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Abstract surface-wave tomography is crucial for mapping upper-mantle structure in poorly instru-
mented regions such as the oceans. However, data sparsity and errors lead to tomographic models with com-
plex resolution and uncertainty, which can impede meaningful physical interpretations. Accounting for the
full 3D resolution and robustly estimating model uncertainty remains challenging in surface-wave tomogra-
phy. Here, we propose an approach to provide direct control over the model resolution and uncertainty and to
produce these in a fully three-dimensional framework by combining the Backus-Gilbert-based SOLA method
with finite-frequency theory. Using a synthetic setup, we demonstrate the reliability of our approach and il-
lustrate the artefacts arising in surface-wave tomography due to limited resolution. We also indicate how our
synthetic setup enables us to discuss the theoretical model uncertainty (arising due to assumptions in the
forward theory), which is often overlooked due to the difficulty in assessing it. We show that the theoretical
uncertainty components may be much larger than the measurement uncertainty, thus dominating the over-
all uncertainty. Our study paves the way for more robust and quantitative interpretations in surface-wave
tomography.
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Non-technical summary in the oceans, several surface features such as isolated volcanic islands
or variations in the depth of the seafloor result from dynamic processes in the underlying mantle. To under-
stand these processes, we need to image the three-dimensional structures present in the subsurface. While
long-period surface waves can be used for this, the data are typically noisy and provide poor coverage of the
oceans. This limits the quality of our images and therefore the interpretations that can be drawn from them.
In addition, limitations of our images are difficult to quantify with current methods, which makes interpreta-
tions even more difficult. In this study, we propose an approach to produce high-quality maps of 3D structures
in the upper mantle, which also gives information on the quality of the images. We present the method in a
synthetic framework, which serves to demonstrate our ability to retrieve an input Earth model and enables us
to estimate theoretical model uncertainties. Our approach will enable more robust interpretations of surface-
wave tomography models in the future.

1 Introduction inverse problem ill-posed and lead to complex model

resolution and model uncertainty (e.g. Parker, 1977,

Many important geological processes (e.g. melting at
mid-ocean ridges, spreading, subduction and hotspot
volcanism) result from dynamic processes in the upper
mantle. To improve our understanding of these pro-
cesses, we need to robustly image the structure of the
upper mantle. In poorly instrumented regions, such as
the oceans, this imaging relies heavily on surface-wave
tomography. However, surface-wave data have poor
spatial coverage, both laterally due to the uneven dis-
tribution of earthquakes (sources) and seismic stations
(receivers), and vertically due to how surface-wave sen-
sitivity varies with depth. Surface-wave data also con-
tain errors due to imperfect measurement and physical
theory. Poor data coverage and data errors render the
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Menke, 1989; Tarantola, 2005). These explain the strong
discrepancies between published tomography models
(e.g. Hosseini et al., 2018; Marignier et al., 2020; De Vi-
ron et al., 2021). Over time, seismic images have be-
come more detailed and are being used to inform re-
search in other fields. To guarantee the usefulness of
surface-wave tomographic images however, we need
to account for their full 3D resolution and uncertainty
(e.g. Ritsema et al., 2004; Foulger et al., 2013; Rawlin-
son et al., 2014). Equipped with these, we will be able to
avoid interpreting non-significant anomalies (e.g. Latal-
lerie et al., 2022), set up meaningful comparisons with
theoretical predictions (e.g. Freissler et al., 2020), or
include tomography models in further studies such as
earthquake hazard assessments (e.g. Boaga et al., 2011,
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Socco et al., 2012; Boaga et al., 2012).

Many approaches have been proposed to solve ill-
posed inverse problems in seismology (e.g. Wiggins,
1972; Parker, 1977; Tarantola and Valette, 1982; Nolet,
1985; Scales and Snieder, 1997; Trampert, 1998; Nolet,
2008). Most take a data-misfit point of view and search
for a model whose predictions are ‘close enough’ to ob-
servations. However, such approaches have difficulties
in accounting directly for model resolution and uncer-
tainty, either for computational reasons or because, in
these approaches, resolution and uncertainty depend in
complex ways on the parameterisation and regularisa-
tions used (Nolet et al., 1999; Barmin et al., 2001; Rit-
sema et al., 2004; Shapiro et al., 2005; Ritsema et al.,
2007; Fichtner and Trampert, 2011; An, 2012; Ficht-
ner and Zunino, 2019; Simmons et al., 2019; Bonadio
et al., 2021). Synthetic tests, sometimes in the form of
checkerboard tests, can be useful to assess resolution,
but these have been shown to be potentially mislead-
ing (e.g. Lévéque et al., 1993; Rawlinson and Spakman,
2016).

Other approaches for solving ill-posed inverse prob-
lems move away from the data-misfit point of view and
instead concentrate on directly optimising model reso-
lution and uncertainty. These approaches are typically
based on Backus-Gilbert theory (Backus and Gilbert,
1967, 1968, 1970). One such approach, the SOLA (Sub-
tractive Optimally Localized Averages) formulation, was
derived for helioseismology by Pijpers and Thompson
(1992, 1994) before being introduced and adapted to lin-
ear body-wave tomographic inversions by Zaroli (2016)
and Zaroli (2019). Besides body waves, the method has
been successfully applied to normal-mode splitting data
to constrain ratios between seismic velocities (Restelli
et al., 2024) and to surface-wave dispersion data to build
group-velocity maps (Ouattara et al., 2019; Amiri et al.,
2023) or 2D maps of the vertically polarised shear-wave
velocity Vsy (Latallerie et al., 2022). Although SOLA can
be applied only to linear problems, it requires no prior
on the model solution, provides direct control on model
resolution and uncertainty, and produces solutions free
of averaging bias (Zaroli et al., 2017).

Traditionally, surface-wave tomography studies are
based on ray-theory. This infinite-frequency approxi-
mation requires a two-step procedure that can be per-
formed in either order. One order is first to solve
the inverse problem laterally (to produce 2D phase
or group-velocity maps) and subsequently to solve for
velocity structure with depth (to produce 1D velocity
profiles) (e.g. Ekstrom et al., 1997; Montagner, 2002;
Yoshizawa and Kennett, 2004; Ekstrom, 2011; Ouattara
et al., 2019; Seredkina, 2019; Isse et al., 2019; Magrini
etal., 2022; Greenfield et al., 2022). The other approach
is to solve first for velocity structure with depth for in-
dependent source-receiver pairs (to produce 1D path-
averaged velocity profiles) and subsequently for lateral
variations (to produce 2D velocity maps) (e.g. Debayle
and Lévéque, 1997; Lévéque et al., 1998; Debayle, 1999;
Debayle and Kennett, 2000; Simons et al., 2002; Lebe-
dev and Nolet, 2003; Priestley, 2003; Debayle and Sam-
bridge, 2004; Maggi et al., 2006b,a; Priestley and Mcken-
zie, 2006). This second approach was adopted by Latal-
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lerie et al. (2022) who applied the SOLA method to the
second step (lateral inversion) to produce 2D lateral
resolution and uncertainty information, in addition to
their tomography model. Because the first step is a
non-linear depth inversion, it could not be performed
using SOLA - a purely linear method. Therefore, this
study was not able to provide high-quality information
about vertical resolution, a significant drawback given
the complex depth sensitivity of surface-waves.

In this study, we extend the approach of Latal-
lerie et al. (2022) to 3D using the framework of finite-
frequency theory (Snieder, 1986; Snieder and Nolet,
1987; Yomogida, 1992; Marquering et al., 1998; Dahlen
and Tromp, 1999; Yoshizawa and Kennett, 2004; Zhou
et al., 2004, 2005; Yoshizawa and Kennett, 2005; Zhou,
2009a,b; Ruan and Zhou, 2010; Tian et al., 2011; Zhou
et al., 2006; Liu and Zhou, 2016b,a). In this frame-
work, surface-wave dispersion data are linearly related
to perturbations in the 3D upper-mantle velocity struc-
ture. This makes it possible to perform a one-step inver-
sion and thus to obtain 3D resolution information using
SOLA. Finite-frequency inversions come with higher
memory costs because the sensitivity kernels are vol-
umetric (with both a lateral and depth extent) and the
whole 3D model must be stored all at once (large num-
ber of model parameters). However, with smart data se-
lection and ever increasing computational power, this
memory cost is becoming less of an issue.

Model uncertainty arises from data uncertainty (or
measurement uncertainty) as well as theoretical uncer-
tainty. Data uncertainty is often estimated by compar-
ing the dispersion of measurements for nearby rays
(e.g. Maggi et al., 2006b). However, this approach dra-
matically underestimates the data uncertainty and ac-
counts poorly for systematic biases (e.g. Latallerie et al.,
2022). This is less of an issue if we are only inter-
ested in the relative uncertainty between individual
data (e.g. when we weigh data contributions in a data-
driven inversion). Underestimated data uncertainty
and bias become problematic, however, if we want to
interpret the ‘true’ magnitude of the model uncertainty.
It therefore becomes important to estimate data un-
certainties carefully. Additionally, we need to account
for imperfections in the forward theory, which give
rise to ‘theoretical uncertainty’. This theoretical uncer-
tainty arises from a range of approximations commonly
made: single-scattering, which relates to non-linearity;
the forward-scattering approximation; the paraxial ap-
proximation; neglected sensitivity to other parameters;
discretisation onto the tomographic grid; linear crustal
correction strategy; errors in the crustal model; and er-
rors in the earthquake source parameters. These last
two contributions are not accounted for in this study.
The theoretical component is often missing in model
uncertainty estimates, which may partly explain why
these estimates appear to be small. Importantly, both
measurement uncertainty and theoretical uncertainty
contribute to model uncertainty. Here, we distinguish
the two contributions to the model uncertainty by using
the terms ‘measurement model uncertainty’ and ‘the-
oretical model uncertainty’. We take advantage of the
synthetic nature of this study to discuss the contribution
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of both contributions.

In this study, we show that it is possible to obtain
detailed 3D resolution and robust uncertainty informa-
tion using surface waves with SOLA within a finite-
frequency framework, thus extending the approach of
Latallerie et al. (2022) to 3D. By working in a syn-
thetic setup, we demonstrate the feasibility of our ap-
proach, and discuss the contribution of theoretical er-
rors. To achieve these aims, we develop a complete
workflow from dispersion measurements on the wave-
forms to analyses of the resulting 3D model, its reso-
lution and uncertainty. In Section 2, we introduce the
SOLA method and the forward modelling approach. In
Section 3, we describe the tomography setup, including
the data geometry, target resolution and generalised in-
verse. Subsequently, in Section 4, we discuss the data
and their uncertainty in detail. In Section 5, we present
our tomographic results, both qualitatively and quanti-
tatively. Finally, in Section 6, we discuss the 3D resolu-
tion and uncertainty estimates of our model and indi-
cate possible future directions.

