 

= 

√ 

c T Ac 

2 
√ 

b 
. (D39) 

Finally, using ( D38 ) and ( D35 ) the optimal vector solution x can
e expressed for any vector c as: 

x = 

Ac 

2 λ
= 

Ac 
√ 

c T Ac √ 

b 

= 

√ 

b Ac √ 

c T Ac 
, (D40) 

nd the maximal value of c T x is thus: 
 

b c T Ac . (D41) 

ow, we consider a fixed index k between 1 and N , and we define
to be the following vector: 

 : = ( δik ) 1 ≤i≤N , (D42) 

here δik is 1 if i = k, and 0 if i �= k. Substituting this for c in
 D41 ), we obtain: 

max ( x k ) = 

√ 

bA kk (D43) 

r equi v alentl y: 

x k ≤
√ 

bA kk (D44) 

f instead we choose c = −δik , then we have: 

x k ≥ −
√ 

bA kk (D45) 

hese two inequalities can be summarized in the final answer: 

 x k ) 
2 ≤ bA kk (D46) 
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