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SUMMARY

Since most tomographic problems deal with imperfect data coverage and noisy data, an
estimate of the seismic velocity in the Earth can only be a local average of the ‘true’ velocity
with some attached uncertainty. We use the SOLA (subtractive optimally localized averages)
method, a Backus—Gilbert-type method based on the resolution—uncertainty trade-off, to build
a range of models of Rayleigh-wave velocities in the Pacific upper mantle. We choose one
solution and show how to analyse the model using its resolution and uncertainties. We exploit
the model statistics to evaluate the significance of deviations from a theoretical prediction: a
half-space cooling model of the Pacific lithosphere. We investigate a slow-velocity anomaly
located northeast of Hawaii, at about 200 km depth, and a pattern of alternatively slow- and
fast-velocity bands, aligned approximately northwest to southeast, between 200 and 300 km
depth. According to our resolution and uncertainty analyses, both features seem to be resolved.

Key words: Pacific Ocean; Inverse theory; Seismic tomography; Surface waves and free

oscillations.

1 INTRODUCTION

To understand how Earth’s upper mantle behaves, we require robust
estimates of its physical properties and how they vary laterally and
with depth (e.g. Mégnin et al. 1997; Foulger 2011; Simmons ef al.
2019; Freissler et al. 2020). We can estimate one such property,
S-wave velocity, using surface wave tomography.

Most tomographic studies are performed by minimizing the
squared differences between data predicted using the model and
actual measured data, using one of many variations of the damped-
least-squares inversion scheme (e.g. Maggi et al. 2006; Zhou et al.
2006; Nettles & Dziewoski 2008; Panning et al. 2010; Ekstrom
2011; French et al. 2013; Auer et al. 2014; Liu & Zhou 2016; Isse
et al. 2019). The studies cited show consistent images of large-
scale structures (lithosphere cooling signatures, superswells and
cratons) and of structures that produce strong, localized S-wave
velocity anomalies (subduction zones and ridges). These images
differ, however, at shorter scales and for structures that produce
weaker anomalies. For instance, the model savani of Auer et al.
(2014) is ‘slow’ in the region of Hawaii at 200 km depth; on the
contrary, this region is ‘fast’ in the model SEMum?2 of French et al.
(2013) [see e.g. fig. S7 from Isse ez al. (2019) showing comparisons
of various models].

Although some of these discrepancies may be imputed to differ-
ences in theoretical approaches (forward or inverse methods) used
by the aforementioned studies, many discrepancies simply reflect
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how large uncertainties in the initial seismic measurements prop-
agate into the final tomographic models. To compare tomographic
models with each other—or to compare them to some prior, tectonic-
based, conceptual model of the Earth—we need reliable estimates of
their uncertainties (e.g. Rawlinson ez al. 2014; Simmons ez al. 2019;
Freissler et al. 2020). Unfortunately, because many damped-least-
squares inversion schemes are optimized to invert large volumes of
data to constrain large numbers of model parameters (e.g. Debayle
& Sambridge 2004), they often do not keep track of how data un-
certainties propagate into the tomographic models; for large-scale
tomographic problems, most studies using these methods do not
compute explicit model uncertainties, yet robust interpretation of
features requires comparing the magnitude of the anomalies with
the model uncertainties. For smaller scale tomographic problems,
these methods only provide at best an a posteriori estimate of the
uncertainties and cannot control them directly.

This difficulty derives from the manner in which earthquakes
and seismic stations are distributed geographically: some regions
may be sampled by many independent surface wave ray paths; other
regions may be poorly constrained. This irregular data coverage
causes the inverse problem to be underdetermined: within poorly
covered parts of a region, the model can change widely without
changing how it fits the data. Which model we choose is, in some
sense, arbitrary (Scales & Snieder 1997; Nolet 2008). Some tomo-
graphic studies make use of irregular or adapted meshes to account
for the heterogeneous distribution of the data (e.g. Sambridge &
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Rawlinson 2005). Many tomographic studies use ad-hoc regular-
ization constraints to reduce the non-uniqueness of the model solu-
tion; they often minimize the model’s complexity by damping the
inversion (e.g. Nolet 2008, chapter 14)—hence the name damped-
least-squares inversion. Such inversions may underestimate seismic
velocity anomalies where data coverage is poor; less intuitively,
they can also overestimate velocity anomalies where data coverage
is highly uneven. In either case, we call such models locally biased
(in the sense of ‘averaging bias’ effects, as reported by Zaroli et al.
2017).

Half-a-century ago, Backus and Gilbert proposed an original ap-
proach to invert linear geophysical data designed to produce com-
plete uncertainty information, optimize local resolution and elimi-
nate bias (Backus & Gilbert 1967, 1968, 1970). Instead of searching
for a model that fits the data with some smoothness criterion, the
Backus—Gilbert method searches for a model that has optimal res-
olution given the geometry and uncertainties of the data. Pijpers
& Thompson (1992, 1993) reformulated the method, applied it to
helioseismology and named it subtractive optimally localized aver-
ages (SOLA). More recently, Zaroli (2016) introduced and adapted
the SOLA method to seismic tomography problems with large num-
bers of parameters; he then applied this new inversion scheme to
obtain a body wave tomographic model of the lower mantle. The
SOLA Backus—Gilbert method still suffers from a form of non-
uniqueness, as model resolution and model uncertainties trade off
against each other. Despite not being designed for that purpose,
the method also leads to models that fit the data. Note that SOLA
tomography can deal with heterogeneous spatial distribution of the
data and usually produces models with no averaging bias. Compu-
tationally, the SOLA formulation of the Backus—Gilbert approach
remains tractable even when dealing with large-scale tomographic
problems (Zaroli 2016; Zaroli et al. 2017). Lastly, it provides the full
resolution and model uncertainties, which are the model statistics
necessary to draw well-informed conclusions from the tomographic
model.

