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S U M M A R Y 

Inversion of a given geophysical data set cannot be complete without assessing the resolution 

and uncertainties associated with the model obtained. Ho wever , model appraisal may still be 
a challenging task from both a theoretical and a computational point of view. To tackle the 
problems of model estimation and appraisal, we introduce the subtractive optimally localized 

averages (SOLA) method to the geophysical electromagnetic community, through the example 
of linear inversion of induced polarization (IP) data. SOLA is a variant of the Backus-Gilbert 
method: it is computationally more efficient but also allows one to specify directly the target 
local averages of the Earth’s properties to be estimated, including their uncertainties. SOLA 

offers great flexibility in the construction of averaging kernels, via the design of target kernels, 
and direct control over the propagation of data errors into the local-average estimates. With 

SOLA we obtain a collection of (i) local averages of the ‘true’ Earth model, accompanied with 

their (ii) averaging kernels and (iii) uncertainties. We investigated the performance of SOLA 

for the 2-D tomographic inversion of a field IP data set. The obtained chargeability model 
compares well with previous studies, and, most importantly, its resolution (the spatial extent 
of the averaging kernels) and uncertainties can be interrogated. We conclude that SOLA is a 
promising approach for geophysical-electromagnetic linear(ized) tomographies. In the case of 
IP inversion, to construct chargeability models and e v aluate their robustness. 

Key words: Electrical resistivity tomography (ERT); Induced polarization; Inverse theory. 

1

T  

o  

p  

e  

t  

t  

l  

a  

r  

i  

l  

s  

&  

(  

B  

S  

i  

b  

d  

P  

c  

a  

Z  

S  

(  

S  

T  

m  

t  

t  

a  

i  

S  

c  

a

2

T  

s  

1  

a  

p  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/242/2/ggaf238/8172542 by guest on 14 August 2025
 I N T RO D U C T I O N  

he resolving power of geophysical data to estimate the parameters
f Earth models is notoriously limited (e.g. Jackson 1972 ). A com-
lete treatment of the inverse problem should then include model
stimation and model assessment, giving equal importance to both
he reconstruction of a geolo gicall y meaningful Earth model and
he assessment of its uncertainties (in a general sense). For linear or
inearizable inverse problems, both model reconstruction and model
ssessment are epitomized by the generalized inverse and the cor-
esponding model resolution and covariance matrices derived from
t (e.g. Aster et al. 2018 ). Together, these mathematical objects al-
ow for a complete treatment of the linear inverse problem. The
ubtracti ve optimall y localized averages (SOLA) method (Pijpers
 Thompson 1992 ) is a variant of the Backus–Gilbert (BG) method

Backus & Gilbert 1967 , 1968 , 1970 ). Although both SOLA and
G aim at directly estimating the generalized inverse coefficients,
OLA is computationally more efficient and allows one to spec-

fy directly the ‘target’ local averages of the Earth’s properties to
e estimated, including their uncertainties. SOLA was first intro-
uced in astronomy for solving 1-D helioseismic inversions (e.g.
ijpers & Thompson 1994 ; Pijpers 1997 ). Recently, it has been suc-
essfully adapted to solve large-scale 2-D and 3-D (both discrete
 k  

C © The Author(s) 2025. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
nd continuous) seismic tomography problems (Zaroli 2016 , 2019 ;
aroli et al. 2017 ). In this work, we investigate the applicability of
OLA for 2-D linear tomographic inversion of induced polarization
IP) data. To the best of our knowledge, this is the first time that
OLA has been used for geophysical-electromagnetic tomography.
his paper begins with a simplified re vie w of the Backus–Gilbert
ethod. Next, w e introduce SOLA follow ed by a short treatment of

he induced polarization theory rele v ant to this work. We illustrate
hese theoretical aspects with a synthetic IP data based example,
nd then an application to a real field IP data from a mining region
n Australia. We conclude with a discussion on the rele v ance of
OLA for inverting IP data —and for quantifying the robustness of
hargeability model features via quantitative resolution–uncertainty
nalysis. 

 T H E  B A C K U S – G I L B E RT  M E T H O D  

he Backus–Gilbert (BG) method was introduced in a series of
eminal papers half a century ago (Backus & Gilbert 1967 , 1968 ,
970 ), with focus on linear geophysical inverse problems. Backus
nd Gilbert proposed a dif ferent perspecti ve for approaching the
roblem of geophysical inversion in comparison to the more widely
nown, in one form or another, regularization method of Tikhonov
oyal Astronomical Society. This is an Open Access 
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(Tikhonov & Arsenin 1977 ). Instead of aiming at solving the es- 
timation prob lem, w here an appro ximation for the true (unknown) 
solution is sought, the BG method intrinsically develops tools for the 
quantitati ve anal ysis of the resolution power of the available data. 
Therefore, it brings the estimation of the information content of the 
data to the forefront of the problem of geophysical data inversion. 

