
Chapter 3

SOLA tomography in a nutshell

Foreword
In this chapter, I intend to give an overview – with a lecture-like flavor – of the
SOLA–Backus–Gilbert inversion method (or SOLA† for short) that I have recently † Subtractive

Optimally
Localized
Averages

introduced and adapted to solve large-scale, linear, both discrete and continuous,
tomographic problems (Zaroli, 2016, 2019; Zaroli et al., 2017). My goal is for the
reader, in particular for MSc and PhD students in Earth sciences, to quickly learn:

1. What SOLA tomography is about;

2. Why it could (should) be preferred to other ‘classical’ tomographic methods.

3.1 Introduction

3.1.1 Linear tomographic problems
First, the SOLA method is limited†† to linear(ized) tomographic problems, such as: †† Though the B–G

theory has been
developed for linear
problems, Snieder
(1991) extended
the theory to
weakly non-linear
problems. How-
ever, this theory,
as it is, seems too
complex to be used
in practice (Snieder
& Trampert, 1999).

• (finite-frequency) body-wave mantle tomography (Zaroli, 2016, 2019),

• surface-wave tomography (Latallerie, 2019),

• ambient-noise based, surface-wave group-velocity tomography (Ouattara, 2019),

• joint normal-mode and body-wave whole-mantle tomography (Dubois, 2020).

The three last examples refer to recent SOLA-based tomographic studies conducted
by MSc and PhD students – co-supervised by myself. In the following, I shall
illustrate most of the concepts of SOLA inversion through the example of finite-
frequency††† body-wave time-residual tomography, while considering both settings ††† Finite frequency

wave-propagation
theory (Marquering
et al., 1998; Dahlen
et al., 2000).

of continuous and discrete model space. As a remark, it would be straightforward to
replace, in the SOLA theoretical developments presented in this chapter, the finite-
frequency physical framework by the simpler one of ray theory (see Nolet (2008) or
Zaroli (2010) for an introduction to ray vs finite-frequency theory; see also Fig. 3.1.1).
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3.1. INTRODUCTION Chapter 3. SOLA tomography in a nutshell

Figure 3.1.1: (Upper-left) Cross-correlating observed and synthetic S-phase waveforms, to get
time-residual measurements for finite-frequency theory. (Lower-left) Picking onset time-residuals
for ray theory. (Right) Example of 3–D, finite-frequency, SS-phase time-residual sensitivity kernel
(units are s.km≠3; red/blue=negative/positive, respectively; white=‘no data sensitivity’); the black
dashed line represents the geometrical ray path, that is, the 1–D ray-theoretical sensitivity kernel.

More specifically, let consider linear, continuous, tomographic problems
of the form (as for finite-frequency body-wave tomography of the Earth’s mantle):

di =
⁄

Mantle
Ki(r) m(r) d

3r + ni , 1 Æ i Æ N , (3.1.1)

• d = (di)1ÆiÆN stands for the data vector, of size N
†; each datum di repre-† N stands for the

number of data, al-
though M is also
used in the (Ameri-
can) literature.

sents say an S -wave time residual, ”ti, measured by cross-correlating a pair
of observed and synthetic S -phase waveforms, filtered around a given central
period (see Zaroli et al. (2010) and Fig. 3.1.1).

• m(r) denotes the continuous ‘true’ model††; for instance, m(r) represents†† “The true model
is the model that
corresponds to re-
ality and which is
only known to the
gods. However,
we are not aware
of any definition
that is operational
in the sense that
it provides us with
a set of actions
that could poten-
tially tell us what
the true model re-
ally is.” (Snieder &
Trampert, 1999)

the 3–D, isotropic, shear-wave velocity perturbation, ”VS
VS

, in location r, with
respect to a 1–D, radial VS model such as IASP91 (Kennett & Engdahl, 1991).

• Ki(r) is here a 3–D (volumetric) finite-frequency sensitivity kernel, associated
to an S -wave time-residual datum di (see Fig. 3.1.1); such a finite-frequency
kernel Ki depends on the filtering period used to measure cross-correlation
time residuals (Marquering et al., 1998). More generally, Ki is referred to as
the i-th data-sensitivity kernel (or ‘sensitivity kernel’ for short).

• n = (ni)1ÆiÆN stands for the – assumed – zero-mean, normally-distributed,
noise vector; the data covariance matrix is then diagonal: Cd = diag(‡2

di
)1ÆiÆN .

As we shall discuss further, a robust estimation of data errors (‡di) is crucial
for taking full advantage of the outcomes of the SOLA inversion approach.
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3.1.2 Asking questions on the Earth’s interior
A major goal of seismic tomography is to make inferences about the physical prop-
erties of the Earth’s interior, that is, from performing a so-called ‘inversion’ of a set
of data (seismological observables).

• Forward problem. Let consider that knowledge of wave-propagation physics
(as the aforementioned finite-frequency theory) allows one to ‘predict’ data,
d

pred
i

, given an input Earth model, min, that is:

d
pred
i

Ω≠

⁄

Mantle
Ki(r) min(r) d

3r . (3.1.2)

This is called a – linear – forward problem.

• Inverse problem. In an inverse problem, one aims at reconstructing the
(unknown) true model m from a set of actual data d. The situation is sketched
in Fig. 3.1.2(left). It is important to realize that in most, if not all, tomographic
experiments, the model m is a continuous function of the space variables, while
we are to deal with a finite amount of (noisy) data to determine m. Thus, as
nicely formulated by Snieder & Trampert (1999), “a simple count of variables
shows that the data cannot carry su�cient information to determine the model
uniquely†”. In other words, there are infinitely many model solutions, m̂, that † A starting point

of the theory of
Backus & Gilbert
(1967, 1968) was to
recognize this non
unicity aspect of in-
verse problems.

could explain the data equally well (even with error-free data). Therefore, any
particular solution m̂ cannot be stricto senso equal to the true model m.

• Model estimation ‘and’ appraisal. The estimation problem consists in
reconstructing from the data, d, a (non-unique) model estimate, m̂, that is
consistent with the data, and their error bars. In the appraisal problem one
aims to determine which properties of the true model m can be recovered in
the model estimate m̂ – and the attached errors. See Fig. 3.1.2(right).

Figure 3.1.2: (Left) Forward and inverse problems. (Right) The inverse problem now viewed as a
combination of an estimation problem and an appraisal problem. In any linear inverse theory, the
explicit knowledge of the generalized inverse is crucial for model estimation and model appraisal.

– 29 –
Zaroli, C., 2021. Seismic tomography using SOLA–Backus–Gilbert inversion, HDR, University of Strasbourg.