In this study, we use the SOLA inversion to produce tomographic
images of the Pacific upper mantle from path-averaged shear wave
velocity profiles obtained from surface waves. After discussing how
resolution and uncertainty trade off in our models, we illustrate how
to use them to perform meaningful comparisons of tomographic
images with a geodynamic prediction. Taking as a reference a simple
half-space cooling (HSC) model (Parker & Oldenburg 1973), we
point out anomalous regions in our tomographic model and we argue
about their statistical significance and whether they are resolved or
not.

2 DATA AND METHOD

Most surface wave tomography studies that produce 3-D shear wave
velocity models proceed in a sequence of two steps: either they first
make 2-D phase- or group-velocity maps at various frequencies
(linear tomographic inversion) and then combine them to obtain
depth-dependent shear wave velocity profiles at each point in the
map (nonlinear inversion)—examples are Ekstrom (2011) or Liu
& Zhou (2016)—or they first invert for 1-D shear wave profiles
as a function of depth along each source-station path (nonlinear
inversion) and then combine these path-averaged velocity profiles
into maps at each depth (linear tomographic inversion)—examples
are Maggi et al. (20006) or Isse et al. (2019). Each sequence contains
both a linear and a nonlinear inversion. Only the linear inversion
can be performed using the SOLA method.

2.1 Path-averaged velocity and uncertainty

As we aim to discuss how SOLA can improve the way we interpret
seismic tomography images, we have chosen to apply the method on
a pre-existing data set of path-averaged shear wave velocity profiles
obtained from Rayleigh waves (Maggi et al. 2006). These profiles
range from 50 to 450 km depth and were obtained by inverting over
56 000 multimode surface waves whose paths crossed the Pacific
Ocean, using the Debayle (1999) automation of the Cara & Lévéque
(1987) secondary observables method. After obtaining a shear wave
velocity profile for each path, Maggi et al. (2006) gathered similar
paths (those whose end points were within 200 km of each other)
into ~15 000 clusters, obtained the average velocity profile of each
cluster (Fig. 1a) and estimated the uncertainty of the velocities using
the standard deviation in each cluster. These clustered path-averaged
shear wave velocities are the input data for our SOLA inversion.

The robustness of the analysis later in this paper relies on the
reliability of the data uncertainty estimates. The approach of Maggi
et al. (2006) to estimate the data uncertainty captures the stochas-
tic uncertainty: it measures the variability between adjacent paths
within one cluster due, for example, to random measurement errors
or to random errors in the location of the earthquakes in the cluster.
However, it does not account for errors that would affect identically
all paths in a cluster; for example, neglecting off-great-circle paths
due to some lateral heterogeneity or mislocating all earthquakes in
the same direction due to lateral heterogeneities or network con-
figuration. Data uncertainties from Maggi et al. (2006) decrease at
larger depths because paths along which long-period and higher-
mode data were unavailable were damped towards the background
model, a smoothed version of PREM (Dziewonski & Anderson
1981). As all the path-averaged models tend towards the same val-
ues when the sensitivity decreases, the stochastic uncertainties also
decrease.

Since the Maggi et al. (2006) approach considers only stochastic
uncertainties, it underestimates the full data uncertainties. Because
the data uncertainties influence the SOLA inversion and propagate
directly into model uncertainties (see Section 2.2), we needed more
reliable estimates of them. We calculated the 2, for the final model
of Maggi et al. (2006) (e.g. Nolet 2008):

- 1< " Gy ;) — d;i]?
= L 30 B G —dl: 0

i=1 94;

where m; is the jth model parameter, M is the number of model
parameters, d; is the ith datum, N is the number of data, G;; are
the elements of the sensitivity matrix of size N x M such that
27:, G;;m  is the ith predicted data and o, is the ith data uncer-
tainty. The values of x2, at all depths are much greater than one
(see Table 1). Two reasons may explain these values. First, Maggi
et al. (2006) may have chosen an overdamped solution to ensure that
all features in their model were interpretable. Second, the data un-
certainties may be underestimated because they do not account for
systematic bias. To obtain more reliable data uncertainty estimates,
we assume that the final model of Maggi ef al. (2006) is a model
that explains the data so that the x2; values should be one, then
we rescaled the data uncertainties by the factor required to bring
X2q = 1, that is we multiplied each data uncertainty by (x2,)"/* at
the corresponding depth (see Table 1).
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Figure 1. Data geometry and target resolution at 75 km depth. Thick green lines indicate plate boundaries. (a) Each thin line represents one of the ~15 000
paths from Maggi ef al. (2006) used as input to the SOLA tomography; the colour of each path is the path-averaged shear wave speed at 75 km depth in the
1-D model corresponding to the path. (b) Path density (total path length that falls in each cell normalized by the total path length over the entire model). (c)

Target kernel radii.

Table 1. szed values at various depths for the damped-least-squares model of Maggi et al. (2006).

Depth (km) 50 75 100 150

200 250 300 350 400

2
x4 3378 3199 2.630

2216

1.648 1.561  1.542 1.579 1.497

2.2 Regionalization with SOLA

We divide the Pacific region into independent depth layers, each of
them divided into cells of 2° in latitude and longitude. Each model
parameter m; (j = 1,..., M) represents the shear wave velocity in cell
j. Each datum d; (i = 1,..., N) represents the average shear wave
velocity along the ith source-receiver path. The sensitivity matrix
G linearly relates the data to the velocities as follows:

M
di= " Gym; +n, )
j=1

where n; denotes a noise term (we assume uncorrelated zero-mean
Gaussian noise). The tomographic problem is ill-posed because
some regions are undersampled and contradictions may arise from
the noise in the data. Therefore, the linear sensitivity matrix G is not
invertible and we have to seek a ‘generalized’ inverse matrix GT,
such that the kth parameter estimate 71, can be written as a linear
combination of the data:

N N M N
=Y 6% =33 6"G,m,+> 6!“n,. (3)
i=1

i=1 i=1 j=1

Here, k refers to the kth grid cell, GI® = (le‘)),-zlw v represents
the kth row of the G' matrix (k may vary from 1 to M)and R = G'G
is called the resolution matrix. We define the kth averaging (or
resolving) kernel as

AR — (A;k) = R_(-I{)/Sj)jzl ,,,,, M @)

where R;.k) =" Gj(k)G,i,« are the elements of the kth row of the
resolution matrix. The factor §; is, in our case, the cell surface
area; it appears because the model parametrization has cells with
different sizes.