2 Theory

We present here the main building blocks of our ap-
proach. Firstly, we briefly introduce the general for-
ward problem. We then discuss the inverse problem,
introducing the discrete linear SOLA inverse method
(Zaroli, 2016) that provides control on the resolution and
the propagation of uncertainty, and produces the to-
mographic model with full resolution and uncertainty
information. Finally, we present the finite-frequency
theory that allows the surface-wave inverse problem to
be expressed in a linear and fully three-dimensional
framework.

2.1 General forward theory

Let d € R"N be a data vector and let m € RM be a
model vector containing model parameters given a pre-
defined parameterisation. Let G € M(N x M) be the
sensitivity matrix (in the set of matrices of size N x M),
describing a linear relationship between model param-
eters and data. We can then write the forward problem
as:

d=Gm. (1)

Rows of G are the sensitivity kernels and G thus con-
tains all the information regarding the sensitivity of the
entire dataset to all model parameters; this is what we
refer to as the data geometry.

To account for data errors, we treat d as a normally
distributed multi-variate random variable with data co-
variance matrix Cq4 € M(N x N). We assume un-
correlated noise, thus the data covariance matrix is di-
agonal and we can write Cq = diag(o] ),i € [|1, N|],
where o, is the standard deviation of the error on the
it" datum. Throughout this study, we refer to the stan-
dard deviation as the data uncertainty. Note that un-
der the Gaussian hypothesis both theoretical errors (due
to imperfect forward theory) and measurement errors
(due to imperfect measurements) can be included in
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oj, (see e.g. Tarantola, 2005). As it is challenging to es-
timate error correlations, we assume uncorrelated er-
rors, which we further assume to be Gaussian for math-
ematical simplicity. The assumption of Gaussian un-
correlated errors remains an important limitation that
should motivate future work.

2.2 SOLAinverse method

Poor data geometry in seismic tomography makes the
inverse problem ill-constrained as the sensitivity matrix
G is not invertible. This justifies the use of various ex-
isting methods for obtaining model solutions (see e.g.
Parker, 1977; Trampert, 1998; Scales and Snieder, 1997,
Nolet, 1985; Tarantola and Valette, 1982; Wiggins, 1972;
Nolet, 2008). Most of these methods use a data-misfit ap-
proach, where a model solution is found by minimising
the discrepancy between predicted data and the actual
data. With SOLA, we do not use a data-misfit to drive to-
wards a model solution, but instead focus on designing
a ‘generalised inverse’ of the sensitivity matrix G. We
describe the SOLA method briefly below, with more de-
tails in Appendix A.

Let G be the ‘generalised inverse’ such that the
model solution is expressed as linear combinations of
the data:

m=Gld. (2)

Using Equation 1, we obtain a relation between the
model solution and the ‘true’ model:

m=G Gm. (3)

Each parameter in the model solution is a linear combi-
nation of the ‘true’ model parameters linked by the res-
olution matrix R = G'G. In other words, the value of
a model parameter in the model solution represents a
spatial weighted average of the whole ‘true’ model (plus
some errors propagated from data noise). The resolu-
tion for a model parameter is determined by this averag-
ing and is referred to as ‘resolving’ or ‘averaging kernel’.
In general, we prefer the averaging for a model param-
eter to be focused around that parameter location. The
full resolution matrix thus acts as a ‘tomographic filter’
(e.g. Ritsema et al., 2007; Schuberth et al., 2009; Zaroli
et al., 2017). Note that in the hypothetical case where
the data geometry constrains all model parameters per-
fectly, the sensitivity matrix G is invertible, the gener-
alised inverse G is the exact inverse, the resolution ma-
trix is the identity matrix, and, in the case of error-free
data, the model solution is exactly the ‘true’ model.

Since m = G'd is a linear mapping of a multivariate
normal distribution, we obtain the model covariance
matrix from the data covariance matrix using:

Cs = (GNC4GH, (4)

where T denotes the matrix transpose. The diagonal
elements of the model covariance matrix are the stan-
dard deviations of the model parameters, i.e. 0~ =

Cr,. - Analogue to the data uncertainty, we refer to

the model standard deviations as the model uncertainty.
Note that model uncertainties are thus given for local
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average estimates, not estimates at absolute points in
space. In summary, the generalised inverse G' deter-
mines the model solution, model resolution, and model
uncertainty.

While data-misfit approaches have many advantages
(e.g. treatment of non-linearity, computational effi-
ciency), they do not directly control the resolution and
uncertainty of the solution; estimating this information
can be challenging depending on the inverse method
used. With the SOLA method, which is based on Backus-
Gilbert theory (Backus and Gilbert, 1967, 1968, 1970; Pi-
jpers and Thompson, 1992, 1994; Zaroli, 2016), we ex-
plicitly design G to achieve certain objectives regard-
ing the resolution and model uncertainty. In particular,
we design a target resolution 7" and seek a generalised
inverse that leads to a resolution as close as possible to
the target, while minimising model uncertainty. These
are two contradictory objectives that are balanced in an
optimisation problem:

ct® )—argmlnz A(k) T(k)] Vi+n (252
Gt =

s.t. Z Rg.k) =1
J

m(k)?

(5)

where k is the index of the model parameter for which
we are solving (the target), j is a dummy index that it-
erates over model parameters, V; is the volume of cell
Js Agk) =
(normalised by the cell volume), and n*) is a trade-off
parameter that balances the fit to the target resolution
with the minimisation of model uncertainty. The con-

straint } R(k) 1 guarantees that local averages are
unbiased. This is important because an uneven data dis-
tribution can artificially increase or decrease the value
of the estimated parameters, as demonstrated by Zaroli
et al. (2017). The optimisation problem leads to a set
of equations (see Appendix Al from Zaroli, 2016) that
we solve for each model parameter using the LSQR al-
gorithm of Paige and Saunders (1982), as suggested by
Nolet (1985).

The SOLA inversion is point-wise, i.e. the minimi-
sation problem is solved for each parameter indepen-
dently from the others. This makes SOLA inversions
straightforward to solve in parallel. Note that we do not
need to solve for all model parameters nor do we need
to solve for the whole region to which the data are sensi-
tive (a necessity in data-fitting inversions): we have the
possibility to solve only for model parameters of partic-
ular interest (the targets). Furthermore, note that the
data d do not appear in the optimisation equation 5. We
provide information on the computational costs of this
study in Appendix C.

Ré-k) /V; is the averaging (or resolving) kernel

2.3 Finite-frequency forward theory

In order to make the implementation of SOLA for
surface-wave tomography fully three-dimensional, we
need a linear relation between surface-wave data and
3D physical properties of the Earth mantle. Here,
we consider as data vertical-component Rayleigh-wave

4

phase delays d¢;(w) measured at frequencies w for par-
ticular source-receiver pairs . If we assume these de-
lays are primarily sensitive to perturbations in the ver-
tically polarized S-wave velocity 6Vsy in the 3D man-
tle @, we have the following relationship between data
0¢1(w) and model § In Vgy (x):

e // Ki(w;2)0n Vey (@)d*z,  (6)

where x indicates the location, and K (w; x) is the sen-
sitivity kernel. We neglect the sensitivity to other phys-
ical parameters (e.g. Vsu, Vpy, density), but this con-
tributes to the theoretical errors.

Analytical expressions of surface-wave sensitivity
kernels have been derived based on the scattering prin-
ciple in the framework of normal mode theory. Here,
we use formulations from Zhou et al. (2004), later ex-
tended to multimode surface waves and anisotropy by
Zhou (2009b). These assume far-field propagation, sin-
gle forward scattering, and use a paraxial approxima-
tion. Thanks to the single-scattering assumption, also
known as Born approximation, the resulting relation-
ship between data and model is linear, which makes it
tractable with SOLA. Single-scattering is equivalent to
neglecting terms of order higher than 1 in the Taylor ex-
pansion of the Green tensor perturbations with respect
to structural parameters (e.g. Dahlen et al., 2000). This
single-scattering approximation also contributes to the
theoretical errors. In this study, we restrict ourselves to
fundamental modes, but extension of the theoryto over-
tones is straightforward. The sensitivity kernels for the
fundamental modes can be expressed as:

Sl QR// 71'[k'A'Jrk”A”ka%»(s'Jrs”75)iJr%]
K(w;z) =Im

S R./8xt k’k” szn\A’Hszn\A”
T [sinA]
(7)

Symbols with prime ’ refer to the source-scatterer path,
ones with double prime " to the scatterer-station path,
and those without prime to the great-circle source-
station path; k is the wave-number and s the Maslov
index (here s = 0 or s = 1, i.e. single orbit); A is
the path length, S the source radiation in the direction
of the path, and R the projection of the polarisation
onto the receiver orientation. The exponent term indi-
cates the phase delay due to the detour by the scatterer,
while the other terms express the relative amplitude of
the scattered wave relative to the initial unperturbed
wavefield. This relative strength depends on the source
and receiver terms (the scattered wave leaves the source
and arrives at the receiver with some angle compared
to the unperturbed wave), on the geometrical spread-
ing (the scattered wave makes a detour compared to the
unperturbed wave), and on the scattering coefficient .
The scattering coefficient depends linearly on physical
model properties, for which detailed expressions can be
found in Zhou (2009a). In practice, we use a slightly dif-
ferent form of Equation 7 to include the effect of wave-
form tapering in the measurement algorithm (see Zhou
et al., 2004, for more details).

We use routines from Zhou (2009b) to compute the
sensitivity kernels for the fundamental mode, assum-
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Figure1 Examples of sensitivity kernels at a) 6 mHz and b) 21 mHz for two source-receiver pairs. The maps are plotted at
depths of 87 km and 237 km depth respectively, which are the depths where the kernels reach their respective maximum
amplitudes. Below each map, we also show a vertical cross-section through each kernel, as indicated on the maps, and the
dotted lines indicate depths of 100, 200 and 300 km. The northern kernelis fora M,, 6.1 earthquake in Borneo (2015) recorded
by station DSN5. The southern kernel is for a M, 6.1 earthquake in the Easter Island region (2011) recorded by station BDFB.
Note the difference in amplitude between the two frequencies shown in a) and b).

ing self-coupling. We only compute these in the top
400 km of the mantle as their amplitude decreases
sharply with depth. We consider the first two Fresnel
zones laterally as their side-lobes become negligible fur-
ther away. Examples of sensitivity kernels are given
in Figure 1, where they are projected onto the tomo-
graphic grid. The kernels have particularly strong am-
plitude at the source and station. This is caused by a
combination of natural high sensitivity at end-points
of a path and the far-field approximation (e.g. Liu and
Zhou, 2016b). Low-frequency kernels peak at deeper
depths, have a broader lateral and vertical extent, and
have weaker amplitudes than high-frequency kernels.
Although the projection onto the tomographic grid de-
grades the shape and amplitude of the sensitivity ker-
nels, their main properties are retained on a tomo-
graphic grid that is sufficiently fine.