3.1. INTRODUCTION Chapter 3. SOLA tomography in a nutshell

• The starting point of Backus–Gilbert. A fundamental insight from the
pioneering works by Backus & Gilbert (1967, 1968, 1970) is that tomographic
problems are invariably, at least partly, underdetermined: “the collection of
Earth models which yield the physically observed values of any independent set
of gross Earth data is either empty or infinite dimensional” (Backus & Gilbert,
1967). Recognizing this fact, the Backus–Gilbert (B–G) approach† seeks not† The linear B–G

inversion scheme
belongs to the
class of Optimally
Localized Averages
(OLA) methods.

to construct a particular model solution, m̂, that is, to estimate infinitely many
model parameters, but instead to determine some optimally localized averages
over the true model m. Indeed, it is possible to identify unique averages, even
when the (infinitely many) parameters themselves are not uniquely defined.

• Asking relevant questions. The fact that most tomographic problems are
underdetermined (because of imperfect data coverage), and deal with noisy
data, makes it futile to ask questions on the Earth’s interior of the form:
What is the shear-wave velocity right below Paris, at 321 km depth? That is,
what is the true-model value at a specific location, m(rParis)? It is clear that an
infinite error would be attached to any numerical answer to that question, so
that nothing could be learned on the true-model properties. See Fig. 3.1.3(left).
The Backus–Gilbert approach rather consists in asking questions of the form:
What is the average value, and attached uncertainty††, of shear-wave velocities†† Here, uncertain-

ties merely repre-
sent the amount
of data noise that
is statistically ex-
pected to propa-
gate into the local-
average estimates.

within a given averaging volume, localized around rParis, i.e., < m(rParis) >
†††?

††† Here, the nota-
tion < · > denotes
a general averaging
process.

As illustrated in Fig. 3.1.3(right), meaningful local-average estimates spread
out over a volume (in model space) that is large enough to influence the data.
We shall see that the SOLA–Backus–Gilbert approach (Zaroli, 2016, 2019)
is a tomographic method of choice for getting quantitative answers to the
aforementioned, relevant questions to be asked on the properties of Earth.

Figure 3.1.3: (Left) Futile attempt at estimating the true-model value at a ‘specific’ location.
(Right) Meaningful attempt at estimating a ‘local average’ over the (continuous) true-model values,
within an averaging volume (red disk) that is well localized and large enough to influence the data.
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• Two di�erent philosophies. Before diving into the details of the (SOLA)
Backus–Gilbert approach, let us step back, and briefly review the two major
philosophies which have been used (in one form or another) for solving general
inverse problems in Earth sciences. That is, quoting Tarantola (2006):

1. – “The first† carefully avoids using any a priori information on the † “[It] is favoured by
statisticians, as it
can easily be for-
malized and pre-
sented with stan-
dard mathematical
rigour.”

model parameters that could ‘bias’ the inferences to be drawn from
the data.”

– “The theory developed by Backus and Gilbert is a good example of
this approach.”

2. – “The second philosophy is clearly bayesian.”
– “When starting with some a priori state of information on the model

parameter, which is the a posteriori state of information at which we
arrive after ‘assimilating’ new data?”

A fundamental question in inverse theory is: “Should a priori information†† be †† I shall focus on a
priori model infor-
mation (and simply
assume zero-mean
data errors and a
diagonal prior data
covariance matrix).

used?” (Tarantola, 2006). Clearly it is ‘no’ for the first philosophy (Backus–
Gilbert-like), and ‘yes’ for the second (bayesian-like). I think that one cannot
avoid a subjective reasoning, when arguing that one of these two points of view
is (always) better adapted to solve inverse problems arising in (geo)sciences.
On one hand, if relevant††† a priori information is available (e.g., known ex-

††† Based on physi-
cal, ‘objective’ con-
siderations.

treme values of model parameters or correlations between parameters), the
bayesian approach can†††† take advantage of it, while Backus–Gilbert cannot.

†††† Although the
Bayesian approach
may su�er from the
curse of model di-
mensionality. (B–G
treats model space
as a continuum.)

On the other hand, if no relevant a priori information is available – as it hap-
pens for most seismic tomography experiments, for which ad hoc prior model
constraints are frequently used – then the Backus–Gilbert point of view may
be preferred, as it can make inferences††††† from the data without potential

††††† Local averages
with respect to the
‘true’ model.

‘biases’ induced by ad hoc, a priori model information (see Sect. 3.3).

3.2 SOLA–Backus–Gilbert tomography
I aim to present the concepts involved in seismic tomography using 1) continuous
Backus–Gilbert inversion, 2) continuous SOLA inversion (Zaroli, 2019), and 3) dis-
crete SOLA inversion (Zaroli, 2016). Theoretical developments will be illustrated,
in the case of SOLA tomography, with examples. In particular, we shall see that the
SOLA–Backus–Gilbert tomographic approach explicitly allows one to get ‘quanti-
tative answers’ to questions on Earth’s properties of the form: What is the average
value, and attached uncertainty, of seismic velocities within a given, localized vol-
ume? Ultimately, that knowledge – of local averages – may help to better understand
the complex structures and dynamics taking place in the Earth’s interior.

3.2.1 Continuous Backus–Gilbert inversion
• Local weighted-averages. In the continuous Backus–Gilbert approach (Backus

& Gilbert, 1967, 1968, 1970), one explicitly seeks a model estimate m̂
(k) which
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represents a weighted average over the continuous ‘true’ model, m(r). This av-
eraging process takes place through an averaging kernel†, A

(k)(r), that we wish† Here, dimension-
ality of averaging
kernels is km≠3.

to be optimally localized around a given query point, r(k); see Fig. 3.2.1(left).
This leads to writing:

m̂
(k) =

⁄

Mantle
A

(k) (r) m (r) d
3r

¸ ˚˙ ˝
AVERAGING

PROCESS

(+ propagated noise ) , (3.2.1)

where the term ‘propagated noise’ means the part of noise, n, in the data,
d, that propagates (through the inversion) into the model estimate, m̂

(k).