If the problem were well-posed, the sensitivity matrix would be
invertible, the resolution matrix would be the identity matrix and

the model estimate # would equal the true model m. In practice,
the model estimates are local averages of the true Earth. The kth
row of the resolution matrix R® (closely related to the kth averag-
ing kernel through the term S;) relates 71 to the true parameters
(my ~ 2?21 Rﬁ.k)mj = Zj”:l S]-A;k)mj). In the Backus—Gilbert ap-
proach, we want each averaging kernel to be centred and peak-
shaped around the location of its corresponding model parameter.

The model estimate 71, also contains the term GT®pn that re-
flects propagation of data noise into model space. Note that smaller
averaging kernel sizes lead to higher model uncertainties (Menke
1989). This can be understood intuitively: fewer data can be aver-
aged within smaller averaging kernels, leading to fewer chances for
data errors to cancel out. There is, therefore, a trade-off between
good resolution and low model uncertainties.

The model uncertainty is defined statistically as

)

In this study, we assume uncorrelated zero-mean Gaussian data
uncertainty. Thus, the data covariance matrix is diagonal: C;, =
diag(ajl_), i =1,..., N. Note that it would be possible to consider
non-diagonal data covariance matrix in the SOLA approach (Pijpers
& Thompson 1992) but we ignore off-diagonal terms for simplicity.

The key idea of the SOLA method is to specify an a priori tar-
specify some a priori information on the model resolution, which
is fundamentally different from specifying a priori information on
the model itself (as in data-fitting methods such as Bayesian meth-
ods and damped-least-squares). Rather than minimizing the spread
(spatial extent) of each averaging kernel, A%, as in the original
Backus—Gilbert approach, the SOLA variant aims to minimize the
integrated squared difference between each averaging kernel, 4%,
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and its corresponding target kernel, T®. A minimization problem
directly computes each generalized inverse vector for each kth pa-
rameter:
arg min Ziw:l Sj(A;k) — Tj(k))2 + 0oy,
GT® gy (6)
such that 27:1 SjA;.k) =1,

where 7 is a trade-off parameter to give more weight to the reso-
lution or to the model uncertainties in the optimization. Eq. (6) is
independent for each model parameter; therefore, efficient parallel
computations are possible. We could adapt the trade-off parameter
n for each model parameter but this would reduce the optimiza-
tion of calculation; here, we adapt only the target resolution. The
constraint that the averaging kernels should be unimodular means
that SOLA tomographic models should be free of averaging bias; a
condition that cannot usually be guaranteed with inversion methods
incorporating regularization (Zaroli et al. 2017).

The target resolution for a parameter is non-zero only in a cir-
cular region around that parameter’s location; the circle’s radius is
computed from the path density:

(N

lo p)— lo Pmin
I’(p) = Fmax — (Vmax - l"min) ( g]()( ) g]()( ) > B

loglo(pmax) - IOgIO(pmin)

where 7 is the target kernel radius, p is the path density, o, and
Pmax are the minimal and maximal path densities, and 7y, and 7pax
are the minimal and maximal target kernel radii. The values of 7,
and 7y, are chosen based on an estimate of the a priori resolving-
length bounds, which depends on the dominant wavelengths and
path lengths within the data set. The logarithms lower the spatial
variations of the target kernel radii compared to those of the path
density. This smoothing is important to avoid tomographic images
that would be difficult to interpret if nearby averaging kernels had
widely different sizes. Other formulae could be chosen to reduce
even further the spatial variability of the target kernel radii. Figs 1(b)
and (c) show the path densities and target resolution length calcu-
lated for the path distribution in Fig. 1(a). We show several target
kernels in Fig. 2(a).

The optimization problem (eq. 6) involves the rows of the gen-
eralized inverse through the averaging kernels 4% (eq. 4) and
model uncertainties o, (eq. 5). It leads to a set of independent
equations whose unknowns are the rows of the generalized in-
verse. Derivation of these equations from eq. (6) can be found
in Zaroli (2016). These equations are solved using the LSQR algo-
rithm of Paige & Saunders (1982) as proposed by Nolet (1985) and
Zaroli (2016). Once the kth row of the generalized inverse GT® has
been computed, one obtains the associated model solution 72, from
eq. (3), the model uncertainty oy, from eq. (5), and the averaging
kernel AP from eq. (4). For further details, the reader is referred to
Zaroli (2016), Zaroli et al. (2017), and Zaroli (2019).

3 TOMOGRAPHIC RESULTS

In this section, we present the effects of varying the trade-off pa-
rameter 7 in eq. (6), choose a value for 1, describe in more detail
the features of the resulting tomographic model, and illustrate how
to take resolution and uncertainty into account when comparing a
tomographic model to the theoretical predictions of a simple geo-
dynamic model (HSC).