3 Tomography setup

In this section, we present the construction of the for-
ward problem (the sensitivity matrix) and the inverse
solution (the generalised inverse) that determines the
resolution, the propagation of data uncertainty into
model uncertainty, and the propagation of data values
into model estimates. We will describe the data and data
uncertainty in the next section. These will feed into the
inverse solution to produce the tomography model and
the measurement model uncertainty.

5

3.1 Parameterisation

We use a local model parameterisation and split the 3D
spatial domain into voxels of size 2° x 2° laterally (lat-
itude and longitude) and 25 km depth vertically. We
parameterise the whole sphere laterally, but only the
top 400 km depth, since the sensitivity of fundamen-
tal mode surface waves to Vg, becomes negligible at
greater depths. This leads to M = 259200 voxels. It
is worth recalling that with SOLA we do not need to
solve for all M model parameters nor for the whole re-
gion to which the data are sensitive. For example, we
could solve only for cells where the data sensitivity is
sufficiently high or only for a particular region of in-
terest. Note that the parameterisation does not impact
the SOLA inversion in the same way as in data-fitting
approaches. Primarily, the parameterisation should be
chosen finer than the target kernels if these are to be
honoured. However, the parameterisation is expected
to have an impact on the theoretical uncertainty, as the
discretisation of the sensitivity kernels degrades the ac-
curacy of the forward theory.

3.2 Data geometry

We select 312 earthquakes with M,, between ~6.0 and
7.7 and depth between ~12 and 87 km, all located in the
Pacific region, occurring between July 2004 and Decem-
ber 2020. We consider 1228 stations, also located in the
Pacific region (see Fig. 2). Sources and stations are both
selected in a way to avoid strong spatial redundancy. For
all paths, we consider 16 frequencies ranging from 6 to
21 mHz (48-167s), in steps of 1 mHz.
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a) * sources s+ stations

b) 6 mHz (167s)

10 12 14 16 18 20 22 24 26

logl0 of data sensitivity

Figure 2 Data geometry of our tomography, showing a) the distribution of sources and receivers, b) the selected ray paths
at 6 mHz and c) at 21 mHz, and d) the decimal logarithm of the data sensitivity, log,, >, |G;|. The data sensitivity is plotted
at112 km depth, with a N-S oriented vertical cross-section below it, indicated by the grey line on the map view, and the dotted

lines indicate depths of 100, 200 and 300 km.

Compared to ray-theory, finite-frequency theory is
fully three-dimensional. This makes the sensitivity ma-
trix larger because we need to consider the whole 3D
spatial extent of the model domain all at once, and less
sparse because finite-frequency sensitivity kernels have
avolumetric extent. Since we store the whole sensitivity
matrix in RAM to favour fast computation, this is a chal-
lenging issue that limits the number of data we can take
into account in the inversion. For a computational node
with 254 GB of RAM, and our current strategy for stor-
ing matrices in RAM, we estimate that we can incorpo-
rate at most N = 300 000 measurements (more informa-
tion on the computational costs of this study is given in
Appendix C). Here, we restrict ourselves to N & 50 000
measurements, making it possible to expand our work
to overtones in the future. To achieve N ~ 50000 data,
we carefully select our data with the aim to homogenise

the lateral distribution of rays (see Section 4). We end up
with 47,700 data in total, with approximately 3,000 data
per frequency (Figure 2).

For each selected measurement, we compute the
corresponding 3D finite-frequency sensitivity kernel to
build the sensitivity matrix G, with examples shown
in Figure 1. As a measure of the constraint offered by
the data on the structure of the 3D upper mantle, we
compute the decimal logarithm of the data sensitivity,
log, >, |Gij|, where i and j designate a particular da-
tum and model parameter respectively (see Figure 2,
lower right).

3.3 Target resolution, uncertainty propaga-
tion, and their trade-off

The shape of the target kernels used in the SOLA inver-

sion is arbitrary. Ideally, it is chosen such as to produce
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results oriented towards addressing a specific key ques-
tion (e.g. Mag et al., 2025). In this study, we wish for the
resolution to represent simple, easy-to-interpret 3D lo-
cal averages. For a given model parameter, we therefore
choose the target kernel to be a 3D ellipsoid. The lateral
resolution we can achieve with surface-wave data is con-
trolled by the distribution of sources and receivers (and,
to some extent, frequency). Our experience shows that
it is rarely better than a few hundreds of kilometres for
the frequency range used here. The vertical resolution
is mostly controlled by the frequency content of the sig-
nal and it is typically on the order of tens to hundreds
of kilometres. Therefore, a reasonable target kernel at
a given point in the 3D grid would resemble a thick pan-
cake centred at the query point. More formally, we de-
sign the target kernel of a model parameter as an el-
lipsoid whose major and intermediate axes are equal
and aligned with the north-south and east-west direc-
tions at the location of the model parameter, and whose
minor axis is vertical. The resulting target kernels are
thick versions of the 2D kernels of Latallerie et al. (2022)
and Amiri et al. (2023) and they represent a horizontally
isotropic target resolution.

With SOLA, it is possible to adapt the size of the tar-
get kernels for each model parameter (i.e. for each lo-
cation). For example, we could choose to achieve the
best resolution possible at each location in the model
given the data coverage, or we may prefer a homoge-
neous resolution or constant uncertainty across the spa-
tial domain (see Freissler et al., 2024). This freedom il-
lustrates the typical non-uniqueness of tomographic in-
versions. We could compute an L-curve for the resolu-
tion size versus model uncertainty to choose an optimal
trade-off parameter. However, this L-curve would have
a very different meaning than that computed for data-
fitting approaches that typically consider data-fit versus
model smoothness. With SOLA, we do not need to com-
pute an L-curve as any choice of the trade-off parame-
ter that fits the purpose of the study can be considered
‘good’, so long as the tomographic model is analysed to-
gether with its resolution and uncertainty (see also sup-
porting information of Zaroli et al. (2017)). In this study,
for simplicity, we make all target kernels the same, with
200 km long horizontal major and semi-major axes and
25km long vertical minor axis. Figures 3 and 4 illustrate
the extent of our target kernels for 10 different locations
(blue ellipses).

The data uncertainty could influence the generalised
inverse we obtain with SOLA through the second term
in the optimisation problem in Equation 5. However, as
we aim to study the robustness of the data uncertainty it-
self in this study, we decide not to take it into account in
designing G. Thus, we initially set C4 = I and there-
fore C~ = (GT)TG. This choice is only for designing
G': once the generalised inverse has been computed,
we propagate the actual measurement uncertainty into
model uncertainty through C~ = (G")TC4G. De-
pending on the application, different data weighting (in-
cluding data uncertainty), could be considered to pro-
duce an optimal generalised inverse.

The optimisation problem involves the minimisation
of the difference between target and actual resolution
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on the one hand, and the magnitude of model uncer-
tainty on the other hand. These two terms are balanced
by the trade-off parameter 7, which we set equal to 50
for all parameters. Again, it is possible to choose dif-
ferent values of 7 for different model parameters, but
in practice it is computationally easier to keep 7 con-
stant (see Appendix Al of Zaroli, 2016). If, for example,
one wants to give more weight to the resolution of a par-
ticular model parameter, this can also be obtained by
designing a smaller size target kernel. If we vary the
trade-off parameter, we obtain a typical L-shaped trade-
off curve for resolution versus model uncertainty for
each target (Latallerie et al., 2022; Restelli et al., 2024).

3.4 Generalised inverse: Resolution and un-
certainty propagation

The seismic tomography inversion is fully characterised
by the generalised inverse G': it determines the reso-
lution (from R = G'G) as well as the propagation of
data uncertainty into model uncertainty (from C; =
(GYHTC4GY). Lastly, it determines the propagation of
data into model solution (from m = GTd).

It is difficult to represent the full 3D resolution as it is
most easily understood in terms of an extended 3D re-
solving kernel associated with each model parameter.
A detailed analysis thus requires 3D rendering software
or the production of simple proxies, for example those
proposed by Freissler et al. (2024). Here, we instead il-
lustrate the resolution by selecting example resolving
kernels. At 112 km depth (Figure 3), the resolving ker-
nels match the target location well laterally. Their lat-
eral size is roughly 250-450 km (if we take the radii of a
circle containing 68% of the kernel). This can be com-
pared to the length of the major and intermediate axes
of the target kernels of 200 km. Some averaging kernels
are significantly anisotropic, indicating lateral smear-
ing due to the heterogeneous ray path distribution. Ver-
tically, the resolving kernels appear also to be focused
with a half-thickness of roughly 50 km. This can be com-
pared to the length of the minor axis of the target ker-
nels of 25 km. However, they appear slightly shifted up-
ward from the target. Deeper down, at 212 km depth
(Figure 4), the resolving kernels still match the target lo-
cations laterally, but they appear broader (300-700 km).
They now also poorly match the target kernel depth-
wise. Instead of peaking at 212 km depth, the resolving
kernels peak at 112 km depth and tail off deeper down.
This implies that what we observe in the tomographic
model at 212 km depth is actually an average of the ‘true
model’ at shallower depth.

We show the ‘error propagation factor’ in Figure 5.
This can be interpreted as the model uncertainty
for unit data uncertainty (Cq = I), obtained from
(GTTGT. We observe a positive correlation between
data coverage and error propagation factor: the error
propagation tends to be high where data coverage is
high (e.g. North America, South-East Asia). We also
clearly see patches of high error propagation in the Pa-
cific Ocean at locations of isolated stations. This is
due to the high data sensitivity at stations where many
oscillatory sensitivity kernels add together. Further-
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Figure3 Resolutionat 112 km depthillustrated for a selection of 10 model parameters. The centre map shows the locations
of the 10 target and resolving kernels. This is shown as a sum, which may exaggerate the apparent strength of the tails. The
surrounding panels are close-ups on individual kernels, both in map-view and as cross-section. All maps represent depth
slices at 112 km depth and below each map is a ~ 3100 km long, N-S oriented (left to right) cross-section as indicated in green
in the maps, with the dotted lines indicating depths of 100, 200 and 300 km. Blue ellipses show the lateral extent of the target
kernels. All averaging kernels are normalised by their maximum, and the color scale indicated in the lower right applies to all
panels.