The BG approach philosophically contrasts with the ‘find a solu- 
tion that fits the data’ approach of con ventional in version methods. 
Since its inception, the theoretical aspects of the BG method have 
al wa ys attracted the interest of the scientific community (e.g. in 
pure and applied mathematics and geophysics); with the appear- 
ance of many interesting reviews (e.g. Haario & Somersalo 1987 ; 
Kirsch et al. 1988 ; Snieder 1991 ; Leit ˜ ao 1998 ; Pujol 2013 ; Aster 
et al. 2018 ). On the other hand, the method has never been popu- 
lar in practical applications such as in geophysics, especially when 
compared with Tikhonov regularization methods. The main reason 
for that was the computational cost of the method, a concern well 
justified in the past decades but that certainly needs to be reviewed 
today, after decades of evolution in computing pow er. As w e shall 
see, a variant of BG, the so-called SOLA method, has proven to be 
computationall y more ef ficient than BG, while still allowing one 
to benefit fully from the advantages of BG. The BG theory is con- 
structed around three main concepts: (i) linear model averages, and 
their corresponding (ii) averaging kernels and (iii) uncertainties. 

Let’s assume that w e ha ve specified, for our geophysical purposes, 
an abstract representation of the Earth model as a function m ∈ 

L 

2 ( �) , � ⊂ R 

2 , where L 

2 ( �) is the space of square integrable 
functions defined in the domain �; here � ⊂ R 

2 refers to a 2-D 

space (2-D subsurface), as in the example of SOLA IP tomography 
conducted in this study. The relation between m and the physical 
quantities representing the N geophysical measurements is specified 
by a set of N functions (BG and SOLA only consider linear or 
linearizable ones), the so-called gross Earth functionals: g = { g i } ∈ 

R 

N . Each g i ∈ L 

2 ( �) is given by: 

g i [ m ] = 

∫ 
�

G i ( r ) m ( r ) d 2 r , (1) 

where each function G i ∈ L 

2 ( �) is called a data kernel ( i = 

1 · · · N ). In practice, we only have access to a finite set of N noisy 
measurements d = { d i } ∈ R 

N . Each so-called g ross Ear th datum 

can then be written as: 

d i = g i [ m ] + n i , (2) 

where n i is the i th noise component. In this study, we shall assume 
zero-mean, independent, Gaussian noise, that is, a diagonal data 
covariance matrix with entries σ 2 

d i 
. In the BG theory, we aim at 

estimating a (weighted) local average, ˆ m k , of the ‘true’ Earth model, 
m ( r ) , around a specified position, r k , in the domain �. The local- 
average estimate ˆ m k is sought as a linear combination of the data: 

ˆ m k = 

N ∑ 

i= 1 
x ( k) 

i d i , (3) 

where the N real-valued x ( k) 
i represent generalized inverse 

coef ficients—these coef ficients are the unknowns which are directl y 
solved for in BG (and SOLA). The average estimate ˆ m k can there- 
fore be expressed as: 

ˆ m k = 

∫ 
�

A 

( k) ( r ) m ( r )d 2 r ︸ ︷︷ ︸ 
averaging process 

+ 

N ∑ 

i= 1 
x ( k) 

i n i ︸ ︷︷ ︸ 
noise propagation 

, (4) 
where the averaging kernel function A 

( k) ( r ) is given by: 

A 

( k) ( r ) = 

N ∑ 

i= 1 
x ( k) 

i G i ( r ) . (5) 

The averaging kernel A 

( k) ( r ) is also referred to as the resolving 
kernel (e.g. Zaroli 2016 ; Zaroli et al. 2017 ); its spatial support is 
a measure of the achieved resolution around the enquiry point r k . 
As we shall see, the ideal situation for Backus–Gilbert (SOLA) 
theory would be for A 

( k) to resemble a Dirac-delta function (or a 
pre-defined target function), respecti vel y. The noise propagation in 
( 4 ) can be statistically described by a zero-mean normal distribution 
with variance: 

σ 2 
ˆ m k 

= 

N ∑ 

i= 1 

(
x ( k) 

i σd i 

)2 
. (6) 

The standard deviation σ ˆ m k represents the uncertainty attached to 
the average estimate ˆ m k . In the BG method, the functions A 

( k) ( r ) 
are constrained to be unimodular, that is: ∫ 

�

A 

( k) ( r )d 2 r = 1 . (7) 

The explicit imposition of the unimodular constraint ( 7 ) is to force 
the average estimate ˆ m k to be unbiased, a fundamental property of 
the BG (and SOLA) averaging kernels—not always honoured with 
Tikhonov methods (e.g. Nolet 2008 ; Zaroli et al. 2017 ). The estimate 
ˆ m k , averaging kernel A 

( k) , and uncertainty σ ˆ m k are all dependent on 
the set of N generalized-inverse coef ficients x ( k) = { x ( k) 

i } N i= 1 . Gi ven 
P , the number of enquiry points r k in the domain �, to build a 
model with BG (and SOLA) thus consists in calculating a collec- 
tion of P estimates { ̂  m k } P k= 1 . Though these estimates are indepen- 
dently obtained—and thus can be computed in an embarrassingly 
parallel fashion—it is possible to build a model (i.e. a collection of 
estimates) which can fit the data, at least with the SOLA approach 
(Zaroli 2016 , 2021 ; Zaroli et al. 2017 ). In summary, we perform 

an inversion at each of the P enquiry points r k for the generalized- 
inverse coefficients x ( k) ∈ R 

N , from which we obtain a collection 
of P local-average estimates, averaging kernels and uncertainties. 
Note that each of the P independent inversions has N unknowns. 