3.1 Resolution, uncertainty and model estimate for
various trade-off parameters

All tomographic inversions have trade-offs. In damped-least-
squares inversions, model smoothness trades-off against data fit
(smooth models fit the data poorly, but rough models risk fitting the
noise part in the data). In SOLA, model resolution trades-off against
model uncertainty. Fig. 2 shows a selection of target kernels 7%
and averaging kernels A® for three values of the trade-off param-
eter 7. The averaging kernels have dome-like centers and ramified
extremities and are better focused for lower trade-off parameter
values. They look like the results of the synthetic spike or point-
spread tests used in some tomographic studies to approximate the
resolution of their models (e.g. Rawlinson & Spakman 2016). For
a trade-off that favors low model uncertainties but poor resolution,
Fig. 2(b), the ramifications of the averaging kernels extend far from
the model parameter location, their magnitudes are non negligible,
and they follow the non-uniform azimuthal path coverage. This is
the well-known smearing effect, visible in the averaging kernel in
the northeast of Hawaii, where paths have a predominant north-
east to southwest orientation. In regions where the azimuthal path
coverage is better, we do not see such artefacts. This is the case,
for example, in the northeast of Japan where the averaging kernels
are compact and nearly circular. Improving the resolution by lower-
ing n makes the averaging kernels more circular and decreases the
length and magnitude of the ramifications. The averaging kernels
may have a small negative component, which is physically mean-
ingless. A strong negative component would indicate that the target
resolution was badly chosen and invalidate the results; in our case,
it is small enough to be ignored.

A complete set of averaging kernels—one map for each model
parameter—would fully represent the resolution of a SOLA inver-
sion, but would be cumbersome and difficult to use when interpret-
ing tomographic models. To simplify this information, we compute
for each model parameter k a resolution length L; corresponding
to the radius of a circle that contains 68 per cent of the averaging
kernel—a proxy to the standard deviation for a 2-D Gaussian (grey
circles in Fig. 2). This proxy to the resolution is not ideal if the
averaging kernel has a very complex shape, especially in case of
smearing. For example, the grey circles on Fig. 2(b) do not rep-
resent well the averaging kernels when the ramifications are long
and strong (especially for those in the middle of the Pacific plate).
Note that other simplifications of the resolution could be used; for
instance we could fit an ellipse to the averaging kernels to obtain a
main direction in case of anisotropic resolution (smearing). How-
ever, since our averaging kernels are mostly circular, we use the
circular approximation for simplicity. The top row of Fig. 3 shows
resolution maps for three values of the trade-off parameter. In all
maps the resolution is bad at the model borders and in the central
Pacific Ocean, where path coverage is poor. As the trade-off param-
eter decreases, resolution improves in the central Pacific, though the
improvement seems to level off between n = 0.5 and n = 0.01.

Before choosing a value for 7, we must also examine the influ-
ence on the model uncertainties. Note that in this paper we express
the uncertainties in the 1o sense: there is a 68 per cent probability
that the true locally averaged shear wave velocity lies within the
uncertainty interval around the estimated value. The middle row
of Fig. 3 shows model uncertainties for the same three values of
n. As predicted by the nature of the trade-off, model uncertain-
ties worsen as the trade-off parameter decreases, whereas model
resolution improves. Decreasing n from 3 to 0.5 improves reso-
lution greatly while increasing model uncertainties only slightly;
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Figure 2. Examples of SOLA target kernels 7 (a) and corresponding averaging kernels 4% (b-d) at 75 km depth for n=3, 0.5 and 0.01. Blue circles
indicate the edge of the target kernel discs; grey circles contain 68 per cent of the averaging kernel amplitude. For convenience, several target (or averaging)

kernels are plotted on the same map.

however, decreasing 1 again from 0.5 to 0.01 improves resolution
only slightly while increasing model uncertainties greatly. As n
changes, model resolution and uncertainties follow a well-known
L-curve (see Backus & Gilbert 1970). Fig. 4 shows mean resolution
(ﬁ Z/{W:1 L) versus mean uncertainty (ﬁ Z,y:l oy, ) for five values
of the trade-off parameter, including 3, 0.5 and 0.01.

The bottom row of Fig. 3 shows tomographic models at 75 km
depth for the same three 1 values discussed above. As expected,
the tomographic models are smoother where resolution lengths are

large and uncertainties low, and rougher where resolution lengths
are low and uncertainties high. No single model is intrinsically
better than another: the poor resolution, low uncertainty model in
Fig. 3(c) would be appropriate if we were interested in high precision
estimates of the average shear wave velocity over large patches;
the better resolution, higher uncertainty models in Fig. 3(f) or (i)
would be appropriate if we were interested in smaller anomalies we
expect to be strong enough to be detectable despite the increased
uncertainties.
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Figure 3. SOLA inversion results at 75 km depth for three values of trade-off parameters: n = 3, 0.5 and 0.01. Each column corresponds to a value of  and
from top to bottom, maps show resolution lengths (L) (a, d and g), model uncertainties (b, e and h) and shear wave velocities (c, f and 1).

In the next subsection, we describe in more detail the n = 0.5 3.2 Detailed analysis of one tomographic solution
tomographic solution, whose resolution lengths are on average short
enough that the model is not too smooth, and whose uncertainties
are on average low enough not to swamp all its features.

For any tomographic inversion, resolution, model uncertainty, and
model smoothness are intrinsically linked to path coverage and data
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Figure 4. Mean resolution versus mean uncertainty of SOLA results for five values of the trade-off parameter n (5, 3, 1, 0.5 and 0.01) indicated on the curve.
The slope from = 3 to n = 0.5 is more negative than from n = 0.5 to n = 0.01. This is consistent with the apparent variations of the model statistics in Fig. 3.

As n changes, model resolution and uncertainties follow an L-curve.

quality. The best-sampled regions for our inversion are the eastern,
northern and western borders of the Pacific ocean (Fig. 1): these re-
gions are strongly seismogenic and host many seismic stations. The
interior of the Pacific ocean and its southern boundary are sparsely
sampled, except near Hawaii and French Polynesia where Maggi
et al. (2006) exploited both permanent stations and temporary de-
ployments (Barruol 2002) to increase local path coverage.