SEISMICA | volume 4.2 | 2025



SEISMICA | RESEARCH ARTICLE | Resolution-uncertainty in 3D surface-wave tomography

T

Figure4 Same as Figure 3, but for target locations at 212 km depth.

e R T -

=0.25
-0.50
-0.75

-1.00

SEISMICA | volume 4.2 | 2025



SEISMICA | RESEARCH ARTICLE | Resolution-uncertainty in 3D surface-wave tomography

ropagation
actor 1
[radians™]

0.200
0.175
0.150
0.125
0.100
0.075
0.050

- 0.025

0.000

Figure 5 |llustration of the propagation of data uncer-
tainty into model uncertainty. The map shows the ‘prop-
agation factor’ at 112 km depth, defined as the model un-
certainty given unit data uncertainty. The cross-section be-
low the map indicates the depth dependence of the prop-
agation factor along a vertical 2500-km long N-S oriented
profile as indicated by the green line on the map, with the
dotted lines indicating depths of 100, 200 and 300 km.

more, we note linear features with high error propaga-
tion that follow great-circle paths radiating away from
some isolated stations. These probably outline sensitiv-
ity kernels that repeatedly sample similar regions. With
depth, we find that the propagation factor increases
down to 87 km depth and then decreases again deeper
down. While this decrease may seem surprising, it is
balanced by poor resolution at greater depth. In gen-
eral, SOLA tends to produce models with better resolu-
tion where data sensitivity is high, at the cost of a larger
error propagation factor. By choosing different sizes for
the target kernels, this can be balanced (Freissler et al.,
2024).

4 Input data and measurement uncer-
tainty

We measure phase delays between ‘observed’ and ‘ref-
erence’ seismograms for 16 different frequencies rang-
ing from 6 to 21 mHz (48-167s), in steps of 1 mHz. In
this synthetic study, we use as ‘observed seismograms’
waveforms computed using SPECFEM3D_GLOBE (Ko-
matitsch and Vilotte, 1998; Komatitsch and Tromp,
2002) for the 3D input model S362ANI (Kustowski et al.,
2008) combined with CRUST2.0 on top (Bassin et al.,
2000). Hereafter, we refer to these as SEM seismograms
or SEM measurements. They were obtained from the
GlobalShakeMovie project data base (Tromp etal., 2010)
and downloaded from Earthscope, formerly IRIS (IRIS
DMC, 2012; Hutko et al., 2017). Reference seismograms
were computed using normal-mode summation with
the Mineos software (Masters et al., 2011) for the 1D ra-
dial model stw105 (Kustowski et al., 2008), consistent
with S362ANI. For both sets of seismograms, we use
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source solutions obtained from the Global-CMT project
(Ekstrom et al., 2012) and station metadata from Earth-
scope. To measure the phase delay between the two sets
of seismograms, we use a multi-taper measurement al-
gorithm as suggested by Zhou et al. (2004) and detailed
in appendix B. The multi-taper technique has the ad-
vantage of providing an estimate for the measurement
data uncertainty as the standard deviation of the mea-
surements across all tapers. This uncertainty estimate
is particularly sensitive to cycle-skipping and contami-
nation by higher modes and other phases.

Considering only source-receiver combinations for
which the measurement time window (150 s before to
650 s after the predicted group arrival time) does not in-
clude the event origin time, we obtain 2,414,515 mea-
surements of Rayleigh wave phase delays. We select
a subset of these measurements based on the follow-
ing criteria: similarity between the seismograms (cross-
correlation > 0.8), source radiation in the direction of
the station (> 80% of maximum radiation), measure-
ment uncertainty (< 1.9 radians), outlier removal (1%
of the dataset). This leads to 564,940 potential mea-
surements. Due to memory limitations (as explained
in section 3.2), we select a subset of N = 47,700 data
to reduce the size of G. This is achieved by randomly
selecting one ray, then removing all rays whose end-
points are within 800 km radius of the endpoints of the
selected ray, and repeating this process until we reach
the desired number of measurements, at the frequency
of interest. This gives the vector of measured data that
we denote d™easured  Other approaches, such as ‘boot-
strapping’ or ‘summary ray’ techniques could be exper-
imented with to further investigate the uncertainty in
the dataset or to compare to the uncertainty that we ob-
tain with the multitaper technique. As a check, we also
compute the corresponding analytical data daralytical
by applying our forward theory G to the 3D input model
S362ANI (minPUt), ie. danalytical = Gminput

The inversion for crustal structure is highly non-
linear and often avoided in surface-wave tomography.
SOLA cannot handle this non-linearity and we there-
fore apply a crustal correction to our measurements
(e.g. Marone and Romanowicz, 2007; Bozdag and Tram-
pert, 2008; Panning et al., 2010; Liu and Zhou, 2013,
Chen and Romanowicz, 2024). For consistency with the
synthetic ‘observed’ waveforms, we also use CRUST2.0
to compute the crustal correction (Bassin et al., 2000).
We first construct 1D radial models for a combination
of stw105 and CRUST2.0 at every location in a 2° x 2°
grid. For each grid point, we then solve a normal-mode
eigenvalue problem using Mineos (Masters et al., 2011)
to obtain the local phase velocity, thus building phase
velocity maps for the reference model with the added
crustal structure. For each source-receiver path and
all frequencies in our dataset, we subsequently com-
pute the phase accumulated in this model ¢reft+erust
as well as in the reference model ¢"*f, assuming ray-
theory (i.e. great-circle approximation). The difference
in phase due to the crustal structure §¢° st = §¢pref —
dprefterust is then used to correct the measured data:
dcorrected — dmeasured _ 6¢crust'

Examples of our dispersion measurement procedure
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and results are given in Figure 6 and used to illustrate
three typical cases. In Case I (left column), measure-
ments agree well with the analytical predictions and
have low uncertainty. In Case II (middle column), mea-
surements do not agree well with the analytical predic-
tions, but this is compensated by high data uncertainty.
In Case III (right column), which is more problematic,
the measurement has low uncertainty, but it does not
match the analytical prediction. In this example, it ap-
pears that the cycle-skip correction (see Appendix B)
has failed to detect a cycle-skip at 8 mHz. Since the
measurements are consistent for all tapers, the uncer-
tainty estimation fails to pick-up the cycle-skip and the
uncertainty remains low. Therefore, the final measure-
ment includes a cycle-skip difference with the analytical
data above 8 mHz that is not reflected in the uncertainty.
This is relatively common in surface-wave tomography
(e.g- Moulik et al., 2021). Even if we could spot measure-
ments with cycle-skips in a synthetic tomography setup,
we do not remove them from the dataset to mimic a real
case application. Note that discrepancies between ana-
lytical predictions and measurements are due both to
errors in the measurement (poorly measured data), as
well as to errors in the forward theory (poor analytical
data). At this stage, we ignore uncertainty arising from
theoretical errors.

To get a feeling of the volume of data falling in each
of these three cases, we define three classes based on
the difference between analytical prediction and mea-
surement: (i) below 3 radians and within 3 standard de-
viations for Class I; (ii) above 3 radians and within 3
standard deviations for Class II; and (iii) above 3 radi-
ans and outside 3 standard deviations for Class III. For
completeness, we also define Class IV as below 3 radi-
ans and outside 3 standard deviations. Classes I, II, III
and IV contain respectively 27%, 1%, 43%, and 29% of
the dataset. In other words, 27% of the dataset show a
good agreement between the predictions and measure-
ments and this difference is also within 3 times the mea-
surement uncertainty. 1% of the data does not show a
good agreement (i.e. above 3 radians), but is still within
3 times the measurement uncertainty. 43% shows poor
agreement and is also outside 3 times the measurement
uncertainty, and 29% is in good agreement, but out-
side 3 times the measurement uncertainty (indicating
a small uncertainty). In summary, 56% of the dataset
shows good agreement (class I and IV), and 28% has a
difference smaller than the measurement uncertainty
(classTand IT). Note that the boundaries of these classes,
namely the threshold of 3 radians and 3 standard devi-
ations, are somewhat arbitrary and primarily given to
provide a sense of the data volume falling within each
case illustrated in Figure 6.

Figure 7 presents statistics summarising our mea-
surements and associated uncertainty. Our measured
phase delays are typically larger than the analytical pre-
dictions (danalytical — GupinPut) for hoth positive and
negative delays, possibly due to non-linear effects. We
may therefore expect increased positive and negative
anomalies in our resulting tomographic model. We also
observe a parallel branch of negative measured phase-
delays with respect to the analytical predictions, likely
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due to non-detected cycle-skips. Our measurement un-
certainty peaks around 0.3-0.5 radians, with the peak
uncertainty shifting to higher values (to the right) for
higher frequencies (darker colours). The effect of this
shift on the resulting model uncertainty is not easy to
predict as different frequencies impact the model so-
lution in different ways (e.g. low frequency data have
overall lower sensitivity). We also observe two addi-
tional peaks for higher uncertainty values, probably
due to cycle-skipping and contamination with higher
modes. However, measurements with these uncer-
tainty values are not included as we apply a cut-off of
1.9 radians in our data selection. We also observe a
spatial pattern in the deviation between analytical and
measured data in panels ¢) and d). Higher differences
tend to be found for rays along ridges or along the
ocean-continent boundaries. High deviations are also
found in the central Pacific at lower frequencies. These
may be due to limitations in the forward theory as non-
linearities are to be expected for these regions.

We now have a dispersion data set with an estimate
of the measurement uncertainty. While this measure-
ment uncertainty provided by the measurement algo-
rithm accounts for cycle-skips and contamination by
other phases or higher modes, to some extent, it does
not capture the theoretical errors. We estimate these in
the following section.

5 Results

In the perfect case of error-free analytical data
daralytical " an inversion should produce a model solu-
tion that is exactly the same as the filtered input. We
confirm that by comparing the analytical model solu-
tion manalytical _ Gt ganalytical 14 the filtered input
Rmi"Put, When we instead use the measurements
on SEM waveforms dec°rrected  differences between
the filtered input model Rm®PUt (Figure 8b) and the
obtained model solution m°"*Put (Figure 8d) arise due
to a combination of both measurement and theoretical
errors. Only the former have been taken into account
in the model uncertainty map shown in Figure 8c. Note
how the edges of the model solution appear rough.
This is because we invert only for model parameters
where the data sensitivity is higher than a certain
threshold (depending on depth); this is possible due to
the point-wise nature of the SOLA inversion.