• Unbiased averages. We wish that the integral
s

A
(k)

m yields unbiased
(weighted) averages over the true model m. The averaging kernel A

(k) should
then be non-negative, and satisfy to the following condition (see Text Box 3.1):

⁄
A

(k) (r) d
3r = 1 . (3.2.2)

Text Box 3.1: Weighted average of a continuous function
Let f̂ a weighted average of function f(x), with (non-negative) weighting function

w(x), with x œ [a, b]. It writes: f̂ =
s b

a
w(x)f(x)dx

s b

a
w(x)dx

=
s

b

a
A(x)f(x)dx, with (non-

negative) averaging function A(x) = w(x)s b

a
w(x)dx

, that satisfies
s

b

a
A(x)dx = 1. �

• Generalized-inverse operator. As the tomographic problem (di =
s

Kim+
ni) is linear, one can seek the estimate m̂

(k) as a linear combination of the data:

m̂
(k) =

Nÿ

i=1
x

(k)
i

di , (3.2.3)

where the N unknown, real-valued coe�cients†† , x(k) = (x(k)
i

)1ÆiÆN , represent†† When inverting
time residuals (s),
the physical unit of
generalized-inverse
coe�cients is s≠1.

some generalized-inverse operator, mapping the data to the model estimate
m̂

(k). This operator, and the way it is calculated, is the cornerstone of every
inversion scheme; see Figs. 3.1.2(right) and 3.2.1(right). From combining the
previous equations, one finds that the weighted-average estimate m̂

(k) writes:
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Figure 3.2.1: (Left) Illustration of an averaging process that takes place through an averaging
kernel, A(k)(r), that we wish to be spatially localized around a given query point, r(k), but also
to be large enough to influence the data. Remark: In practice, the averaging kernel would likely
not be constant-valued inside the reddish area (this is why one often is dealing with ‘weighted’
averages). (Right) Generalized-inverse operator: a ‘shuttle’ from data to model space.

m̂
(k) =

⁄ A
Nÿ

i=1
x

(k)
i

Ki(r)
B

¸ ˚˙ ˝
AVERAGING KERNEL

A(k)
(r)

m(r)d3r +
Nÿ

i=1
x

(k)
i

ni

¸ ˚˙ ˝
PROPAGATED

NOISE

. (3.2.4)

Note that, in the Backus–Gilbert approach, an averaging kernel, A
(k), is ex-

plicitly defined as a linear combination of data-sensitivity kernels, Ki, that is:

A
(k)(r) =

Nÿ

i=1
x

(k)
i

Ki(r) , (3.2.5)

see Fig. 3.2.2. Statistically, the weighted-average estimate m̂
(k) therefore writes:

m̂
(k)

¸ ˚˙ ˝
weighted-average

ESTIMATE

©

⁄
A

(k) (r)m (r) d
3r

¸ ˚˙ ˝
AVERAGING

PROCESS

+ N (0, ‡
2
m̂(k))

¸ ˚˙ ˝
statistical propagation

of noise (normal distribution)

, (3.2.6)

where the standard deviation ‡
m̂(k) is referred to, in this work terminology,

as the uncertainty attached to the estimate m̂
(k), and can be expressed as:
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Figure 3.2.2: In the B–G approach, an averaging kernel is explicitly defined as a linear combi-
nation of data-sensitivity kernels, whose weights are given by the generalized-inverse coe�cients.
Data-sensitivity kernels too ‘far away’ from the query point (not shown here) should be given zero
weights (i.e., x(k)

i = 0), for the averaging kernel to be optimally localized close to the query point.

‡m̂(k) =
ı̂ıÙ

Nÿ

i=1

1
x

(k)
i

22
(‡di)

2
. (3.2.7)

As a remark, the ‘uncertainty’ ‡m̂(k) merely represents the amount of noise
that may propagate into the weighted-average estimate m̂

(k). That is, ‡m̂(k)

cannot inform us on how much the estimate m̂
(k) may di�er from the true

model value m(r(k)), at the specific query-point location r(k). Finally, from
the generalized-inverse coe�cients, x(k), one can directly infer the weighted-
average estimate m̂

(k), averaging kernel A
(k), and uncertainty ‡

m̂(k) , that is:

x(k) =∆

Y
__]

__[

q
N

i=1 x
(k)
i

di ≠æ m̂
(k)

q
N

i=1 x
(k)
i

Ki(r) ≠æ A
(k)(r)

(q
N

i=1(x
(k)
i

‡di)2)1/2
≠æ ‡m̂(k) .

(3.2.8)

• Resolution / uncertainty. Firstly, the spatial extent of an averaging kernel
(sometimes also referred to as a resolving kernel), A

(k)(r), informs us on the
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size of ‘true’ model features, around a query point r(k), that could be recovered
(resolved) through the associated averaging process. Secondly, the uncertainty
value, ‡m̂(k) , informs us on the amount of noise that could contaminate a
weighted-average estimate, m̂

(k). Both averaging kernels and uncertainties
must be taken into account to appraise (weighted-average) model estimates.
Finally, as shown in Fig. 3.2.3, there is a well-known (Menke, 1989) trade-o�† † In general, the

larger the volume of
the resolving kernel
A(k) (grey shape),
the more the num-
ber of data influ-
enced by this vol-
ume (red rays), and
then the more the
‘propagated noise’
term, i.e., (x(k))T n,
tends to cancel out,
and so for the un-
certainty ‡m̂(k) .

between resolution (i.e., size of A
(k)) and uncertainty (i.e., value of ‡

m̂(k)).

Figure 3.2.3: Illustration of trade-o� between poor/good resolution (large/small spatial extent
of averaging kernel A(k); see the grey shape), and low/high value of uncertainty ‡m̂(k) , respectively.

• Continuous Backus–Gilbert minimization problem. In the B–G ap-
proach, a minimization problem is set up to directly find out each generalized-
inverse vector, x(k), for each query point, r(k), which writes (e.g., Nolet, 1985):

†† 56fi
9

is a scaling
factor (see Text
Box 3.2), while
the power 4 en-
sures the correct
dimensionality.

Y
___________]

___________[

arg min:
x(k)œRN

56fi

9 ◊

⁄ Ë
A

(k) (r)
È2

|r ≠ r(k)
|
4
d

3r
¸ ˚˙ ˝
Measure of the SPATIAL EXTENT

††
of A(k)

(Favoring peak-shaped averaging kernel)

+ [÷(k)]2
¸ ˚˙ ˝

Trade

o�

‡
2
m̂(k)

¸ ˚˙ ˝
VARIANCE of m̂(k)

(Moderating uncertainty)

subject to
⁄

A
(k)(r)d3r = 1 .