The rationale in the BG method is to find a set x ( k) such that the 
averaging kernel A 

( k) approaches a Dirac delta function δ( r − r k ) , 
centred on the position r k . With this objective in mind, Backus and 
Gilbert seek x ( k) such that it leads to minimizing both the spatial 
spread of A 

( k) and the uncertainty σ ˆ m k , while honouring the uni- 
modular constraint. This can be cast in the following optimization 
problem: ⎧ ⎨ 

⎩ 

arg min: 
x ( k) ∈ R N 

S ( k) + η2 σ 2 
ˆ m k 

s.t. 
∫ 

�
A 

( k) ( r ) d 2 r = 1 , 
(8) 

The so-called spread functional S ( k) is defined as: 

S ( k) = 

∫ 
�

[
A 

( k) ( r ) 
]2 

J ( k) ( r )d 2 r . (9) 

It is aimed at representing the spatial extent of A 

( k) . Thus, the 
function J ( k) in ( 9 ) is defined as follows: 

J ( k) ( r ) ∝ | r − r k | p . (10) 

As a remark, if the shape of A 

( k) were close to a 2-D disc, S ( k) 

would represent the disc’s diameter. In ( 10 ), p is an integer to be 
chosen such that S ( k) represents a length; for our 2-D IP tomogra- 
phy application: p = 3 . The hyperparameter η ∈ R + in ( 8 ) reflects 
the unav oidab le trade-off between resolution and uncertainty. It 
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alances the desire to have a localized kernel A 

( k) (here close to a
irac delta), against the pernicious effect of the propagation of data

rrors into the estimate ˆ m k . The trade-off parameter η can be kept
onstant, with a potential reduction in the computational cost, or
an be allowed to vary for each query point r k ; in this study we shall
onsider it to be spatially variant and offer one possible strategy to
utomatize the choice of its values. Having stated the basic facts
bout the BG method, we now move on to a short description of its
OLA variant—which we aim at using for the inversion of field IP
ata, for the very first time. 

 T H E  S O L A  M E T H O D  

ne primary moti v ation for preferring to use SOLA, rather than BG,
s the fact that the computational cost of solving ( 8 ) can be greatly
educed by the introduction of target kernels (Pijpers & Thompson
992 ; Zaroli 2016 , 2019 ). Instead of trying to approximate the av-
raging kernel to a Dirac delta, SOLA specifies an a priori target
ernel function T ( k) ( r ) for each averaging kernel function A 

( k) ( r ) .
ote that this is fundamentally different from adding a priori infor-
ation on the model itself, as in Tikhonov regularization methods

Tarantola 2006 ). In practice, this is accomplished by modifying the
pread functional S ( k) in ( 8 ). This leads to the SOLA optimization
roblem: ⎧ ⎨ 

⎩ 

arg min: 
x ( k) ∈ R N 

ˆ S ( k) + η2 σ 2 
ˆ m k 

s.t. 
∫ 

�
A 

( k) ( r ) d 2 r = 1 , 
(11) 

here the resolution-misfit functional ˆ S ( k) is defined as: 

ˆ S ( k) = 

∫ 
�

[
A 

( k) ( r ) − T ( k) ( r ) 
]2 

d 2 r , (12) 

rom where the term ‘subtractive’, of the SOLA acronym, becomes
pparent. In this work, we shall use 2-D disc-shaped target kernels: 

T ( k) ( r ∈ �) = 

{ 1 
π×( � k ) 2 

if | r − r k | ≤ � k 

0 elsewhere , 
(13) 

here � k denotes the disc’s radius, and thus represents the a priori
isotropic) resolving length at the location r k . This choice, that is,
 13 ), corresponds to the following normalization of T ( k) : ∫ 
�

T ( k) ( r )d 2 r = 1 . (14) 

ther choices of target kernel (e.g. 2-D Gaussian) and normaliza-
ion could be investigated (e.g. Freissler et al. 2024 ; Mag et al.
025 ). Most importantly, replacing the spread functional S ( k) by
he resolution-misfit functional ˆ S ( k) leads to multiple benefits: (i) it
dds a degree of freedom to the method allowing the user to choose
he target kernels according to the characteristics of the problem at
and, and (ii) it decreases the computational cost of the optimization
roblem to be solved for x ( k) . 