The resolution map in Fig. 3(d) shows that the well-sampled re-
gions have the best lateral resolution: the radii of the circles that
approximate the averaging kernels in these regions are between
300 km and 500 km. The Pacific ocean itself has a poor resolution,
around 800 km on average. The regions west of Hawaii and west of
the French Polynesia have better resolution (550 km) because the
seismic networks installed within those archipelagos record earth-
quakes that occur on the western boundary of the Pacific plate. The
best resolved region is northeast Australia, where the resolution
length is below 300 km; the worst resolved region away from the
model’s edges is located southeast of Hawaii, where the resolution
length is greater than 1000 km. But the resolution is not only re-
lated to the path coverage: the data uncertainties also influence the
achievable resolution and model uncertainties.

The uncertainty map in Fig. 3(e) shows that model uncertainties
and model resolution do not always correlate. In some well-resolved
regions, such as the Philippine Sea, Tonga-Kermadek, and central
America, the locally averaged shear wave velocities are known to
within 0.02 km/s. In these regions, we can resolve and interpret
small features, even those that generate only moderate shear wave
velocity signatures. In some poorly resolved regions, such as the
central Pacific Ocean, shear wave velocities are known to within
greater bounds (0.07 km/s on average); here it becomes harder to

interpret features unless they are large and generate strong shear
wave velocity signatures. Well-resolved regions may also display
high model uncertainties: in the northern Pacific and off the coast
of northeast Australia, the resolution length is close to 300 km,
yet the uncertainties are similar to those in the central Pacific. In
such regions, we can interpret features, regardless of their size, only
if they generate strong shear wave velocity signatures. This is a
reminder that we need both resolution and uncertainty information
for interpreting tomographic models.

The shear wave velocity maps at 75 km depth (Fig. 3f), 125 km
depth (Fig. 5¢), and 400 km depth (Fig. 5f) show all the large-
scale geological features we may expect in tomographic images
in oceanic regions: low shear wave velocities down to ~100 km
depth beneath the East Pacific Rise and the Pacific-Antarctic Ridge;
fast velocities in the subduction zones (at least down to 200 km
depth) and lower velocities in their backarc regions; high velocities
from 75 to ~200 km depth in the North American and Australian
cratons; velocities that increase with distance from the mid-ocean
ridges down to depths of ~150 km. Unsurprisingly, given we have
used their shear wave velocity profiles, Maggi et al. (2006) also
saw similar features, though with slightly poorer resolution, as their
damped-least-squares tomographic inversion used a single smooth-
ing parameter for all locations in the model.

The resolution and uncertainty maps at 125 km and 400 km depth
(Fig. 5) look like those at 75 km depth (Figs 3d and e). This is not
what we would expect given the behaviour of surface waves. Deeper
regions of the upper mantle can only be resolved by longer-period or
higher-mode surface waves, both of which have long wavelengths
(so poor lateral resolution) and cannot be observed clearly on all
paths; therefore, we would expect the resolution lengths to increase
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with depth. The reason those in Fig. 5 stay constant stems from the
data we used in the SOLA inversions: path-averaged shear wave
velocity profiles from Maggi et al. (2006), each one the result of
a nonlinear inversion of surface wave measurements. Where long-
period and higher-mode data were available, shear wave velocity
profiles were constrained by data down to 400 km depth; where these
data were unavailable, the profiles were damped, at depth, towards
the background model: a smoothed version of PREM (Dziewonski
& Anderson 1981). It is likely, therefore, that many of the veloc-
ity profiles used for the SOLA inversion are uninformative below
~300 km depth; we could not remove them from our inversion with-
out redoing Maggi et al. (2006)’s entire analysis, which was outside
the scope of this study. In the following, therefore, bear in mind that
the resolution maps (and for a similar reason the uncertainty maps)
in Fig. 5 are overly optimistic at depths beyond ~300 km.

4 MODEL ASSESSMENT BASED ON A
PLATE COOLING MODEL

The tomographic maps of Fig 3 show an increase in seismic velocity
with distance from the mid-oceanic ridges. This is connected with
the well-known phenomenon of plate cooling (e.g. Ritzwoller et al.
2004; Faul & Jackson 2005; Priestley & Mckenzie 2006; Isse et al.

2019). Armed with complete resolution and uncertainty informa-
tion, we investigated if any features of these tomographic images
deviated significantly from the predictions of a theoretical cooling
model and if such deviations were well-resolved.

4.1 The reference model

We chose to use the simple HSC model of Parker & Oldenburg
(1973) to illustrate our process of comparing tomographic images
to theoretical predictions, not because we believed it to be the best
thermodynamic fit to the ocean-cooling problem, but because it has
the fewest adjustable parameters. Even with an unsuitable reference
model, the analysis would still be relevant as it would simply lead
us to state that the tomographic velocities differ significantly from
the reference model.

The HSC model describes the lithosphere as an infinite half-space
of thermal diffusivity & that cools from a starting temperature ®,,.
It predicts the temperature of the lithosphere as a function of age ¢
and depth z from the following expression:

1
Q(t, z) = O,erf (z,/ 4kt> , ®)

where erf stands for the error function. We take ®,, = 1300°C
and k = 1.107°m%s™!, as suggested by Ritzwoller et al. (2004).
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We turned this expression into temperature maps at each depth by
relating age to geographic position using the age model of Miiller
et al. (2008), then projected them onto our tomographic grid: the
predicted temperature in cell j at depth z is given by ©;(z) = O(t;,
z), where ¢; is the average age of cell .

We then had to relate temperatures predicted as a function of
position with tomographic images that contained velocity esti-
mates representing finite-resolution local averages. In order to make
meaningful comparisons, we needed to account for this resolu-
tion and consider equivalent local averages of the predicted tem-
peratures rather than the temperatures themselves. We obtained
these local temperature averages using the resolution matrix :
@(z) = Z’,W:l R;k) (2)®(z), a procedure known as tomographic fil-
tering (e.g. Ritsema et al. 2007; Simmons et al. 2019).