¸ ˚˙ ˝
AVERAGING

CONDITION

(3.2.9)

This leads to a compromise – via the trade-o� parameter ÷
(k) – between fa-

voring a peak-shaped averaging kernel A
(k)(r), peaked at r(k), while also mod-

erating the uncertainty ‡
m̂(k) , on the weighted-average estimate (i.e., trade-o�

between resolution and uncertainty, see Fig. 3.2.3). In addition, the minimiza-
tion problem is constrained for the averaging kernel A

(k) to honor the (unbi-
ased) ‘averaging condition’ (3.2.2). Finally, (3.2.9) writes (see Text Box 3.3):
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Y
_]

_[

solve F(k) x(k) = 0,

subject to q
N

i=1 x
(k)
i

s
Ki(r)d3r = 1 ,

with: F
(k)
iiÕ = 56fi

9
s

Ki(r)KiÕ(r)|r ≠ r(k)
|
4
d

3r + [÷(k)
‡di ]2”Kro

iiÕ
†
, 1 Æ i, i

Õ
Æ N .

(3.2.10)

(3.2.10) can be solved with the Lagrange-multipliers method (Pijpers & Thomp-† ”Kro

iiÕ is the usual
Kronecker symbol. son, 1992) or an LSQR-based approach (Paige & Saunders, 1982; Nolet, 1985).

Text Box 3.2: On the scaling factor 56fi

9

We wish that W (k) = C ◊
s Ë

A(k) (r)
È2

|r ≠ r(k)
|
4d3r represents the spatial extent of

the averaging kernel A(k), where C is a scaling factor. If A(k) is equal to a constant
inside a sphere, centered in r(k), with diameter D, and 0 outside, then this constant
= 1

sphere’s volume = 1
4

3
fi( D

2
)3

; which ensures that
s

A(k) = 1. Without loss of generality,

assume r(k) = 0. Therefore, using spherical coordinates (r, ◊, „), one finds:
⁄ Ë

A(k) (r)
È2

|r ≠ r(k)
|
4d3r = 1

(4
3fi(D

2 )3)2

⁄ D
2

r=0

⁄
fi

◊=0

⁄ 2fi

„=0
r6 sin ◊d◊d„ = 9

56fi
◊ D .

Finally, for this example, one wants to have W (k) = D; this means that C = 56fi

9 . �

Text Box 3.3: Continuous Backus–Gilbert normal equations

Expanding out A(k) and ‡
m̂(k) in function of x(k), the system (3.2.9) writes:

Y
___]

___[

arg min:
x(k)œRN

56fi

9
s Ëq

N

i=1 x(k)
i

Ki(r)
È2

|r ≠ r(k)
|
4d3r + [÷(k)]2

q
N

i=1(x(k)
i

)2(‡di)2

subject to
q

N

i=1 x(k)
i

s
Ki(r)d3r = 1 .

To obtain the normal equations corresponding to the ‘unconstrained part’ of the
previous minimization problem, we do the following (iÕ is fixed):

ˆ

ˆx(k)
iÕ

Q

a56fi

9

⁄ C
Nÿ

i=1
x(k)

i
Ki(r)

D2

|r ≠ r(k)
|
4d3r + [÷(k)]2

Nÿ

i=1
(x(k)

i
)2(‡di)2

R

b = 0 ,

=∆
q

N

i=1 x(k)
i

56fi

9
s

Ki(r)KiÕ(r)|r ≠ r(k)
|
4d3r + x(k)

iÕ [÷(k)‡di ]2 = 0 , 1 Æ iÕ
Æ N ,

which can be written in matrix form: F(k) x(k) = 0 – as in (3.2.10). �
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• From a collection of local weighted-averages to an image. Let us
consider a series of query-point locations (r(1)

, r(2)
, ...), spanning a region of

interest†; see Fig. 3.2.4(left). As a first remark, the associated generalized- † In the (SOLA)
Backus-Gilbert in-
version scheme, the
region of interest
(for which we want
to get a collection
of local weighted-
averages) does not
need to spread over
a region that is
large enough to
encompass entirely
all the ray paths.

inverse vectors (x(1)
, x(2)

, ...) can be computed in an embarrassingly parallel
fashion (since each system (3.2.10), associated to each query point, can be
solved independently). Recall that from the generalized-inverse vectors, are
inferred the weighted-averages (m̂(1)

, m̂
(2)

, ...), uncertainties (‡
m̂(1) , ‡

m̂(2) , ...),
and averaging kernels (A(1)

, A
(2)

, ...). Clearly, it may be useful to visualize such
a collection of local weighted-averages through a conventional tomographic
image. It seems natural to do the following, as illustrated in Fig. 3.2.4(right):

1. Consider a set of query points located on a given tomographic grid††.

†† Various choices of
grids are possible:
1) Regular grids,
see Fig. 3.2.4 and
Zaroli et al. (2017);
2) Irregular, data-
driven grids, see
Zaroli (2016, 2019).

2. Associate the estimate m̂
(k) to the grid’s element to which r(k) lies in.

3. Show the grid’s values as a conventional tomographic image.

Note that one should not forget about resolution and uncertainty informations
(A(k) and ‡

m̂(k)) when interpreting features in an image, see Fig. 3.2.4. This
comment is valid for any tomographic image. The uncertainties, ‡m̂(k) , can be
visualized in the same way, but not the averaging kernels, A

(k) – those should
rather be visualized individually, especially for complex shapes (Zaroli, 2016).

Figure 3.2.4: (Left) A collection of local weighted-averages can be displayed as (Right) a con-
ventional tomographic image. Any structural feature – see the ‘slab tear’ – that shows up in such
an image must be analyzed through careful investigation of the attached averaging kernels and
uncertainties, to demonstrate whether it can (or not) be resolved given the data and their errors.

• Major computational (and practical) issues. First of all, there is a major
computational issue which arises when attempting to set up Backus–Gilbert
tomographic systems (3.2.10) for large-scale† tomographic applications. In- † High number of

data and/or many
query points (wide
region of interest).

deed, for each newly considered query point (k), one has to set up an entirely
new matrix F(k), which is tremendous to compute, since it consists in ≥ N

2
/2
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volumetric integrals
s

Ki(r)KiÕ(r)|r ≠ r(k)
|
4
d

3r (see the explicit dependence on
the query-point location r(k)).
Another computational, and practical, issue is the following: How should one
select the trade-o� parameters, (÷(1)

, ÷
(2)

, ...), in the B–G minimization prob-
lems (3.2.9), when considering many query-point locations, (r(1)

, r(2)
, ...)? How

to choose them such that the – independently computed – generalized-inverse
vectors, (x(1)

, x(2)
, ...), lead to globally coherent† local averages, (m̂(1)

, m̂
(2)

, ...)?† While in the DLS
approach one can
easily ‘see’ if a given
damping parameter
produces a glob-
ally coherent tomo-
graphic image, in
OLA methods (e.g.,
B–G) since only one
query point (k) is
treated at a time,
one cannot see if
each value for ÷(k)

will, in the end,
lead to a globally
coherent image.