In this study, for improving the computational efficiency of
OLA, we shall use its discrete version for our application to field
P data inversion. That is, the model space ( �) will have to be
iscretized, similarly to conventional (data-fit based) tomographic
ethods, which generally take place in a discrete fashion. For exam-

le, in the 2-D IP tomography applications presented in Sections 5
nd 6 the model space is discretized with M ‘cells’. This implies that
 e ha ve to consider the projection of the N continuous data kernels

G i on the tomog raphic g rid, which results in the classic sensitiv-
ty matrix G = ( G i j ) of size N × M . We refer the reader to Zaroli
 2016 ) for explanations about the technical details and numerical
dvices involved in setting up and solving the ‘discrete’ form of the
OLA problem. Ho wever , in the following we provide some details

o explain the main computational advantage of SOLA with respect
o BG. First, note that both the BG and SOLA problems numeri-
ally consist in solving for the generalized-inverse coefficients x ( k) 

 linear system grossly of the form: 

atrix B G/SO L A x ( k) = vector B G/SO L A . (15) 

he dominant computational task to set up ( 15 ) is the calculation of
he matrix itself. Importantly, matrix BG ( matrix SO L A ) needs ( not )
o be recalculated for each query point, r k , respecti vel y (Pijpers &
hompson 1992 ; Zaroli 2016 , 2019 ). To have a better understanding
f this last point, note that the BG optimization problem ( 8 ) results
n the following constrained minimization problem to be solved for
he generalized-inverse coefficients x ( k) (Zaroli 2016 ): (

ˆ G 

( k) ( ̂  G 

( k) ) T + η2 I N 
)

x ( k) = 0 N , subject to c T x ( k) = 1 , (16) 

here the dependence in the location r k of the considered enquiry
oint is contained in the matrix: 

ˆ 
 

( k) = 

( 

| r ( j) − r k | 2 √ 

V j 

G i j 

) 

, 1 ≤ i ≤ N , 1 ≤ j ≤ M . (17) 

here r ( j) and r k represent the spatial locations of the central points
f the j th and kth cells of our 2-D tomographic grid, V j represents
he area of the j th cell and the vector c = ( c i ) 1 ≤i≤N has elements:
 i = 

∑ M 

j= 1 G i j . The condition c T x ( k) = 1 in the eq. ( 16 ) reflects the
act that we want to achieve the unimodularity of the averaging
ernel, that is, eq. ( 7 ). On the other hand, the SOLA optimization
roblem ( 11 ) leads to solving for x ( k) this different constrained
inimization problem (Zaroli 2016 ): (
ˆ G ̂

 G 

T + η2 I N 
)

x ( k) = 

ˆ G t ( k) , subject to c T x ( k) = 1 , (18) 

here the dependence in the enquiry point’s location r k is not
ontained in the new matrix: 

ˆ 
 = 

( 

1 √ 

V j 

G i j 

) 

, 1 ≤ i ≤ N , 1 ≤ j ≤ M . (19) 

his represents a crucial computational advantage with regard to
etting up the BG matrix ( 17 ). That is, we do not have to recom-
ute the SOLA matrix for each new enquiry point. The vector
 

( k) = ( T ( k) 
j 

√ 

V j ) 1 ≤ j≤M 

in eq. ( 18 ) mainly contains the M compo-

ents T ( k) 
j resulting from the projection of the target kernel T ( k) 

n the tomographic grid. The task of computing the target kernel,
hat is, t ( k) , is not at all computationall y demanding. As pre viousl y

entioned, we refer the reader to Zaroli ( 2016 )’s Appendix A which
ontains all numerical explanations required to solve ef ficientl y the
OLA system ( 18 ), using the LSQR iterative row action method
Paige & Saunders 1982 )—including mathematical notations con-
istent with those employed in this study. 

Finally, we emphasize that all what is needed for to get started
ith discrete SOLA tomography , in addition to the data and their
ncertainties, is: (i) the same sensitivity matrix (denoted G ) as for
onventional tomography, and (ii) an estimation of the a priori
ocal resolution, to infer the size of target kernels, which may be
ased on simple proxies reflecting the data coverage. It should then
e ‘straightforward’ to move from conventional- to SOLA-based
iscrete IP tomography. 
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4  I N D U C E D  P O L A R I Z AT I O N  

M O D E L L I N G  

The phenomenon of induced polarization (IP) is today an exten- 
si vel y studied subject in geophysics, with very important applica- 
tions in sectors such as mining, environment, oil & gas, etc. Due 
to this importance, many works have been dedicated to the analy- 
sis of its theoretical, computational and application aspects for at 
least 70 yr now (e.g. Bleil 1953 ; Hallof 1957 ; Vacquier et al. 1957 ; 
Marshall & Madden 1959 ; Seigel 1959 ; Sumner 1976 ; Angoran & 