In order to convert the locally averaged predicted temperatures
to shear wave velocities, we needed to make some assumptions
about the relationship between these two physical quantities that
were at least partially supported by rock physics. We assumed that,
in regions distant from both ridges and subduction zones, mantle
temperature and shear wave velocities were linearly related (e.g.
Chen et al. 1996; Foulger 2011,section 5.1.2 pp. 147). We therefore
performed a linear regression between the locally averaged temper-
ature maps and our tomographic images to obtain locally averaged
predicted shear wave velocities. In the following, we will refer to
this predicted shear wave model as the HSC reference model.

Figs 6(a) and (b), 7(a) and (b), and 8(a) and (b) show compar-
isons between the SOLA tomography results and the HSC model
predictions at 75 km, 200 km, and 275 km depth on the Pacific plate.
Unsurprisingly, the HSC predictions look like the long-wavelength
component of the tomographic images. The lithospheric cooling
signature is visible at 75 km depth, but absent below the deepest
extent of the oceanic lithosphere (~150 km).

4.2 Deviations from the reference model

Figs 6(c), 7(c) and 8(c) show the differences between the tomo-
graphic model and the HSC reference model at 75, 200 and 275 km
depths. Red anomalies correspond to areas where the tomographic
model is slower than HSC; black anomalies correspond to areas
where the tomographic model is faster than HSC. We used the
model uncertainties to assess the significance of these anomalies.
Panels (d) of the same figures show the deviations from the reference
model scaled by the uncertainties. A region could be considered
anomalous with a confidence threshold of 68 per cent if the velocity
difference with respect to the reference model exceeds the tomo-
graphic uncertainties by more than +10,, (panels (¢) of the same
figures). A region could be considered anomalous with a confidence
threshold of 95 per cent if the velocity difference with respect to
the reference model exceeds the tomographic uncertainties by more
than +20,, (panels (f) of the same figures). Since the estimation of
the data uncertainties could be improved, so could the model uncer-
tainties, we present +10,, and +20,, maps to appreciate a range of
uncertainties.

However, just identifying anomalies as exceeding +10,, or +20,
is not enough to declare them significant, because even if the Earth
were in reality identical to the prediction of the HSC model, we
would still expect 32 per cent of points in a tomographic model with
uncertainties o, to exceed =10, and 5 per cent of them to exceed
+20,,. We could be justified in declaring anomalies to be signifi-
cant only if more points than expected exceed the +10, and +20,
thresholds, or if these points organized geographically in coherent
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regions and these anomalous regions could indeed be resolved by
the tomography (anomalies larger than the resolving lengths). This
definition of significance is stricter than the one used in most tomo-
graphic studies, including Maggi et al. (2006), and underlines the
importance of correctly estimating the data uncertainties that feed
into the estimates of o ,.

Table 2 shows the proportion of points that remain in the to-
mographic models after applying the =10, and +20,, masks: at
lithospheric depths, the proportions of such points do not exceed
greatly the expected ones (0.32 and 0.05); however, as depth in-
creases, so do the proportions of points exceeding the £1o,, and
+20,, levels. In Section 2.1 we discussed that the data-uncertainties
from Maggi et al. (2006), and hence our estimates of ¢ ,,, may have
been underestimated especially below ~300 km. For this reason,
we have limited our analysis of significant anomalies to depths
shallower than ~300 km.

4.3 Significant anomalies

At lithospheric depths (75 km), the proportion of points still visible
in the tomographic image after applying the £10,, and 20, masks
is not significant (see Table 2). What about the geographic distri-
bution of these points? Figs 6(e) and (f) shows that the positions
of unmasked low-velocity anomalous regions at 75 km depth do
not correlate with hot-spot locations published by Courtillot ez al.
(2003), and that anomalies that exceed the +20,, thresholds are
much smaller than the correlation lengths from Fig. 3(d). We there-
fore concluded that the lithosphere corresponding to the Pacific
plate contains no significant shear wave anomalies with respect to
predictions made by the HSC model, at least given the data set of
Maggi et al. (2006).

At shallow asthenospheric depths (200 km), a greater propor-
tion of points remains in the masked tomographic images (see Ta-
ble 2 and Figs 7 e and f). A strong low-velocity anomaly appears
to the northeast of Hawaii at 20°N 220°E. This anomaly of 12°
(~1400 km) radius is visible between 125 and 250 km depth, and
is about 0.25 km s~' slower than the HSC model (stronger than
—30,,). Not only is the anomaly strong, it is also larger than the
local resolution length of 750 km (Fig. 5a). Fig. 9 shows individual
averaging kernels within and around the anomaly: the kernels are all
of similar size or smaller than the anomaly and are all well focused,
indicating absence of smearing. Given the amplitude and size of
the anomaly with respect to the tomographic model’s uncertainty
o, and its resolution length, we considered it to be significant.
We need to carefully analyse averaging kernels when interpreting
the size and shape of anomalies. Since the averaging kernels are
spread in space, the velocity anomalies tend to appear larger than
they really are. The shape of the anomaly in the tomographic image
can also be misleading. For example the anomaly to the northeast
of Hawaii shows two bumps, one to the north and one to the east,
which may be due to the complex shape of the averaging kernels,
or to data noise propagated into the model. Only features outside
the uncertainty range with size greater than the resolution should
be interpreted.

Deeper in the asthenosphere, a pattern of alternatively slow-
and fast-velocity bands appears, oriented approximately south-
east to northwest (Fig. 8). The bands are approximately 15° wide
(~1700 km), 70° (~8000 km) long and are visible between 275
and 400 km depth. The bands seem to follow the absolute plate
motion of the Pacific plate (e.g. Gripp & Gordon 1990). They also
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Figure 6. Comparison at 75 km depth between the SOLA tomographic model and the predictions of the HSC model from Parker & Oldenburg (1973) on
the Pacific Plate, excluding ridges and subduction zones. (a) Shear wave velocities from SOLA; (b) shear wave velocities predicted for the HSC model; (c)
difference between SOLA and HSC; (d) difference between SOLA and HSC scaled by the tomographic uncertainties o ,; (e and f) same as (d) but with masks
to remove deviations smaller than +10,, or £20,,, respectively. Grey contour lines indicate lithosphere age from Miiller er al. (2008) and yellow triangles

locate hotspots from Courtillot ez al. (2003).

resemble the bands observed by French et al. (2013) at depths be-
tween 200 and 350 km and the low-anisotropy channels observed at
100 km depth by Montagner (2002). The width and length of these
bands are greater than the resolution length. To exclude possible
smearing, always an issue when tomographic images show elon-
gated features, we have shown several averaging kernels in Fig. 10.
Given the amplitude and size of the highly correlated bands and the
focused nature of the averaging kernels, we again considered these
bands to be significant features of the tomographic model.