In my view, these issues certainly are some of the main reasons why, as
stated by Nolet (2008): “The Backus–Gilbert method is woefully underused
in terrestrial [e.g., seismic tomography] applications".

We shall see that the SOLA–Backus–Gilbert variant, that I have recently in-
troduced and adapted to solve (large-scale) tomographic problems, overcomes
the aforementioned issues – and thus allows one, finally (!), to experiment
and exploit the Backus–Gilbert philosophy, developed half a century ago, for
seismic tomography applications.

• Additional remarks. In my opinion, there may be a few more reasons why
the B–G approach has been underused in tomographic applications.
Firstly, when facing massive tomographic problems, Damped Least-Squares
(DLS) methods still allow one to directly compute†† a model solution – thus†† For example, us-

ing iterative row-
action algorithms,
like LSQR.

avoiding the need for a ‘computationally costly’ generalized inverse. While in
the B–G approach, to infer a model solution one cannot avoid computing a
generalized inverse. However, if one is interested (and we should) in solving
both the problems of model estimation and model appraisal – involving the
computation of generalized-inverse operators – then the SOLA–B–G variant
appears to be computationally more e�cient than DLS (Zaroli et al., 2017).
Secondly, in the B–G approach, one may wonder whether a tomographic model
assembled from a collection of – independently determined – local averages
(i.e., the ‘conventional images’ built as previously described), may actually
explain the data? Even though the B–G method does not specifically aim at
minimizing the data misfit (in the way the generalized inverse is defined), I have
reported that, at least for ‘synthetic’ seismic tomography experiments, the
SOLA variant of B–G can produce globally coherent models, that actually do
fit the data at the same level as DLS models (Zaroli et al., 2017); see Sect. 3.3.1.
In my experience, the fact that SOLA tomographic models are fitting the data
at a similar level as DLS models is also roughly indicated by their visual
similarity, even when dealing with ‘real’ data sets (Zaroli, 2016; Zaroli et al.,
2017; Latallerie, 2019; Ouattara, 2019; Dubois, 2020); see Sect. 3.3.1.
As a final remark, if the region of interest does not encompass all the ray paths,
as illustrated in Fig. 3.2.4, it is obvious that a (SOLA) B–G tomographic model
cannot be used to predict the data, and thus one cannot formally check if it
fits the data.
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3.2.2 Continuous SOLA inversion
• Brief historical perspective.

– Late sixties (Backus & Gilbert, 1967, 1968, 1970)
Seminal papers by Backus & Gilbert, on a linear, continuous inversion George E. Backus

James F. Gilbert

scheme, that avoids using any a priori information on the model.
– Mid eighties (Nolet, 1985)

The Backus–Gilbert method was adapted by Nolet to ‘discrete’ linear
inverse problems, and applied to a small-scale 2–D tomographic problem.

– Early nineties (Pijpers & Thompson, 1992, 1994)
The SOLA method was developed for ‘helio-seismic’ inversions by Pijpers
& Thompson – an alternative Backus–Gilbert formulation which retains
all its advantages, but is more computationally e�cient and versatile
in the explicit construction of averaging kernels. Pijpers & Thompson
(1992) termed this variant ‘SOLA’†, though Larsen & Hansen (1997)

† Subtractive
Optimally
Localized
Averages

suggest that it may have been rediscovered independently by di�erent
authors (e.g., Masters & Gilbert, 1983; Louis & Maass, 1990; Pijpers &
Thompson, 1992). In this manuscript, I prefer to refer to the ‘SOLA–
Backus–Gilbert’ approach (though I often use ‘SOLA’ for short). Al-
though SOLA has been widely used in helioseismology (e.g., Pijpers, 1997;
Rabello-Soares et al., 1999; Jackiewicz et al., 2012), a similar approach
was used to investigate the attenuation and the resolution of density
within the Earth (Masters & Gilbert, 1983; Masters & Gubbins, 2003).

– Before 2015
Many authors had considered that, in addition to a high computational
cost, it could be a clumsy a�air in the presence of data errors†† to practi- †† With error-free

data there would
be less trouble in
selecting the trade-
o� parameters,
(÷(1), ÷(2), ...), since
they would all be
set to zero.

cally implement the Backus–Gilbert (B–G) method to large-scale tomo-
graphic applications (e.g., Menke, 1989; Parker, 1994; Trampert, 1998;
Aster et al., 2012). To illustrate this, a few selected quotes†††:

††† In 2015 (Sept.),
when I decided
(by pure chance)
to work on the
project of applying
the B–G method
to global seismic
tomography, these
quotes were not
very encouraging,
but challenged me!

ú “The B–G theory has received more citation than actual application”
(Parker, 1994).

ú “Being practically di�cult to implement in the presence of data er-
rors, resulted in the B–G method not finding many applications in
seismic tomography” (Trampert, 1998).

ú “Though the B–G method receives much interest in helioseismology,
it is woefully underused in terrestrial applications” (Nolet, 2008).

ú “[Because it is] computationally intensive the [B–G] method does not
receive wide use” (Aster et al., 2012).

– 2016–2019 (Zaroli, 2016, 2019; Zaroli et al., 2017)
I have introduced and adapted the SOLA–Backus–Gilbert inversion scheme
to e�ciently solve large-scale, linear, both discrete and continuous, 2–D
and 3–D, seismic tomography problems.
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• The essence of SOLA. The key idea of the SOLA method (Pijpers & Thomp-
son, 1992) is to specify an a priori target form T

(k)(r) for each averaging (re-
solving) kernel A

(k)(r). That is, to specify some a priori information on the
model resolution – which is fundamentally di�erent from a priori information
on the model itself (as in Bayesian-like methods). I often refer to those ‘target
resolving kernels’, T

(k)(r), as target kernels for short. In the case of our 3–D
tomography example, a target kernel is then formally defined as:

T
(k)(r) =

Y
_]

_[

1
volume of S(k) if r œ S(k)

0 elsewhere ,

(3.2.11)

which means that the target kernel T
(k) is constant-valued within some (vol-

umetric) region S(k), which should be designed as follows:

1. S(k) should be well ‘localized’ (in the model space),
2. S(k) should be centred on the query-point location, r(k);

see the ‘yellow disk’ in Fig. 3.2.5. The size of S(k) represents the a priori infor-
mation on the (local) resolving length. Its shape could be a ball† (i.e., isotropic† If T (k) (i.e., S(k))

was a 3–D ball
centred on r(k),
its radius would
correspond to the
minimum resolving
length that could,
at best, be reached
in r(k).

a priori resolution) or a spheroid (i.e., lateral and radial a priori resolution).
(3.2.11) implies that target kernels also satisfy to the averaging condition:

⁄
T

(k) (r) d
3r = 1 . (3.2.12)

• Continuous SOLA minimization problem. Rather than minimizing the
spread (spatial extent) of each averaging kernel A

(k), as in the B–G approach,
in the SOLA variant of B–G one aims at minimizing the integrated squared
di�erence between each averaging kernel A

(k) and its corresponding target
kernel T

(k). A minimization problem is then set up to directly compute each
generalized-inverse vector x(k), for each query point r(k), which writes:

†† In the SOLA
variant of B–G,
we wish the actual
resolution, A(k),
to be the closest
possible to the
specified a priori
resolution, T (k).