Madden 1977 ; Rijo 1984 ; Oldenburg & Li 1994 ; Li & Oldenburg 
2000 ; Gurin et al. 2015 ; Ahmed et al. 2020 ; Revil et al. 2024 ). 
In this work, we follow the mathematical formulation described in 
Oldenburg & Li ( 1994 ) and Li & Oldenburg ( 2000 ). For numeri- 
cal simulations, we used the open source Python package SimPEG 

(Cockett et al. 2015 ) which has a comprehensive set of flexible 
and efficient codes for modelling/inversion of 2-D/2.5-D/3-D DC 

(Direct Current) Resistivity and IP data. Although a very interest- 
ing topic in itself, it is not our objective to do a re vie w of the IP 

geophysical method here, so we limit ourselves to the descriptions 
of fundamental relations used in this work; the reader interested in 
a complete treatment of the theory, application and computational 
aspects of IP will surely find more than enough information in the 
references cited above and the references therein. We describe here 
the aspects of forward modelling in a 3-D Earth and will revert to a 
2-D Earth later when describing the numerical experiments. 

Let our Earth model be specified by the two physical properties, 
electric conductivity σ ( x , y , z) and chargeability η( x , y , z) . In the
linearized approach used in this work, the IP forward/inverse prob- 
lem is formulated as a two-stage process (Li & Oldenburg 2000 ). 
First, a DC resistivity inversion is carried out to recover the back- 
ground conductivity of the medium. Then the sensitivity matrix for 
the DC problem is computed, using this background conductivity. 
This sensitivity matrix will then be used to specify the forward IP 

problem as described below. 
Following Oldenburg & Li ( 1994 ), the PDE governing the DC 

electric potential φσ is given by { ∇ · ( σ∇φσ ) = −I δ( r − r s ) in �

∂ n φσ = 0 in ∂� , 
(20) 

where I is the amplitude of the electrical current injected in the 
subsurface at position r s . This PDE implicitly defines the forward 
operator F dc [ σ ] for computing the DC potentials φσ such that: 

φσ = F dc [ σ ] . (21) 

In turn, for computing the IP potentials, we assume that the effect 
of the chargeability is to change the ef fecti ve conducti vity of the 
medium (Li & Oldenburg 2000 ). The IP potential φη is obtained 
using the same DC forward operator F dc , this time replacing σ by 
σ (1 − η) , that is: 

φη = F dc [ σ (1 − η)] . (22) 

The actual IP data used for inversion is the apparent chargeability, 
defined as follows: 

ηa = 

φs 

φη

= 

φη − φσ

φη

, (23) 

where φs = φη − φσ is the measured IP secondary potential. Now, 
under the assumption of moderate magnitude of the chargeability 
η, φη is linearized with respect to a background conductivity σ
(Oldenburg & Li 1994 ), thus leading to: 

ηa i = 

∑ 

j 

−∂ ln φηi 

∂ ln σ j 
η j = 

∑ 

j 

G i j η j , (24) 

where G i j = − ∂ ln φηi 
∂ ln σ j 

is the sensitivity matrix ( i = 1 · · · N , j = 

1 · · · M) used subsequently for the IP inversion. Finally, the IP for- 
ward problem can be put in the form of a linear system: 

d = Gm , (25) 

where the vector d ( N data) corresponds to the measured apparent 
chargeability ηa , and the vector m ( M model parameters) represents 
the intrinsic chargeability η. 

In this work, we took advantage of SimPEG (Cockett et al. 2015 ) 
for computations related to the solution of DC resistivity, IP forward 
problems and the computation of IP sensitivity matrices. For the 2- 
D case, the computational domain was discretized using a regular 
grid with σ and η specified at the cell centres of this mesh. Forward 
codes use a 2.5-D formulation to deal with the three-dimensionality 
of the sources in a 2-D medium. We refer the interested reader to 
the SimPEG documentation and tutorials publicl y av ailable on the 
project’s website ( https://simpeg.xyz/ ). 

5  S Y N T H E T I C  DATA  E X A M P L E  

5.1 Geological model and data 

We show in Fig. 1 (a) a simple earth model to illustrate some key 
elements of the SOLA approach. This model is based on a fractal 
pattern known as the ’Sierpinski carpet’, it is similar to the popular 
checkerboard pattern used in many studies related to geophysical in- 
version. The sizes of the perturbations in this model vary throughout 
the inversion domain, which makes it particularly interesting for res- 
olution analyses like those proposed in this work. All blocks have the 
same chargeability values of 0.2 inserted in a background medium 

with electrical conductivity and chargeability equal to 10 −2 S m 

−1 

and 10 −6 , respecti vel y. We defined a dipole–dipole surv e y line dis- 
tributed along the surface in the interval [ −20 , 20] m with a spacing 
of 1 m between stations. The grid used to generate the data is based 
on a central region � = [ −8 , 0] m × [ −20 , 20] m , discretized as a 
regular grid; this region was extended using a quad-tree mesh in 
the horizontal directions and at the bottom of the model to avoid 
boundar y ar tefacts (F ig. 2 ). Moreover, F ig. 3 presents a selection 
of rows from the sensitivity matrix G , illustrating data-sensitivity 
kernels projected onto the modelling grid. Additionally, 5 per cent 
Gaussian noise was added to the computed data. Fig. 1 (b) displays 
the IP data for the entire surv e y. 