5.1 Qualitative proof of concept:
models

velocity

The features in the input model (Figure 8a) are also
mostly present in the filtered model (Figure 8b). This
indicates that the model resolution is good, at least at
112 km depth. For example, we retrieve mid-ocean
ridges (low velocities at the East-Pacific rise, Pacific-
Antarctic ridge, the edges of the Nazca plate), the litho-
sphere cooling effect (increasing velocity with distance
from the ridge), the ring of fire (low velocity in the back-
arc regions behind subduction zones such as the Aleu-
tian trench, Okhotsk trench, edges of the Philippine sea
plate and the Tonga-Kermadec trench), and cratons (fast
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Figure 6 Example dispersion measurements, showcasing three typical cases. For each case (column), we include the sen-
sitivity kernel at 16 mHz, plotted at 112 km depth (top row); the seismic traces (second row) for 8000 s after the event origin
time (reference in black, SEM in red), filtered around each measurement frequency, and the green vertical lines indicate the
start and end times of the applied tapers, around the predicted group arrival time; the measured dispersion for each taper
(third row); and the final dispersion measurement (bottom row) averaged over all tapers (black) with the estimated uncer-
tainty (grey), compared with the analytical prediction (orange). In the last row, the crustal correction is also applied to the
measurements.
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Figure 7 Summary of data and measurement uncertainty. a): Cross-plot of the measured phase delay (after crustal cor-
rection) versus the analytical phase delay prediction, coloured by frequency. Positive phase-delays typically indicate slow
velocity anomalies. b) Distribution of measurement data uncertainty (coloured by frequency) before (grey) and after apply-
ing several selection criteria. Our selection criteria include a threshold for the data uncertainty (lower than 1.9 radians), as
visible in the plot. The distribution of the measurement uncertainty before applying the selection criteria is scaled by 0.003
to enhance its visibility. c) and d) ray-path distribution coloured by the deviation between analytical and measured phase

delays at 6 mHz and 21 mHz respectively.

velocities within the Australian and North American
continents). Note that S362ANI is a relatively smooth
model, and we would probably miss smaller-scale fea-
tures in a rougher model.

The amplitudes of the velocity anomalies in the fil-
tered model are lower than in the input model. This
is expected since the filtered model represents (unbi-
ased) local averages (Zaroli et al., 2017). The filtered
model is also rougher on short length scales compared
to the input model. This can be explained by the lo-
cal nature of SOLA inversions where each model pa-
rameter is inverted independently from the others. In
this case, we notice this particularly because the input
model itself is very smooth. Some artefacts appear such
as the fast velocity anomaly of SW Australia extend-
ing through the slow velocity of the Australian-Antarctic
ridge. Some striations also appear in the fast velocity re-
gion in the NW Pacific, trending in the SW-NE direction.
These artefacts are probably the result of anisotropic
ray coverage, with many sources in East-Asia mostly
recorded by stations in North-America. In addition to
these artefacts, some local features disappear in the fil-
tered model, such as the low velocity finger extending
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southward from the Aleutian trench, or the branch ex-
tending north-westward from Hawaii. Overall, the fil-
tered input resembles the ‘true’ input model well, as also
reflected in the cross-sections underneath.

The resulting model solution based on SEM seismo-
grams (Figure 8d) appears very similar to the filtered in-
put (Figure 8b), with differences between them shown
in Figure 8e and f. Compared to the input and fil-
tered input models described above, the model solu-
tion appears somewhat rougher due to the propaga-
tion of data errors into the model solution (Figure 8d).
The striations observed in the NW Pacific in the filtered
model are also stronger in the model solution than in
the filtered input. The strongest spatially coherent dis-
crepancies appear close to the East Pacific Rise, the
North American Craton, and along the ocean-continent
boundaries. These locations correlate well with the lo-
cations of ray paths of the most discrepant measure-
ments (Figure 7). Finally, the cross-section indicates
a good agreement between the filtered model and our
model solution.
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Figure8 Summary of synthetic inversion results, comparing a) input model S362ANI, b) input model S362AN filtered using
our resolution matrix, c) the model measurement uncertainty (propagated from data measurement uncertainty), and d) the
model solution retrieved using the measured data values (based on the SEM seismograms), f) the difference between the
model solution in d) and filtered input model in b), and e) same as f) but normalised by the model uncertainty. All maps rep-
resent depth slices at 112 km depth, as in Figure 3. Below each map is a N-S vertical cross-section with the location indicated
by the grey or green line on the maps, and the dotted lines indicate depths of 100, 200 and 300 km.

5.2 Quantitative proof of concept: uncer- in Figure 5. Uncertainty is typically higher where there
tainty are clusters of stations and at isolated stations with lin-
ear features following great circle paths. Uncertainty

Our model measurement uncertainty map (Figure 8c) is peaks at ~ 87 km depth and decreases strongly at greater

very similar to the ‘uncertainty propagation factor’ map
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depth. This uncertainty only stems from the data uncer-
tainty, and is lacking the contribution from the theoret-
ical uncertainty. Theoretical errors arise from a mul-
titude of approximations as discussed in the Introduc-
tion. How much these contribute to the data uncer-
tainty is generally difficult to determine, but using our
setup we try to obtain some insights into the theoretical
uncertainty and to inform future studies.

We propose the following strategy to estimate the
magnitude of the theoretical model uncertainty. Let
miPPut and mOUtPUt he the input model and model so-
lution respectively. Any discrepancy between the input
model and model solution arises from the limited res-
olution and propagation of data uncertainty into model
uncertainty. To rule out the effect of limited resolution,
we apply the resolution to the input model to obtain the
‘filtered’ input model Rm"Put, Therefore, in this syn-
thetic setup, it is only the propagation of measurement
and theoretical errors into model errors that explains
the discrepancy between the ‘filtered’ input model and
the obtained model solution. This is confirmed by the
fact that the model solution based on error-free analyti-
cal data reproduces the filtered input exactly. Let us de-
fine the model misfit normalised by the model uncer-
tainty as:

71 Vi [(mOUtPUt)k _ (RmiHPUt)kP
Zke? Vk keP (o-rfrvz)%

&y = ;
(8)
where k refers to the model parameter index, V}, is the
volume of voxel k, P is the set of model parameters con-
sidered for the analysis, and o . refers to the model un-
certainty estimate.

If the data uncertainty is well-estimated, then £ 7271 =
As an experiment, we add random noise with a known
distribution to the analytical data (i.e. to those obtained
using davralytical — Gupinput)  In this case, the simu-
lated data uncertainty is perfectly known and we ob-
tain exactly E}n = 1. In the case of our synthetic to-
mography with phase delays measured on SEM wave-
forms, we obtain 57271 ~ 33 > 1 when we only consider
the propagation of data measurement uncertainty into
model measurement uncertainty. This model uncer-
tainty estimate is dramatically under-estimated as we
may have underestimated the data measurement uncer-
tainty and/or lack the theoretical uncertainty. We thus
need to either upscale or add another component to the
model uncertainty to account for this. We can write:

:5?3;2 — a2ggfs)surement2 + ﬂQ. (9)
Here, « is the factor needed to upscale the model mea-
surement uncertainty to account for the fact the mea-
surement uncertainty itself might be underestimated.
B is the theoretical uncertainty term that appears as an
added component. We can now vary « and 3 indepen-
dently and investigate for which combinations we ob-
tain 57271 = 1. Note that in this analysis the scaling fac-
tor o and the added uncertainty component /5 are both
assumed to be constant over all model parameters in-
volved (consisting here of all model parameters for Vgy
at 112 km depth).
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Figure 9 shows the evolution of 572] for various combi-
nations of o and 3. We use this plot to illustrate three
distinct cases. (i) The model measurement uncertainty
serves as total model uncertainty, i.e. no upscaling nor
added component, i.e. « = 1 and § = 0. In this
case, 57% ~ 33 falls in the under-estimated uncertainty
region. (ii) We only upscale the model measurement
uncertainty to obtain 57271 = 1, with 8 = 0, which re-
quires o ~ 5.74. (iii) We add an uncertainty compo-
nent without upscaling the model measurement uncer-
tainty to obtain 572] = 1, with « = 1, which requires
B8 =~ 0.49. This shows that the model measurement
uncertainty explains only a small part of the discrep-
ancy between the filtered input and the model solution.
For comparison, the mean measurement model uncer-
tainty is 0.09 (without upscaling). This means that the
theoretical model uncertainty that needs to be added to
the measurement uncertainty for a correct total model
uncertainty is 0.49/0.09 ~ 5.5 times the model mea-
surement uncertainty (without any upscaling). There-
fore, in this case, the total model uncertainty is domi-
nated by what we refer to as theoretical uncertainty. In
other words, the uncertainty provided by the measure-
ment algorithm explains only a small fraction of the to-
tal magnitude of the uncertainty.

6 Discussion

The SOLA-finite-frequency framework for surface-wave
tomography we present in this study makes it possi-
ble to obtain 3D resolution and uncertainty estimates in
surface-wave tomography. Here, we discuss our find-
ings regarding resolution and uncertainty in more de-
tail and discuss possible future directions.