Y
___________]

___________[

arg min:
x(k)œRN

⁄ Ë
A

(k) (r) ≠ T
(k) (r)

È2
d

3r
¸ ˚˙ ˝

RESOLUTION MISFIT

(Favoring averaging- close to target-kernel††)

+ [÷(k)]2
¸ ˚˙ ˝

Trade

o�

‡
2
m̂(k)

¸ ˚˙ ˝
VARIANCE of m̂(k)

(Moderating uncertainty)

subject to
⁄

A
(k)(r)d3r = 1 .

¸ ˚˙ ˝
AVERAGING

CONDITION

(3.2.13)
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Figure 3.2.5: Illustration, for the SOLA–Backus–Gilbert inversion approach, of trade-o� between
poor/good resolution (i.e., poorly/optimally localized averaging kernel A(k) (grey shape), with
respect to target kernel T (k) (yellow disk)), and low/high value of uncertainty ‡m̂(k) , respectively.

This leads to a compromise – via the trade-o� parameter ÷
(k) – between favor-

ing the averaging kernel A
(k) to be the closest possible to its associated target

kernel T
(k) (so that A

(k) be optimally localized, with respect to T
(k)), while also

moderating the uncertainty ‡m̂(k) , on the weighted-average estimate. That is,
again, the unavoidable resolution/uncertainty trade-o�; see Fig. 3.2.5. Note
that the SOLA minimization problem is also constrained for averaging kernels
to honor the averaging condition. Finally, (3.2.13) writes (see Text Box 3.4):

Y
_]

_[

solve F x(k) = u(k)
,

subject to q
N

i=1 x
(k)
i

s
Ki(r)d3r = 1 ,

with:

Y
_]

_[

FiiÕ =
s

Ki(r)KiÕ(r)d3r + [÷(k)
‡di ]2”Kro

iiÕ , 1 Æ i, i
Õ
Æ N ,

u
(k)
i

=
s

T
(k)(r)Ki(r)d3r , 1 Æ i Æ N .

(3.2.14)

The system (3.2.14) can be solved with the Lagrange-multipliers method (Pi-
jpers & Thompson, 1992) or an LSQR-based approach (Zaroli, 2019).
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Text Box 3.4: Continuous SOLA normal equations

Expanding out A(k) and ‡
m̂(k) in function of x(k), the system (3.2.13) writes:

Y
___]

___[

arg min:
x(k)œRN

s Ëq
N

i=1 x(k)
i

Ki(r) ≠ T (k)(r)
È2

d3r + [÷(k)]2
q

N

i=1(x(k)
i

)2(‡di)2

subject to
q

N

i=1 x(k)
i

s
Ki(r)d3r = 1 .

To obtain the normal equations corresponding to the ‘unconstrained part’ of the
previous minimization problem, we do the following (iÕ is fixed):

ˆ

ˆx(k)
iÕ

Q

a
⁄ C

Nÿ

i=1
x(k)

i
Ki(r) ≠ T (k)(r)

D2

d3r + [÷(k)]2
Nÿ

i=1
(x(k)

i
)2(‡di)2

R

b = 0 ,

=∆
q

N

i=1 x(k)
i

s
Ki(r)KiÕ(r)d3r + x(k)

iÕ [÷(k)‡di ]2 =
s

T (k)(r)KiÕ(r)d3r , 1 Æ iÕ
Æ N ,

which can be written in matrix form: F x(k) = u(k) – as in (3.2.14). �

• Computational considerations. A major computational advantage of the
SOLA variant is that the matrix F in (3.2.14) does not depend on the query-
point location, r(k). Therefore, the SOLA matrix F does not need to be re-
computed for each newly considered query point, as opposed to the Backus–
Gilbert matrix F(k) in (3.2.10). In practice, this advantage is crucial, since it
allows us to experiment, even with modest computational facilities, with the
SOLA–Backus–Gilbert inversion philosophy for solving large-scale, linear seis-
mic tomography problems. As illustrated in Fig. 3.2.6, to set up the continuous
SOLA systems (3.2.14), one mainly has to compute (Zaroli, 2019):

Figure 3.2.6: Visual illustration of (volumetric) integrals of the form (Left)
s

T (k)Ki and (Right)s
KiKiÕ , to be computed to set up the continuous SOLA tomographic systems (3.2.14).
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1. P ◊ N (volumetric) integrals of the form
s

T
(k)

Ki, see Fig. 3.2.6(left),
where P is the total number of query points, T

(k) denotes a (3–D) target
kernel, Ki is a (3–D) finite-frequency data sensitivity kernel, and N is
the total number of data. Without loss of generality, I assume that there
are much more data than query points, that is, P/N π 1.

2. ≥ N
2
/2 (volumetric) integrals of the form

s
KiKiÕ , see Fig. 3.2.6(right),

where (Ki, KiÕ) is a pair of (3–D) finite-frequency data sensitivity kernels.
Note that the computation of these integrals,

s
KiKiÕ , is by far the most

costly task involved in so-called parameter-free† SOLA tomography. † Parameter-free
means continuous.

• SOLA target kernels and trade-o� parameters††. An important result of
†† SOLA solutions,
like with any
inversion scheme,
depend on tunable
parameters, so that
di�erent choices
would result in
di�erent models.
Nevertheless, al-
though one can
not evade making
specific choices for
target kernels and
trade-o� parame-
ters, it is important
to realize that any
particular solution
represents unbiased
averages, associ-
ated with di�erent
averaging volumes,
that each can
be quantitatively
analyzed in con-
junction with their
respective model
uncertainties.

my research (Zaroli, 2016, 2019; Zaroli et al., 2017) has been to demonstrate,
in the context of seismic tomography, a computationally e�cient and versatile
‘recipe’ for designing appropriate shapes and sizes for target kernels, T

(k), and
selecting pertinent values for trade-o� parameters, ÷

(k) – so that it leads to
globally coherent collections of local weighted-averages (although each local
average is independently estimated). That recipe states the following:

1. Use a simple form for target kernels, T
(k), such as a disk for 2–D appli-

cations (isotropic a priori local resolving-length) or a spheroid for 3–D
applications (isotropic, radial and lateral a priori local resolving-lengths).