5 DISCUSSION

We have produced a tomographic model of shear wave velocities in
the Pacific upper mantle using the SOLA Backus—Gilbert method
(Zaroli 2016; Zaroli et al. 2017), and have shown how to exploit the
full model resolution and uncertainty information to evaluate the
true significance of deviations from a theoretical prediction.

5.1 Model statistics—a rare commodity

Several authors have inverted surface wave data to obtain velocity
models of the upper mantle, either globally or in the Pacific, using
different forward theories and inversion methods (e.g. Zhou et al.
2006; Ekstrom 2011; French et al. 2013; Liu & Zhou 2016; Isse
et al. 2019). Although they agree with each other at large scales,
they often display different local features. These discrepancies may
be partly explained by the differing data sets (fundamental-mode
Rayleigh waves, multimode Rayleigh waves or full waveforms) and
inversion schemes, but may also be due to the complex relationship
between the heterogeneous path coverage of the Pacific region,
irregular resolution and data errors.

Without full resolution and uncertainty information—model
statistics—we cannot give strong quantitative arguments for or
against the significance of any small-scale feature of a tomographic
model (e.g. Foulger ez al. 2013). Unfortunately, most damped-least-
squares or iterative conjugate-gradient inversion schemes do not
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Figure 7. Same as Fig. 6 but at 200 km depth (note that at this depth the HSC model shows no age dependence). The black line indicates the contour of the

anomaly located to the northeast of Hawaii.

provide model statistics or control them during the inversion, as they
focus instead on minimizing the misfit between observed measure-
ments and those predicted by the tomographic model. It is possible
to approximate the model statistics for these inversion schemes (see
e.g. Rawlinson et al. 2014; Rawlinson & Spakman 2016, for re-
views of various techniques), but such methods are rarely used in
practice as they are computationally costly and often provide only
crude estimates of the model statistics. For the tomography problem
considered here, it would indeed be possible to explicitly compute
the G matrix from a ‘traditional’ damped-least-squares inversion
and then propagate the data uncertainties into model uncertainties;
but the advantage of the SOLA method is that it allows a direct
control on the model resolution and uncertainties.

5.2 Advantages of Backus-Gilbert type inversions

Beyond delivering model resolution and uncertainties at no ex-
tra cost, there are other important advantages of using inversion

schemes based directly on the model statistics, such as those pro-
posed by Backus & Gilbert (1967, 1968, 1970), Pijpers & Thomp-
son (1992, 1993), Zaroli (2016) and Zaroli et al. (2017). First, these
inversion schemes constrain model uncertainties to vary smoothly
over the parameter space. Secondly, these schemes drive the in-
version to produce well-focused local averages (averaging kernels)
that limit smearing along predominant paths (with SOLA this re-
quires imposing well-focused target kernels, in our case circular
ones). Thirdly, these schemes guarantee that the weights of the lo-
cal averaging kernels (i.e. the rows of the resolution matrix) sum
exactly to one, thereby eliminating the averaging bias that occurs
with heterogeneous spatial distributions of data.

5.3 Model statistics—required for tomographic filtering
and evaluating significance

Before comparing two different tomographic models, or a tomo-
graphic model to other data with different spatial resolution, we
need to homogenize their resolutions, a process called tomographic
filtering (Ritsema et al. 2007; Simmons et al. 2019). This requires
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Table 2. Proportion of points remaining after masking values within the lo,, or 20, error bar(s) at

various depths. For a normal distribution, we would

expect proportions of 0.32 for 1o, and 0.05 for

20 .

Depth (km) 50 75 100 150 200 250 300 350 400
For 1o, 0.32 0.33 0.33 0.33 0.38 0.41 0.46 0.49 0.43
For 20, 0.06 0.03 0.03 0.07 0.09 0.10 0.14 0.13 0.12

the knowledge of the full resolution matrix. In our study, we con-
sidered a simple temperature model of lithosphere cooling based on
the HSC model of Parker & Oldenburg (1973) that we filtered to
the resolution of the tomographic model. Because the temperature
model was very smooth, the tomographic filtering had only a minor
effect. However, such filtering would be critical when comparing
tomographic images with sharper models (Mégnin ez al. 1997; Sim-
mons et al. 2019; Freissler et al. 2020).

To assess whether some parts of a tomographic model signifi-
cantly deviate from some reference, we need to know the model
uncertainties at each location. Because we had this information, we
were able to mask deviations from the HSC predictions that were

smaller than +10,, and £20,, and argue for the significance of
certain anomalies. The process we illustrated in Section 3 could
replace statistical appraisal techniques and other tomographic res-
olution tests that are not always well understood (Lévéque et al.
1993; Rawlinson ef al. 2014; Rawlinson & Spakman 2016).

5.4 Two significant anomalies in the Pacific region

We have focused on the significance of two anomalies: a low-
velocity anomaly located to the northeast of Hawaii at 200 km
depth and coherent bands of fast and slow velocities at 275 km
depth.
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Figure 9. Selection of averaging kernels around the slow-velocity anomaly located to the northeast of Hawaii (see Fig. 7) at 200 km depth. The black line

represents the anomaly contour.