6.1 Full 3D resolution

While our setup does not handle non-linearity, it of-
fers many advantages related to the seismic model res-
olution: we obtain the full resolution matrix in a com-
putationally efficient way; the resolution is fully 3D;
it is unbiased by construction (local averaging weights
sum to 1) as demonstrated by Zaroli et al. (2017); and
we have to some extent direct control over the reso-
lution we obtain by choosing the target kernels. This
is in contrast with most other studies that typically
have assessed the resolution through inverting syn-
thetic input models (e.g. French et al., 2013), checker-
board tests (e.g. Zhou et al., 2006; Auer et al., 2014,
Rawlinson and Spakman, 2016), point spread functions
(Ritsema et al., 2004; Bonadio et al., 2021), using the
Hessian in the context of full-waveform inversion (e.g.
Fichtner and Trampert, 2011), statistical methods using
Monte Carlo approaches or transdimensional tomogra-
phy (e.g. An, 2012; Bodin et al., 2012b; Sambridge et al.,
2013), or other algebraic manipulations (e.g. Fichtner
and Zunino, 2019; Shapiro et al., 2005; French and Ro-
manowicz, 2014). Since surface-wave tomography is of-
ten based on a two-step approach, estimates for the res-
olution have typically been only 2D (lateral) or 1D (verti-
cal), but there are some recent examples of 3D applica-
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Figure 9 Model uncertainty analysis. The central plot shows the value of 572” (the misfit between the model solution and
the filtered input model, normalised by the model uncertainty) for various combinations of the scaling factor o and added
theoretical component 3. In general, one should aim to find values of a and 3 that lead to 57% = 1 (the black line in the white
area). For smallvalues of both awand 3 (blue region, or lower-left part of the plot), 57271 > 1, meaning that the model uncertainty
is under-estimated, while the red regions indicate the model uncertainty is overestimated. The three cross-plots show the
velocity variations in the model solution versus those in the filtered input model for three cases: (i) upscaled measurement
uncertainty and no added component (upper-left), (ii) no upscaling nor added component (lower-left), and (iii) an added
component, but no upscaling (lower-right). Note that only the error bars representing the total model uncertainty for various

combinations of & and 3 change between these plots.

tions, for example using transdimensional tomography
(Zhang et al., 2018, 2020)

In this synthetic study, we find that the resolution is
laterally good enough to qualitatively retrieve the main
features of the input model (compare Figure 8a and b).
These large-scale or strong anomalies are features most
surface-wave tomography models agree on. This may
be surprising given the small number of data in our in-
version (47 700). We believe there are three main rea-
sons for this: (i) we carefully select our input data; (ii)
finite-frequency theory provides improved constraints
compared to ray theory since one 3D sensitivity ker-
nel constrains more model parameters than a thin ray,
while also being more accurate (e.g. Zhou et al., 2005);
and (iii) the SOLA inversion performs well in optimally
using the data sensitivities. Point (ii) shares some sim-
ilarities with adjoint methods used in full waveform in-
version, given the volumetric nature of the adjoint sen-
sitivity kernels (e.g. Monteiller et al., 2015).

The SOLA method consists of individual inversions
for each model parameter without imposing any global
constraint on all model parameters together. Therefore,
the fact that we recover large-scale structures in the
filtered model and model solution that are consistent
with the input model is encouraging (Zaroli, 2016). The
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global consistency of the model is provided indirectly
by the overlap between the averaging kernels. However,
compared to the input model, some short-scale variabil-
ity arises in the filtered input, where adjacent cells show
relatively strong differences. This is due to the point-
wise nature of the SOLA inversion, combined with the
absence of a smoothness criterion, and the smooth na-
ture of the input model itself. Using a coarser target
resolution would produce a smoother model, but would
also filter out heterogeneities that are informative. Even
though we present our results by plotting the mean of
our model parameters in adjacent voxels (to visualise
them as a tomographic model), it is important to re-
member that these are local average estimates.

In the above, we typically assess the performance of
the resolution by comparing the filtered model to the
input model. In doing this, we must keep in mind that
our ability to retrieve the input model depends on the
roughness of the input model itself. In particular, if the
input model had contained shorter scale structure, we
might not have been able to resolve it. While the reso-
lution itself remains reliable, the comparison of input
versus output models depends on the input itself; this
bears some similarity with the inherent limitations of
checkerboard tests (e.g. Lévéque et al., 1993; Rawlinson
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and Spakman, 2016). The full resolution itself remains
necessary for robust model interpretations.

Since the data sensitivity and the resolution are fully
3D, we can confidently interpret the model resolution
and uncertainty at all depths. This is a great advantage
compared to our earlier 2D work (Latallerie et al., 2022),
where the data sensitivity was imposed based on the lat-
eral ray coverage (assuming ray theory). As a conse-
quence, this study was likely too optimistic about the
resolution at greater depth and therefore it was not pos-
sible to clearly state up to what depth the resolution and
uncertainty estimates could be robustly interpreted.
Moreover, since our resolution is fully 3D, we can in-
vestigate vertical resolution effects here. In addition to
the well-known lateral smearing that arises in surface-
wave tomography (discussed by Latallerie et al. (2022)),
our averaging kernels indicate also significant vertical
smearing (or depth leakage) in the cross-sections (Fig-
ures 3 and 4). Similar observations have been made
in the context of full waveform inversion through as-
sessment of the Hessian (e.g. Fichtner and Trampert,
2011). For some model parameters, the averages we re-
cover relate primarily to structure above or below the
‘true’ location as the averaging kernel is shifted upward
or downward relative to the target kernel. In partic-
ular, the structure obtained at greater depth tends to
be an average over shallower structure, with the effect
becoming stronger with depth. Ignoring this full 3D
resolution could thus lead to biased interpretations of
surface-wave tomography, for example in studies of the
age-depth trends of the oceanic lithosphere (e.g. Ritz-
woller et al., 2004; Priestley and Mckenzie, 2006; Maggi
et al., 2006b; Isse et al., 2019). This synthetic study thus
emphasises the importance of taking vertical resolution
into account when interpreting surface-wave tomogra-
phy models and provides a quantitative way to estimate
the depth to which a surface-wave tomography model
should be interpreted. Within the SOLA approach, the
depth leakage could potentially be reduced by varying
the trade-off parameter with depth, and by adding a di-
rectionality to the trade-off parameter. We could also
use a full covariance matrix or include a weighting ma-
trix in the optimisation problem of Equation 5, to give
more weight to low frequency data (which would im-
prove the resolution at greater depth).

Resolution and uncertainty are closely related: re-
gions with high resolution tend to have high uncer-
tainty, and vice versa. In this study, we find that the
propagation of uncertainty decreases with depth (Fig.
5). This might be counter-intuitive as we expect the sen-
sitivity of surface waves to decrease with depth. How-
ever, this observation has also been noted in other stud-
ies (e.g. Zhang et al., 2018; Earp et al., 2020; Latallerie
et al., 2022). Our 3D resolution provides a robust expla-
nation for the the decrease of uncertainty with depth.
As depth increases, the resolution typically degrades,
in the sense that it does not represent the average fo-
cused around the target location. It rather tends to rep-
resent an average over regions with high data sensi-
tivity (averages are estimated over larger volumes and
are shifted spatially with respect to their associated tar-
get location), leading to lower uncertainties. This illus-
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trates that a combined analysis of uncertainty and 3D
resolution is necessary to fully understand the limita-
tions of surface-wave tomographic models.

6.2 Robust uncertainty estimates?

In this study, we estimate model uncertainty by prop-
agating data uncertainty into model uncertainty us-
ing SOLA, which works for linear(ised) inverse prob-
lems. Other studies have used Bayesian approaches
(e.g. Bodin et al., 2012b; Sambridge et al., 2013; Zhang
et al., 2018), recently helped by machine learning ap-
proaches (e.g. Earp et al., 2020), where the posterior
probability density function for the model can be inter-
preted as a measure of uncertainty. The Hessian has
also been used in full waveform inversions (e.g. Ficht-
ner and Trampert, 2011). However, in non-linear prob-
lems, the interpretation becomes more difficult. In gen-
eral, we are left with the problem of estimating robust
data uncertainties, which in the Bayesian philosophy
entails finding the right prior probability distribution
(though in this case non-informative priors could be
used or compared with the posteriors).

We have estimated the measurement uncertainty
with repeated sampling, changing the time window us-
ing the multi-taper technique. This is not dissimilar to
previous studies, which have used summary rays, boot-
strapping or perturbation methods to estimate the data
mean and measurement uncertainty (e.g. Maggi et al.,
2006b; Amiri et al., 2023; Asplet et al., 2020). Summary
rays are not useful in our case as the sensitivity ker-
nels depend on source mechanisms. However, future
studies could compare the uncertainty we obtain with
the multitaper technique to estimates using bootstrap-
ping. Bootstrapping could also provide a range of sub-
datasets with differing levels of uncertainty that could
be used to investigate the effect on the model solution
using SOLA. This would however have a significant com-
putational cost.

In general, model uncertainty appears to be underes-
timated. This is clear from meta-analyses of published
tomography models that show that the discrepancies
are stronger than the typical error bars (e.g. Hosseini
etal., 2018; Marignier et al., 2020; De Viron et al., 2021).
This has led authors to use simple ad hoc criteria for
upscaling the measurement uncertainty. For example,
Latallerie et al. (2022) use a least-squares x-test to up-
scale the uncertainty by a factor up to 3.4, while Lin
etal. (2009) multiply their random error uncertainty es-
timates by 1.5 to obtain a more realistic model uncer-
tainty estimate. While the measurement uncertainty
might indeed be underestimated (which led us to de-
fine the factor « in section 5.2), the total uncertainty
also needs to account for additional theoretical uncer-
tainty (the factor 5 in section 5.2). Theoretical errors are
technically deterministic, but for mathematical conve-
nience we have treated them as random variables.

Theoretical uncertainty has typically been estimated
using Monte-Carlo approaches in synthetic tests, dur-
ing which input parameters are varied and the range of
recovered data values is recorded as uncertainty. For
example, for surface-wave dispersion measurements,
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Bozdag and Trampert (2008) investigated the theoretical
errors induced by imperfect crustal corrections, while
Amiri et al. (2023) estimated the theoretical error in-
duced by source mislocation. Similarly, Akbarashrafi
et al. (2018) investigated the theoretical error produced
by different coupling approximations on normal mode
measurements, finding that reported data uncertainties
need to be at least doubled to account for the errors
due to theoretical omissions. In this work, we instead
estimated the effect of the theoretical uncertainties on
the model using a synthetic tomography setup that in-
cluded many sources of theoretical uncertainty simul-
taneously. The effect of resolution was removed by fil-
tering the input model so that discrepancies between
our model estimate and the filtered input model rep-
resent the total uncertainty. After propagating the data
measurement uncertainty into model measurement un-
certainty, we noticed that these need to be upscaled by
~ 5.5 to obtain a £2 of 1. This means that the theoretical
model uncertainty is ~ 5.5 times larger than the model
measurement uncertainty, assuming that the data mea-
surement uncertainty is estimated correctly. The the-
oretical model uncertainty is thus larger than previ-
ously proposed factors of 1.5-3.4 (Lin et al., 2009; Latal-
lerie et al., 2022), providing further evidence that the
model uncertainty is indeed severely underestimated if
we only propagate the data measurement uncertainty.
Whether there is a need to upscale the measurement
uncertainty naturally also depends on the specifics of
the study and on the reliability of the measurement un-
certainty estimate itself.