2. Use the data coverage (e.g., logarithmic scale of ray density) as a first-
order proxy for the spatial variations of the a priori local resolving-length.

3. Make an educated (physics-based) guess about the a priori resolving-
length bounds (i.e., minimum and maximum radius of target kernels,
R

min and R
max, respectively).

4. Interpolate (e.g., linearly) to determine the a priori resolving-length at a
given query-point location, r(k), and then use this value for the size (e.g.,
radius) of the associated target kernel, T

(k).
5. Choose a constant value for all††† the trade-o� parameters, ÷

(k) = cst††††.

††† It could also
be an option to
consider a di�erent
value for ÷ for
various regions.
†††† In my view,
using ‘data-driven’
target kernels T (k)

allows a constant
value for ÷(k) to
lead to globally co-
herent collections of
local averages.

The number of free hyper-parameters in the SOLA inversion scheme,
hence the overall computational di�culty, is therefore greatly reduced
(compared to having to select a potentially di�erent value for each ÷

(k)).

Summary. A constant-valued trade-o� parameter, ÷
(k) = cst, may lead to

globally coherent (conventional) tomographic images when the size of target
kernels, T

(k), is set to spatially vary as ray density, that is, a proxy for the a
priori, local model resolution – see Fig. 3.2.7.

As a remark, estimates of a priori local resolution are also crucial for to-
mographic studies that rely on data-driven, irregular tomographic grids (e.g.,
Nolet & Montelli, 2005; Zaroli et al., 2015). Finally, this practical recipe has
proved to work well for various (both continuous and discrete) tomographic set-
tings, from regional to global scale and with various seismological data (Zaroli,
2016, 2019; Zaroli et al., 2017; Latallerie, 2019; Ouattara, 2019; Dubois, 2020).

– 43 –
Zaroli, C., 2021. Seismic tomography using SOLA–Backus–Gilbert inversion, HDR, University of Strasbourg.



3.2. SOLA–BACKUS–GILBERT TOMOGRAPHYChapter 3. SOLA tomography in a nutshell

Figure 3.2.7: ‘Data-driven’ SOLA target kernels, for seismic tomography applications. Use the
data coverage (e.g., logarithmic scale of ray density) as a first-order proxy for the spatial variations
of the a priori local resolving-length. Make an educated (physics-based) guess about the a priori
resolving-length bounds (i.e., minimum and maximum radius of target kernels, Rmin and Rmax,
resp.). Interpolate (e.g., linearly) to determine the a priori resolving-length at a given query-point
location (r(k)), and use this value for the size (e.g., radius) of the associated target kernel (T (k)).

• Additional remarks.

1. The previously described continuous SOLA tomographic scheme is well
suited for embarrassingly parallel† computations, since the problem can† The same kind of

parallelism applies
to ‘discrete’ SOLA
tomography.

be easily separated into a number of independent tasks, for example†† :

†† Recap: P and
N are the number
of query points and
data, respectively.

– When computing all the P vectors u(k) = (
s

T
(k)

Ki)1ÆiÆN ;
– When computing all the ≥ N

2
/2 integrals

s
KiKiÕ ;

– When solving all the P systems (3.2.14).
2. Since the number of integrals

s
KiKiÕ grows as a function of N

2, this
may be a computational burden when facing large data sets (e.g., N ∫

105), especially if one aims at fully capturing the form of (e.g., finite-
frequency body-wave) data-sensitivity kernels; see Sect. 3.2.3. There-
fore, ‘parameter-free’ SOLA tomography may be better suited to handle
moderate-size data sets, typically encountered at regional scales.

3. To decrease the total computational cost, one may want††† to consider††† This argument
also holds for data-
driven, irregular
tomographic grids.

not too many query points, that is, not more than required to fit the
spatial variations of the a priori local resolution.
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• Example. To illustrate how the SOLA–Backus–Gilbert approach can be ex-
ploited, in practice, I briefly present the results of a ‘proof-of-concept’ study
on parameter-free SOLA tomography (Zaroli, 2019). That is, I have success-
fully inverted a moderate-size set of teleseismic S -wave time residuals, within
a finite-frequency physical framework, with focus on imaging and appraising
3–D shear-wave velocity anomalies lying in the mantle below Southeast Asia.

1. Tomographic settings and numerical considerations. The data† consist † Frequency depen-
dent crust and at-
tenuation e�ects, as
well as corrections
for Earth’s elliptic-
ity and topography,
were accounted for
in the measurement
process; see Zaroli
et al. (2010).

in N = 27 070 teleseismic S and SS time residuals, measured by cross-
correlation technique at 22 s central period (passband Gaussian filter).
A selection criterion was applied to ensure that every data-sensitivity
kernels, Ki, sample the Southeast-Asia region. The associated (4000)
earthquakes and (250) receivers are shown in Fig.3.2.8(a). Data errors,
‡di , include earthquake-location and measurement-process errors. Each
finite-frequency sensitivity kernel, Ki, is calculated at 22 s period on a
grid†† made of 50 km edge-length cubic cells, as illustrated in Fig.3.1.1.

†† Each kernel Ki

is discretized on
a local Cartesian
grid that consists
in regularly spaced,
50 km edge-length,
cubic cells spanning
a rectangular par-
allelepiped region
surrounding Ki.
Such a kernel dis-
cretization allows
one to capture all
the characterizing
sensitivity varia-
tions, while keeping
low memory costs.

It takes ≥ 1 wk (CPU time) to compute in parallel, using 70 processors
(Intel Xeon E5-4657L 2.40 GHz), all the N

2
/2 integrals

s
KiKiÕ (with the

aforementioned data-kernel discretization) – by far the most costly task.

Figure 3.2.8: (a) Earthquakes (stars) and receivers (triangles) corresponding to the data set, and
major tectonic plates (black-green dashed lines). (b) Zoom-in on ‘Southeast Asia’ (black frame).
Modified from Zaroli (2019).