5.2 Gallery of SOLA averaging kernels 

We show in Fig. 4 nine SOLA averaging kernels for a point located 
at coordinates r k = ( x, z) = (0 , −1) . We selected 2-D disc-shaped 
target kernels T ( k) with varying radius � k , centred on the same 
enquiry point r k ; the radius � k represents the a priori local resolving 
length. The columns are associated with different values for the 
trade-off parameter ( η = 1 , 20 , 30 ); the ro ws sho w different target 
kernel sizes ( � k = 0 . 1 , 0 . 5 , 1 . 5 m). The purpose of this analysis is
to decide on the optimum values for the target kernel size and 
the trade-off parameter for this particular point. In this example, the 
interpreter could choose a combination with the smallest kernel size 
which still has an acceptable error level (say 10 per cent relative to 
the estimated average), in this case the one in Fig. 4 (e); this error 

https://simpeg.xyz/
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Figure 1. ‘Toy’ experiment: (a) Chargeability ‘true’ model (Sier pinski-car pet fractal pattern), and (b) IP data. 
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evel, we must emphasize, is decided by the interpreter. Once we
ave an initial informed estimate for the trade-off parameters and
he size of the target kernel, we can proceed with the analysis in the
arget domain, computing the SOLA estimates for all cells within
he region �. 

.3 SOLA inversion results in the tar g et area �

ased on the analysis of the previous section, we ran the SOLA
lgorithm in the target region �. This time, we used a different
coarser) grid for the inversion compared to the finer grid used to
ompute the data. The use of a coarser grid significantly reduces
he total execution time while also aligning better with the actual
esolution expected from the results obtained in the previous section.
his ensures that the inversion process is computationally efficient
ithout compromising the reliability of the results. The outcome
f this inversion is presented in Fig. 5 (b), where we also show the
 round-tr uth model in Fig. 5 (a) and the result obtained running
imPEG inversion code (Fig. 5 c), for reference. 
The values for the trade-off parameter and the target kernel size

re generally spatially dependent, reflecting variations in the data
ensitivity across the target region. For this test, we adopted the
nterpolation strategy described in Zaroli ( 2021 ), which is based
n the computed sensitivity matrix. This approach allows for the
f fecti ve interpolation of both the trade-off parameter and the target
ernel sizes, ensuring coherent values throughout the domain. As
 result, the inversion produces a globally consistent estimate of
he solution across the entire region, as shown in Fig. 5 (b). As a
emark, most large-scale SOLA-based seismic tomography studies
ave opted for choosing a (mostly) constant value for the trade-
ff parameter, while making the size of target ker nels var y as a
unction of the local quality of data coverage (e.g. Zaroli 2016 ;
atallerie et al. 2022 ; Amiri et al. 2023 ; Freissler et al. 2024 ),
ith the advantage of lowering the total computational cost, as
entioned earlier. We emphasize again that this choice will be up

o the practitioner and may depend on the size of the problem at
and. 

To further validate the solution, we also examined the error esti-
ates ( σ ˆ m k ), which are shown in Fig. 6 (a) together with the corre-

ponding target kernel sizes (i.e. the radius � k ) in Fig. 6 (b). These er-
or estimates demonstrate consistency across the inversion domain.
n general, this numerical experiment highlights the ef fecti veness

art/ggaf238_f1.eps
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Figure 2. ‘Toy’ experiment: Quad-tree grids used for (a) modelling (i.e. the model grid) and for (b) the SOLA point-wise inversion (i.e. the set of all the 
inquiry points, which correspond to the centres of all the square cells). 
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of the SOLA algorithm in addressing the inversion problem in a 

computationall y ef ficient manner while maintaining accuracy and 
consistency in the results. 

6  S O L A  I N V E R S I O N  O F  F I E L D  I P  DATA  

In this section, our aim is to apply the SOLA method for the inver- 
sion of a field IP data set, in a mineral exploration scenario. The 
Century zinc-lead-silver deposit in Australia has been the subject of 
many geophysical investigations (e.g. Oldenburg & Li 1999 ; Mut- 
ton 2000 ). We used the data shown in Fig. 7 , which corresponds 
to the line 46800E of the DC resistivity and IP data set available 
in the SimPEG tutorial from Heagy ( 2020 ), corresponding to the 
measured apparent chargeability values and their associated stan- 
dard deviations. We computed the SOLA estimates at all the inquiry 
locations r k within the domain �. We chose each target kernel T ( k) 

to be a circular disc centred on r k , since this means isotropic a priori 
resolution. The radius � k of T ( k) represents the a priori resolving 
length around r k . As in earlier 2-D seismic tomography studies (e.g. 
Zaroli et al. 2017 ; Latallerie et al. 2022 ; Amiri et al. 2023 ), the ra- 
dius � k was imposed to be correlated with the spatial data coverage, 
that is, a first-order proxy for a priori resolution. The size of the 
resulting target kernels T ( k) is shown in Fig. 8 (c). We also show, 
for reference the result of the inversion obtained using SimPEG 