The main aim of this study is to provide a framework
for surface-wave tomography with robust model statis-
tics, including both the 3D resolution and total uncer-
tainty. However, we still suffer from several drawbacks.
For instance, although our measurement uncertainty
should account for contamination by other phases or
higher modes and cycle skipping, visual inspection in-
dicates that this is not always the case (Figure 6). In the
case of poor measurements (e.g. due to a missed cycle
skip) with low uncertainty, we underestimate the mea-
surement uncertainty and consequently overestimate
the theoretical uncertainty. This is the rationale behind
the factor « to upscale the measurement uncertainty in
Section 5.2 and illustrates the difficulty of correctly es-
timating the measurement uncertainty. An interesting
alternative approach was presented by several studies
(Bodin and Sambridge, 2009; Bodin et al., 2012a; Zhang
et al., 2020; Del Piccolo et al., 2024), which use a hierar-
chical transdimensional Bayesian approach where the
data uncertainty is an output of the inverse process it-
self, rather than an input.

Another drawback of our approach is that our esti-
mates of theoretical uncertainty depend on the input
model used, i.e. S362ANI (Kustowski et al., 2008). The
validity of the forward theory depends on several as-
sumptions (e.g. forward scattering, paraxial approx-
imation) whose applicability depends on the proper-
ties of the medium in which waves propagate (e.g. Liu
and Zhou, 2013; Parisi et al., 2015). It is therefore im-
portant to perform our analysis in an Earth-like model
and further work could investigate the dependency on
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the input model. Additionally, the scaling factor « (up-
scaling of the measurement uncertainty) and the added
component 3 (representing the theoretical uncertainty)
need to be determined for a sufficiently large number
of model parameters for the results to be statistically
significant (here we considered all model parameters
at 112 km depth). In particular, we would recommend
to determine these parameters for each depth in the
model independently, as velocity structure and the mag-
nitudes of measurement and theoretical uncertainties
likely change with depth.

Furthermore, the theoretical model uncertainty is es-
timated in the model space, and therefore may depend
in a non-trivial way on the model resolution. This would
be reflected by a dependency of £2 on the model resolu-
tion. This means that while the theoretical model un-
certainty is accurately estimated for this particular so-
lution, it may not apply to another inverse solution with
a different resolution. One way to obtain the theoretical
model uncertainty for models with different resolution
without having to repeat their estimation in the same
way, could be to compute the contribution of theoreti-
cal uncertainty on the data themselves using the sensi-
tivity matrix, and then to propagate this contribution for
models with different resolution using their respective
generalised inverse matrices.

We further assume the data uncertainties to be un-
correlated, whereas in reality we expect them to be cor-
related to some extent - e.g an error in the source loca-
tion or mechanism will impact several measurements.
In theory, it is possible to account for correlations be-
tween data uncertainties, but estimating these correla-
tions remains a challenge in surface-wave tomography.
The addition of the theoretical uncertainty contribution
to measurement uncertainty relies on the assumption
that they are normally distributed. Furthermore, the as-
sumption of a zero-mean Gaussian distribution for the
data errors seems reasonable, but the use of more gen-
eral probability distributions could also be investigated
(e.g. Tarantola, 2005). Note that the off-diagonal terms
of the model covariance matrix are also non-zero (even
with a diagonal data covariance matrix). In SOLA we
do not consider them explicitly because the information
they carry is already embedded in the resolution.

Lastly, we estimate the theoretical uncertainty from
the discrepancy between the filtered input model and
the model solution based on measurements on SEM
seismograms. Since the crustal model we assume for
the crustal corrections is exactly the same as in the in-
put model, and the source parameters used for generat-
ing the reference seismograms are exactly the same as
for the SEM seismograms, there is no theoretical error
associated with errors in the crustal model or source so-
lution in our synthetic framework. Nevertheless, these
two components likely introduce non-negligible errors
in reality (e.g. Marone and Romanowicz, 2007; Bozdag
and Trampert, 2008; Panning et al., 2010; Ferreira et al.,
2010; Liu and Zhou, 2013; Latallerie, 2022; Amiri et al.,
2023). Additionally, we base our kernels on the refer-
ence model stw105, which is already optimal for the in-
put model S362ANI that we aim to retrieve. This inher-
ently limits the magnitude of theoretical errors arising
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due to non-linearity in this study. Additionally, non-
linearities are expected to be stronger in the real Earth
than in the relatively smooth input model S362ANI. In
future, additional work could be done to estimate the
model uncertainty related to these components, which
could be incorporated in the proposed theoretical un-
certainty estimate. In addition, we use spectral element
modelling (SEM) to provide the ground truth, but any
deviation from SEM in reality would lead to additional
theoretical errors in a data-based study.

The restriction of SOLA inversion to linear problems
remains an important overall drawback of the method.
Here we treat non-linearity as an additional compo-
nent in the uncertainty. Accounting for non-linearities
with iterative inversion schemes can improve the mod-
els significantly (e.g. Thrastarson et al., 2024; Rodgers
et al., 2024) and would allow for a better representation
of the crust (e.g. Marone and Romanowicz, 2007; Boz-
dag and Trampert, 2008; Panning et al., 2010; Liu and
Zhou, 2013; Chen and Romanowicz, 2024). However,
non-linearities would also make the computation and
interpretation of the resolution and uncertainty more
complicated. The extension of Backus-Gilbert theory
to non-linear inverse problems as proposed by Snieder
(1991) could help to better account for non-linearities
with SOLA and should be the subject of future work.

Despite the drawbacks outlined above, we believe that
our study provides a valuable starting point to obtain
3D resolution and to estimate theoretical model un-
certainty in surface-wave tomography, upon which fu-
ture work can build. This information is vital for ro-
bust model interpretations and to reconcile existing dis-
crepancies between published tomography models (e.g.
Hosseini et al., 2018; Marignier et al., 2020; De Viron
etal., 2021).

6.3 Future directions

The depth sensitivity and thus resolution in this study is
limited by the restriction to fundamental-mode surface-
wave data. This can be mitigated by adding measure-
ments for surface-wave overtones. In theory, including
these in the presented framework is trivial, but it will be
important to carefully estimate the data uncertainty for
these new measurements. The resolution and uncer-
tainty produced in our setup can be used to inform other
tomographic studies. Our 3D resolution maps indicate
how well certain model parameters are constrained de-
pending on their position and particularly with depth.
Based on this, we may choose sets of source-receiver
paths and frequencies that best suit a certain target.
For example, to better homogenise the resolution with
depth, we may want to increase the number and/or the
relative weight of low frequency data.

The obvious next step is to apply the approach pre-
sented here to real data, using the lessons learned in
this synthetic study. As noted here, the depth leakage at
depths greater than ~100 km becomes extremely strong
for a dataset that is restricted to the fundamental mode.
This suggests that including overtones will be necessary
to obtain a model that is well-resolved deeper down in
the mantle. In general, the information on 3D reso-
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lution and uncertainty obtained using SOLA would be
particularly useful for testing geodynamic predictions
(Freissler et al., 2022). In addition, this information
would ensure that we only interpret the tomographic
models to their limits, and not beyond, being aware of
potential resolution artefacts, especially with depth.

There are many other directions for further develop-
ment. For example, it is possible to extend the SOLA-
finite-frequency framework for surface-wave tomogra-
phy to other data and physical parameters, e.g. ampli-
tude measurements to study anelasticity in the upper-
mantle (e.g. Zhou, 2009b). These could be investigated
independently, or through a joint approach, thus reduc-
ing theoretical uncertainty due to neglecting the effect
of other physical parameters.

Conclusion

In this contribution, we have combined the Backus-
Gilbert-based SOLA inverse method with finite-
frequency theory in a synthetic study of the Pacific
upper mantle. Our 3D modelling and inversion frame-
work enables us to control and produce uncertainty and
resolution information together with the surface-wave
tomography model. We have used a synthetic frame-
work to demonstrate the reliability of our approach and
to investigate the effect of 3D resolution, laterally and
vertically, in surface-wave tomography. We find that
the limited resolution induces well-known artefacts,
including lateral smearing effects where data coverage
is poor or highly anisotropic. More importantly, we
show that limited vertical resolution can induce strong
artefacts with model parameters potentially repre-
senting averages of ‘true’ Earth properties at much
shallower depth. Knowledge of this full 3D resolution
is crucial for robust interpretations of surface-wave
tomography models. Our synthetic setup allows us
to also explore the reliability of model uncertainty
estimates. We find that the theoretical uncertainty,
required to match the filtered input model, might
be much larger than the measurement uncertainty
in the data. This demonstrates the need to account
for both measurement and theoretical uncertainty in
surface-wave tomography. We believe that our study is
a starting point towards better use and interpretation
of surface-wave tomography models.
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Appendix A: The SOLA method in more
detail

In this appendix, we provide more details on the SOLA
method inspired by Zaroli (2016); Zaroli et al. (2017);
Zaroli (2019). Here we use a slightly different notation
following Latallerie et al. (2022). Let us consider N data
that are gathered in a data vector d € R". In addition,
the continuous ‘true’ model is discretised with model
parameters gathered in a model vector m € RM. As-
suming linearity, the data are expressed as linear com-
bination of the model parameters d = G'm, where the
forward mapping G € R™*M contains the physical
laws relating the N data to the M model parameters.
This forward mapping includes theoretical errors as G
does not exactly predict what we aim to measure. Ad-
ditionally, the measurement introduces data errors (the
measurement does not exactly measure what we aim to
measure). We first discuss SOLA without theoretical and
measurement errors and come back to these later on.
The inverse problem is ill-posed, i.e. G is not invert-
ible and we cannot find a unique value for each model
parameter. With SOLA, we break this non-uniqueness
by instead finding a single value for a local average
(Zaroli, 2016). Here, we define this local average as a
combination of model parameters that is informative,
i.e. a weighted sum of model parameters that is local to
a model parameter location. The weights of such a sum
is the resolution of the specific model parameter.
Letn(*) € R bethe estimate of alocal average around
model parameter k£ and let us write this estimate as a

linear combination of the data m®*) = GT(k)d, where

Gt ™ ¢ RN is the vector containing the weights for
the linear combination of the data. We use the forward
equation to obtain m(*) = GT(k)Gm, which implies
that the vector G1*) G contains the weights specifically
for the local average of model parameter k. This de-
fines the resolution for this model parameter: R(*) =