5.4.1 Anomaly NE of Hawaii

This emerges strongly from the background with an amplitude about
0.25 km s~! slower than the average shear wave velocity of the
Pacific Plate, where the uncertainty is around 0.07 km s~!, thus
corresponding to about —30,, (Figs 7¢ and f). Despite using the
same data set, the model produced by Maggi et al. (2006) shows
a much weaker anomaly at the same location, probably because
it was smoothed out by their damped-least-squares inversion and
regularization. This anomaly has also been seen, though at weaker
amplitudes than in this study, in tomographies constructed using
fundamental-mode Rayleigh waves with a finite-frequency scheme
(Liu & Zhou 2016) or multimode Love and Rayleigh waves (Isse
et al. 2019), while it was entirely missed by the GDMS52 model of
Ekstrom (2011) based on fundamental-mode Love- and Rayleigh-
wave dispersion data. Given the different data sets, forward theories,
inversion and damping schemes of these studies, it is hard to pin-
point the reason for their weaker anomaly, but we speculate that the

anomaly was probably oversmoothed by the regularization of their
inversions.

5.4.2 Coherent SE-NW bands

We see these alternating fast and slow bands emerging from the
background at 275 km depth with deviations from HSC up to
+0.25kms~! (+10,, and +20,; see Fig. 8). Maggi et al. (2006) do
not show these bands in their 275 km depth image, suggesting that
the SOLA inversion scheme was able to extract more information
from the same data set. Other studies have observed similar pat-
terns: Ekstrom (2011) shows a very weak pattern in their isotropic
results, probably because fundamental-mode surface waves are only
weakly sensitive at these depths; French et al. (2013) see a stronger
pattern with their full waveform inversion; and, intriguingly, Liu &
Zhou (2016) show similar bands in their dispersion maps at 30 and
50 s, which are sensitive to much shallower depths.
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Figure 10. Selection of averaging kernels in the Pacific at 275 km depth.
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in Fig. 8. The averaging kernels are located at (30N, 165E), (30N, 195E),
(30N, 225E), (ON, 165E), (ON, 195E), (ON, 225E), (—30N, 165E), (—30N,
195E) and (—30N, 225E). For convenience, we plot the averaging kernels
on the same map.

5.5 Limits and perspectives

The SOLA inversion seems promising because it gives a way to
control the model statistics (uncertainties and resolution) and to
obtain them explicitly. The main problem is that it assumes that the
forward problem is linear while surface wave physics is not (the
dispersion characteristics of surface waves are nonlinearly related
to the shear wave velocity as a function of depth). In this study, as
in Maggi et al. (2006), each depth in the tomographic model was
inverted independently, so vertical coherence could not be imposed
or evaluated using resolution kernels. Furthermore, as the inputs to
the SOLA inversion were 1-D path-averaged shear wave velocity
models defined on the same depth range, the geographical coverage
was identical for each depth, and did not take into account the greater
sensitivity to depth of some paths (illuminated by longer-period or
higher-mode surface waves) with respect to others.

To obtain a fully 3-D shear wave velocity model directly from
frequency-dependent measurements of surface waves in a single
linear step with SOLA, and to take the full depth sensitivity of
individual measurements into account, we would need to adopt a
finite-frequency description of surface waves to help linearize the
tomographic problem (e.g. Zhou et al. 2004; Yoshizawa & Kennett
2005). This would also allow us to obtain a fully 3-D model with 3-D
resolution kernels, and therefore be able to apply the same statistical
rigor to interpreting any vertical structures within the model (e.g.
plumes, the lithosphere depth).

Like any other process, the pertinence of the SOLA outputs rests
upon the quality of the inputs. In particular, the model errors we have
relied upon to decide the significance of anomalies are nothing more
than a propagation into the model space of the data errors. While
traditional damped-least-squares schemes use data uncertainties to
weigh data relatively to each other and to evaluate model quality
(using x2, measures, for example), SOLA uses them more directly
to evaluate uncertainties in the model, which then drive the inversion
through their trade-off with resolution. In order to be able to trust
the magnitude of the model errors in SOLA, it is necessary for
the magnitude of the data errors to be correct. This is the reason
why we upscaled the data uncertainties using the x2, values of
the damped-least-squares model of Maggi et al. (2006); however, a
more rigorous assessment of the data uncertainties is still required.

Our study calls for other surface wave tomography studies based
on the SOLA inversion in other regions of the world, with new
data sets, and particular care in estimating data uncertainties. Our
tomographic model, together with its resolution and uncertainty
maps, calls for new data in the Pacific to observe other seismic
velocity anomalies significant enough to be interpreted robustly.

6 CONCLUSION

Rayleigh-wave tomography of the Pacific upper mantle shows large-
scale geological features (e.g. lithosphere cooling) but both the
model uncertainties and resolution are required for interpretations
at smaller scales. We exploited the SOLA tomographic inversion
scheme (Zaroli 2016) to propose a workflow to analyse the tomo-
graphic model using its resolution and uncertainties, that is

(i)define some reference, Earth-like, physical model;

(iD)filter the reference model to the tomographic resolution;
(iii)compute the deviations from the reference model;
(iv)normalize the deviations by the model uncertainties;

(v)mask model estimates that are within one or two error bars to
focus only on significant seismic anomalies;

(vi)compare those non-masked anomalies to the local resolution to
discuss their resolvability and spot artefacts, if any.

In this study, we used an HSC description of the Pacific litho-
sphere as a reference model. We observed a low-velocity anomaly
to the northeast of Hawaii at 200 km depth and a pattern of al-
ternatively slow and fast anomalous bands oriented approximately
southeast to northwest at 275 km depth. Both features are reliable
given the model statistics. Our study shows that the model statis-
tics can be properly analysed in surface wave tomography using the
SOLA inversion; the same scheme could be applied in other regions
of the globe.

In this study, we used a traditional approach to estimate the data
uncertainties but we should aim collectively to characterize more
accurately uncertainties in seismological data sets—clearly a chal-
lenging but crucial task.
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