( 8 d). We used the same strategy described in Section 5.3 for the 
selection of the resolution–uncertainty trade-off parameter η. Thus, 
we obtained the local average chargeabilities ˆ m k , see Fig. 8 (a), with 

art/ggaf238_f2.eps
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Figure 3. ‘Toy’ experiment: Three examples, for different dipole–dipole inter distances, of the i th row of the sensitivity matrix G , which represents the i th 
data kernel G i ( r ) projected onto the model grid (used for modelling). 

Figure 4. ‘Toy’ experiment: Gallery of SOLA averaging kernels obtained (from top to bottom) when increasing the size of the circular target kernel T ( k) , and 
(from left to right) when increasing the value of the trade-off parameter η. The percentages represent the model uncertainties σ ˆ m k . 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/242/2/ggaf238/8172542 by guest on 14 August 2025

art/ggaf238_f3.eps
art/ggaf238_f4.eps


8 W. Lima and C. Zaroli 

Figure 5. ‘Toy’ experiment: SOLA estimated local-average chargeabilities ( ̂  m k ). (a) True model, (b) SOLA solution and (c) SimPEG solution. 

Figure 6. ‘Toy’ experiment: (a) SOLA estimated standard deviations, σ ˆ m k ; (b) target kernel radius, � k . 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/242/2/ggaf238/8172542 by guest on 14 August 2025
their uncertainties σ ˆ m k , see Fig. 8 (b), and their associated averaging 
kernels A 

( k) . Examples of averaging kernels are shown in Fig. 9 , at 
three par ticular inquir y points, labelled A, B and C, which will be 
used to highlight some specific properties of the SOLA results. Al- 
though SOLA is a point-wise reconstruction technique, we managed 
to recover a ‘collection’ of local-average estimates which altogether 
is globally geolo gicall y meaningful. 
It is important to stress that a correct interpretation of the esti- 
mated averages needs to take into account the associated uncertain- 
ties and corresponding averaging kernels. 

The bigger the averaging kernel support, the poorer the (local) 
resolution. The ideal case, of course, would be to have low un- 
certainties and small averaging kernel sizes, but, due to limita- 
tions of the physics and data acquisition layouts, such an optimal 
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Figure 7. Century IP data for the line 46800E. 
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ituation will seldom be achieved for the entire region in this par-
icular scenario. 

The size and shape of averaging kernels provide us with valuable
nformation about which properties (local-average chargeabilities)
f the unknown ‘true’ Earth can or cannot be inferred with confi-
ence, given their uncertainties. The overall size of an averaging
ernel reflects the local resolution and provides insight into the ac-
ual subregion that contributes to the local average. Fig. 9 shows
hat the actual resolving length at point B is shorter than at points
 and C. Moreover, for points A and C, the averaging kernels are

lightly displaced upward with respect to their inquiry points (green
ots). We also note that their shapes are visibl y dif ferent from the
pecified target kernels and that they contain negative side lobes
ear the surface. For point B, the averaging kernel is approximately
ell centred on its inquiry point and close to its target. 
In summary, when the averaging kernel’s shape (circular in this

ase) and its centre of mass deviate from the specified target ker-
el’s shape and inquiry point, respecti vel y, as for the points A and
, then the SOLA estimates are not well constrained and the in-

erpretation/inference needs to be performed with more caution.
hese deficiencies were expected at points A and C, as they occur

n places of poor data coverage and/or low sensitivity. Note that, in
hese situations, SOLA still gives us valuable information that can
e used to further improve our data acquisition setup, to infer more
obust properties at these locations. 

Our SOLA-based analysis of the Century field data set forms
 complete treatment of the DC/IP problem of inversion (infer-
nce). Besides computing estimates (local averages) for the charge-
bilities, usuall y the onl y quantity estimated in classic inversions,
e also obtained measures of the general uncertainty, that is, by
nalysing the estimated standard deviations and sizes of averaging
ernels. Our chargeability estimates are in agreement with pre-
ious works (considering the fact that we are explicitly estimat-
ng averages), and our maps of uncertainties and averaging ker-
els are globally consistent. In general, the uncertainties are small,
nd the averaging-kernel sizes tend to increase in regions where
 i  
he data coverage is poorer and/or the data sensitivity is reduced,
hat is, on the sides of the domain � and at increasing depth, as
xpected. 