(R;k))jzl,“’M - (XN, GTEk)GiJ‘)j:],“’M. To account for

varying voxel volumes, we define the averaging kernel
AR = (R;k)/‘/j)j:]_7”)M. To find G1* we design a tar-
get local average, or target kernel, T*) ¢ R and min-

imise the squared distance between the averaging and
target kernel:

k
GT():argmin Z V;
Gt® j=1.Mm

k

S etey v | -1

i=1,..,N
(10)
The aim of the minimisation problem in Equation 10
is to fit the target kernel given the limits imposed by
the data sensitivity, i.e. the geometry of the problem.
In addition, we can add a uni-modularity constraint
on the resolution for the local average to be unbiased:
> GTE’C)G”— = 1 (Zaroli et al., 2017). Values greater
or smaller than unity imply that the local average is ar-
tificially over- or under-estimating the average of the
‘true‘’ model parameter. Note that if we compute the

linear combination Gt* for all M/ model parameters,
and organise them into a matrix G, then we can write

SEISMICA | volume 4.2 | 2025


http://doi.org/10.1111/j.1365-246X.2010.04734.x
http://doi.org/10.1111/j.1365-246X.2010.04734.x
http://doi.org/10.1029/RG010i001p00251
http://doi.org/10.1007/BF00876879
http://doi.org/10.1029/2002JB002254
http://doi.org/10.1111/j.1365-246X.2005.02707.x
http://doi.org/10.1111/j.1365-246X.2005.02707.x
http://doi.org/10.1093/gji/ggw315
http://doi.org/10.1093/gji/ggz175
http://doi.org/10.1002/2017GL074996
http://doi.org/10.1093/gji/ggy362
http://doi.org/10.1093/gji/ggaa230
http://doi.org/10.1111/j.1365-246X.2008.04010.x
http://doi.org/10.1111/j.1365-246X.2008.04010.x
http://doi.org/10.1111/j.1365-246X.2009.04230.x
http://doi.org/10.1111/j.1365-246X.2004.02324.x
http://doi.org/10.1111/j.1365-246X.2004.02324.x
http://doi.org/10.1111/j.1365-246X.2005.02780.x
http://doi.org/10.1111/j.1365-246X.2005.02780.x
http://doi.org/10.1029/2005JB003677

SEISMICA | RESEARCH ARTICLE | Resolution-uncertainty in 3D surface-wave tomography

m = G'd and m = GTGm, where m € R" is the col-
lection of local average estimates. In fact, G1 is the gen-
eralised inverse for the inverse problem, and m is the
model solution. This model solution can be visualised,
as we have done in this study, butitis important to recall
that this model solution is nothing more than a collec-
tion of local averages, not estimates of individual model
parameters.

The above is incomplete as all observed data contain
errors. To account for this, we can represent each da-
tum as a Gaussian probability distribution whose mean
is the measured datum (d;) and whose standard devi-
ation is the estimated measurement uncertainty (og;).
Under this assumption, a model parameter estimate is
also a Gaussian probability distribution as it is a linear
combination of Gaussian probability distributions and
we can easily compute its mean and standard deviation.
The mean of the local average distribution is still given

by m® = ¥ G1"d,, while the standard deviation

2
is given by o~ SN, G 6,2, Note that the
model uncertainty is for a local average estimate, not an
estimate for a given model parameter. The weights that

specify the linear combination of data (G (k)) alsoinflu-
ence the propagation of data uncertainty into model un-

certainty. To account for this in designing GT(k), i.e. to
find a combination of model parameters that also min-
imises the propagation of data uncertainty into model
uncertainty, we amend the minimisation problem of
Equation 10:

(k) k
> oatay vy | -1

arg min E V;
M i=1,..,N

Gt® iy

2 k)2
+n" > el
i=1,..,N

j
(11)

with n* the trade-off parameter for the model param-
eter. Equation 11 leads to a set of equations for each
model parameter k with its particular target resolu-
tion T, These can be solved, as proposed by Zaroli
(2016), using an LSQR algorithm (e.g. Paige and Saun-
ders, 1982). More details on this implementation can be
found in appendix Al of Zaroli (2016). A summary of
the SOLA inversion illustrating the inputs and outputs
is presented in Figure 10.

Appendix B: Phase delay measurements
using multi-taper technique

Let s(w) = A(w)e?“) be the mathematical expression
of the reference seismogram computed for the 1D ref-
erence model for a given source-receiver pair at some
frequency w, with amplitude A and phase ¢. Let o(w) =
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A°(w)e?” @) be defined equivalently for the observed
seismogram, or the SEM seismogram in the case of this
synthetic study. The accumulated phase results from
source and receiver effects, caustics and the propaga-
tion itself (e.g. Ekstrom, 2011; Ma et al., 2014; Moulik
et al., 2021). We typically assume the first three terms
are the same for both the reference and observed seis-
mograms. In that case, the phase delay can be directly
related to the propagation and thus perturbations in the
Earth model. These phase delays are what we are inter-
ested in measuring here.

An overview of the measurement workflow is given
schematically in Figure 11. Waveforms are first pre-
processed (e.g. resampled at 1 Hz, instrumental re-
sponse removed if necessary). As suggested by Zhou
etal. (2005) and Zhou (2009a), we then use a multi-taper
technique to measure the phase-delays and to obtain an
estimate of the measurement uncertainty (e.g. Thom-
son, 1982; Park et al., 1987a,b; Laske et al., 1994; Laske
and Masters, 1996; Hjorleifsdottir, 2007). The technique
uses the first few Slepians (after Slepian, 1978) defined
over a 801 s window. Slepians are an infinite series
of functions with optimal frequency spectrum (there-
fore reducing frequency leakage) that weigh different
parts of the waveform (thus reducing bias in the time-
domain). With a 801 s-long time-window and 1 Hz sam-
pling rate, we should use only the first 5 Slepians (see
Percival and Walden, 1993, pp. 331). To position the
Slepians, we compute the predicted group arrival time
at the frequency of interest, starting the Slepian time
window 150 s before the expected arrival. We then apply
a 4 mHz-wide bandpass filter around the frequency of
interest before we compute the Fast Fourier Transform.
Finally, we subtract the phase component of the tapered
and filtered observed (or SEM here) waveform from the
reference waveform in the frequency domain. Usually,
we obtain a smooth dispersion curve, except for when
the phase delay reaches 4, where the dispersion curve
makes jumps of +£27. Low frequencies are less likely to
suffer from cycle-skips. Therefore, we make our mea-
surements at increasingly higher frequency, starting at
6 mHz. When we detect these so-called cycle-skips (we
use a threshold of +4 radians for the detection), we add
or remove 27 to obtain a smooth dispersion curve and
apply this correction accordingly to all higher frequen-
cies.

For each source-receiver pair, we end up with 5 dis-
persion curves for the 5 Slepians, corrected for cycle-
skipping. We use the average of these 5 curves as our
final measurements and the standard deviation as the
data measurement uncertainty. In some cases, we note
an inaccurate detection of cycles-skipping (either as
false-positive or false-negative). These false detections
typically do not occur on all five tapers, leading to a
sharp increase in measurement uncertainty. In addi-
tion, some fundamental mode measurements are con-
taminated by the interference of other phases or higher
modes. This usually does not affect all five tapers, thus
also leading to an increase in the measurement uncer-
tainty.
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Figure 10 Illustration of the SOLA workflow. The minimisation problem at the heart of SOLA aims to find a generalised in-
verse matrix Gt *) such that the resolution is close to the target resolution and that the model uncertainty o is reasonable.

This minimisation problem takes four inputs: G, ¥, o4 and T'*). The sensitivity matrix G contains the forward theory and
depends on the data geometry. The measurement uncertainties o4 are estimated using the multitaper technique. For model

parameter k, a target resolution is designed T'(%) and a trade-off parameter 1* balancing the fit to the target resolution and
model uncertainty is chosen. The obtained generalised inverse allows us to compute the model uncertainty o® using the

m
data uncertainty, to compute the averaging kernel R(*) by combining the generalised inverse with the sensitivity matrix G,
and to compute the model parameter estimate m(¥) from the data values d. Note that the data values only play a role after
the minimisation problem and that no a priori on the model estimate itself has been introduced. In this study, we set the
measurement uncertainty to 1 as input into the SOLA minimisation problem. However, we incorporate the actual measure-

ment uncertainty to compute the measurement model uncertainty.
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Figure 11 Overview of the measurement workflow. We compute a reference seismogram for the reference radial Earth
model, which we use to measure the phase-delay of a SEM-computed seismogram (acting in this synthetic setup as observed
seismogram). We apply a set of tapers (the five first Slepians), thus leading to 5 tapered traces. We filter each in a set of
frequency bands, before we take the FFT. In the frequency domain, we then compute the phase difference for all frequencies
for all tapers, producing a set of 5 dispersion curves. We apply a cycle-skip correction and then take the mean of all 5 tapers

as the final measurement, with the measurement uncertainty given by the standard deviation of the five tapers.

Appendix C: Computational considera-
tions

In this study, we use N = 47700 fundamental mode
phase delays as data and we parameterise the spatial do-
main into M = 259200 voxels (cells of size 2° x 2° lat-
erally and 25 km depth for the first 400 km depth of the
whole mantle). Therefore, the sensitivity matrix G of
size N x M is reasonably large. To optimise the sparsity
of the sensitivity matrix, we only consider the sensitiv-
ity kernels in the two first Fresnel zones laterally, since
their amplitude is negligible further away. The sensi-
tivity is also negligible at depths greater than 400 km
depth. Our resulting matrix thus contains 645 282 622
non-zero elements, i.e. the density is approximately
5.2%. The SOLA optimisation problem (Equation 5)
leads to a set of normal equations taking the form of an-
other (M + 1) x (N — 1) matrix Q that is less sparse
than G (see Zaroli, 2016, Appendix Al). Reordering the
lines of G with the sparsest row first helps to improve
the sparsity of Q. In this study, Q contains 657 124 288
non-zero elements, i.e. sparsity is approximately 5.3%.
On disk, we use a ‘coordinate list’ (COO) storage strat-
egy, and @ takes up ~17 GB. On RAM, we use a reversed
linked-chain storage strategy to improve compute time.
In this case, the Q matrix takes up ~35 GB. This large
memory requirement is the primary limiting factor for
increasing the number of data and model parameters.
The computation time of the LSQR inversion for a sin-
gle model parameter depends on the target resolution
and trade-off parameter. With the choices made in this
study, it takes ~100 s per model parameter. As we invert
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for 69 200 model parameters, a full model estimate thus
requires ~ 692000 s CPU time (or 192 CPUh). In prac-
tice, we invert for model parameters in parallel on sev-
eral nodes with 128 CPU each using a multi-threading
approach with OpenMP. The scaling is not fully linear
due to input/output operations, but this strategy reduces
the wall time to ~ 20 h.

The article Towards surface-wave tomography with 3D res-
olution and uncertainty © 2025 by Franck Latallerie is li-
censed under CC BY 4.0.
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