SOLA also offers a way towards painting a better portrait of the
nfluence and limitations of the data acquisition setup and physics
or this particular geophysical method, as applied to the estima-
ion (inference) of rock chargeabilities. As a final remark, to take
ull advantage of SOLA, robust estimates of data uncertainties are
equired. Indeed, they are directly propagated into local-average
ncertainties; see eq. ( 6 ). Since this task is often non-trivial across
he communities, including the seismology and geophysical elec-
romagnetic ones, this study also should moti v ate researchers to
dvance further the way DC/IP data uncertainties are estimated. 

 D I S C U S S I O N  

he SOLA tomographic scheme (Zaroli 2016 ) of fers se veral ad-
antages that complement standard inversion methods commonly
sed in the geophysical-electromagnetic community: (i) Localized
nd target-oriented solutions: SOLA provides a complete, localized
olution to the (linear) IP inverse problem, solving independently
or each enquiry point in the domain. (ii) Comprehensive uncer-
ainty quantification: It simultaneously delivers the estimated local
verages with their associated standard deviations and averaging
ernels, the latter representing a measure of the local resolution.
iii) Unbiased averaging kernels: By design, the averaging kernels
roduced by SOLA are unbiased, unlike, for instance, the resolving
ernels derived from damped least-squares inversions. 

The SOLA approach is more efficient with regard to inversion
pproaches for the task of building a model (or model proxy) ac-
ompanied with information on its resolv ability. Howe ver, tradi-
ional inversion techniques are more computationall y ef ficient than
OLA if one wants to quickly build a model without such infor-
ation. Indeed, if SOLA is applied to the entire inversion domain,

t must be repeated, say, thousands of times, because it operates
ndependently at each spatial point. Another way to think of SOLA

art/ggaf238_f7.eps
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Figure 8. Century IP inversion: (a) SOLA estimated local-average chargeabilities ( ̂  m k ), with (b) their associated uncertainties (standard deviations σ ˆ m k ), and 
the (c) SOLA target kernel sizes (radius � k ). In (d) we also show, for reference, the solution obtained using SimPEG. 
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is as an addition to other inversion techniques, not a replacement for 
them, depending on the situation. Performing a SOLA analysis for 
a few regions of particular interest, after analysing an initial model 
solution obtained for the entire domain using standard inversion 
approaches, would be a helpful workflow in this regard. Addition- 
ally, choosing appropriate target kernels and the trade-off parameter 
requires special attention. Although w e ha ve proposed a systematic 
strategy for their selection, it is still a topic that needs to be further 
investigated, including in the context of IP tomography. 

Finally, despite the relatively higher computational demands, our 
numerical tests demonstrated that the SOLA method remains prac- 
tical: for example, processing the synthetic test data took approxi- 
mately 16 min on a laptop with 32GB of RAM, Intel 7 processor 
3.8 GHz. It took much longer compared to under 10 s for a single 
inversion using SimPEG. Given that SOLA also offers information 
on the model’s resolvability, whereas SimPEG does not for this 
comparison, this additional time is undoubtedly within acceptable 
bounds. 

8  C O N C LU S I O N  

We have assessed, for the first time, the applicability of the SOLA to- 
mographic method (Zaroli 2016 ) for the inversion of IP data. SOLA 

has allowed us to carry out quantitative resolution and uncertainty 
analysis of the obtained collection of local average chargeability 
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Figure 9. Century IP experiment: SOLA averaging kernels for three particular enquiry points. The black circles indicate the associated target kernels. 
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stimates. We have demonstrated the great potential and benefits of
OLA for applications with electric/electromagnetic geophysical
ata. It is still a computationall y intensi ve technique; on the other
and, its point-wise estimation nature allows its use in a target-
riented manner. The analysis carried out in this study has the
otential to be applied in a wide range of inversion scenarios in
lectrical and electromagnetic geophysics. We anticipate exciting
uture applications for this sophisticated and robust new inversion
inference) methodology. 
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he SimPEG code (Cockett et al. 2015 ) is used to compute the
olution of DC resistivity, to set up the IP forward problem and IP
ensitivity matrix, and is available at: https://simpeg.xyz/ . The DC
esistivity and IP data set (Heagy 2020 ) is used and available at:
ttps://github.com/simpeg/tr ansfor m- 2020- simpeg . The ‘discrete’
ersion of SOLA tomography consists in running the LSQR al-
orithm (Paige & Saunders 1982 ) with specific, study-dependent ,
nput matrices and vectors, corresponding to personal choices (e.g.
ata kernels, model discretization, target kernels), as detailed in
aroli ( 2016 )’s Appendix A. The LSQR code is available at (Stan-
ord’s Systems Optimization Laboratory): https://web.stanford.edu
group/SOL/sof twar e/lsqr / . 

The Jupyter notebooks containing the code and data used for the
ests can also be found at https://github.com/ghwilliams/GJI2025 S
LA IP . 
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