2. SOLA target kernels and query points. Each target kernel, T
(k), is chosen

to be a spheroid††† centred on a query point, r(k). The ‘recipe’ sketched †††

in Fig. 3.2.7 is followed to specify the size of a-priori-resolution-driven
target kernels. To limit the number of query points, their locations are
determined such that they fit the spatial distribution of the a priori local
resolving length. A total of P = 4310 query points are considered here,
spanning Southeast Asia at 8 di�erent depths, in the 350–1410 km range.
Fig. 3.2.9 displays lateral views (i.e. circles) of some target kernels. Their
lateral radius, driven by ‘ray density’, ranges from 200 to 1000 km and
represents the a priori, local, lateral resolving length. Their radial radius
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gradually varies from 130 to 200 km in the 350–1410 km depth range,
respectively, and represents the a priori, local, radial resolving length.

Figure 3.2.9: (First row) Drawn circles represent lateral, 2–D views of target kernels T (k) (here
at 465, 595, 735, 885, 1035, 1210 and 1410 km depth). A query point r(k) lies at the centre of
each circle, whose radius is colour coded and ray-density driven. (Second row) ‘Conventional’
tomographic images (dVS/VS) built from the collection of local averages m̂(k). (Third row) ‘Con-
ventional’ images built from the uncertainties ‡m̂(k) (on the averages). Modified from Zaroli (2019).
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3. SOLA inversion and tomographic results. A constant value is chosen for
the trade-o� parameters, i.e. ÷

(k) = cst, after having tested a few di�erent
values. All the P systems (3.2.14) are solved with the LSQR algorithm
(Paige & Saunders, 1982; Zaroli, 2019), in an embarrassingly parallel
fashion (parallelization over the P systems). This leads to P generalized-
inverse vectors, {x(1)

, · · · , x(P )
}, from which can be inferred (see (3.2.8))

the weighted-average estimates, {m̂
(1)

, · · · , m̂
(P )

}, uncertainties (on the
averages), {‡

m̂(1) , · · · , ‡
m̂(P )}, and averaging kernels, {A

(1)
, · · · , A

(P )
}.

As previously discussed and sketched in Fig. 3.2.4, ‘conventional’ tomo-
graphic images can be built from such a set of local weighted-averages
(or uncertainties) in the region of interest – through a linear interpola-
tion process†. Finally, Fig. 3.2.9 displays†† some of the resulting local- † Here, I make use

of Delaunay meshes
and barycentric co-
ordinates for lat-
erally interpolating
the local averages.
†† As expected, the
spatial variations
of uncertainties are
similar to those
of the ray-density
driven target ker-
nels. In the regions
where the size of
target kernels is
large (small), that
is, the a priori local
resolution is poor
(good), the uncer-
tainty is low (high),
respectively. That
is, the previously
discussed trade-o�
between resolution
and uncertainty.

average and uncertainty-on-local-average ‘conventional’ images; so does
Fig. 3.2.10, including three examples of 3–D views of averaging kernels.

Figure 3.2.10: Cross-sections across 3 averaging kernels, associated to 3 query points (green
dots) located at 350, 595 and 1035 km depth below the Sulawesi island. Conventional images of
local averages and uncertainties (on the averages) are shown. Black circles (ellipses) represent
horizontal (vertical) extents of ‘spheroid’ target kernels, respectively. Modified from Zaroli (2019).
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4. Asking a question and getting a quantitative answer (model appraisal).
– Observation. The lateral extent of the Sumatra–Java slabs (dVS/VS)

appears to be smaller in upper mantle (Fig. 3.2.10(a)) and transition
zone (Fig. 3.2.10(b)), compared to mid lower mantle (Fig. 3.2.10(c)).

– Question. Is the apparent ‘lateral flattening’ of the Sumatra–Java
slabs in mid lower mantle resolved?

– Resolving length. To have a clue on the variations with depth
of the lateral resolving length in this region, let consider the three
averaging kernels (A(k)) shown in Fig. 3.2.10 and estimate their lat-
eral extent, that is, the local lateral resolving length. We can report
that, below ‘Sulawesi Island’, the lateral resolving length is, at most,
200 km (300, 500†) at a depth of 350 km (595, 1035), respectively. In† Indeed, 500 km is

the lateral radius of
the averaging ker-
nel whose the query
point is located at
1035 km depth.

particular, Fig. 3.2.10(c) indicates†† that the lateral extent of these

†† Visually compare
the ‘slabs’ inside
the black-solid-line
square, at 1035 km
depth, with the cor-
responding averag-
ing kernel (horizon-
tal cross-section).

slabs, around Sulawesi Island, at 1035 km depth is much larger (of or-
der 2000 km) than the local lateral resolving length (of order 500 km).

– Local averages/uncertainties. Moreover, local weighted-average
estimates, m̂

(k), are 0.95, 0.92 and 1.03 per cent for the corresponding
query points below Sulawesi Island at 350, 595 and 1035 km depth,
while attached uncertainties (on the weighted-averages), ‡

m̂(k) , are
three times smaller, that is, 0.33, 0.30 and 0.29, respectively.

– Answer. Thus, one can argue that the slab lateral flattening that
takes place in mid lower mantle, at least below Sulawesi Island, is
‘resolved’ (given the data and their errors).

3.2.3 Discrete SOLA inversion
• Model parameterization. One may have to parameterize (i.e. discretize)

the continuous ‘true’ model, m(r), with a finite† set of M model parameters,† (i.e. M < Œ)
(mj)1ÆjÆM

, through the use of some basis functions, (hj(r))1ÆjÆM
, such that:

m(r) ¥

Mÿ

j=1
mj hj(r) . (3.2.15)

• Local parameterization. Having in mind the SOLA tomographic approach,
let consider basis functions with local support (in space), as for example:

hj(r) =
I

1 if r œ j-th voxel
0 elsewhere ,

(3.2.16)

where the model space (e.g. Earth’s mantle) would be filled in with M voxels††.††
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For our 3–D† tomography example, let Vj denotes the volume of j-th voxel: † For 2–D tomogra-
phy, Vj would then
be the area of j-th
(2–D) cell.

Vj =
⁄

hj(r)d3r =
⁄

rœj-th

voxel

d
3r . (3.2.17)

For such a voxel-like parameterization, each model parameter mj may be
‘viewed’ as the average value of the continuous true model within j-th voxel:

mj ©

s
m(r)hj(r)d3r
s

hj(r)d3r = 1
Vj

⁄

rœj-th

voxel

m(r)d3r . (3.2.18)

Sometimes, one may want to consider voxels of various size (Vj may di�er in
function of index j), leading to irregular parameterizations††, see Fig. 3.2.11. †† Irregular param-

eterizations usually
are, in some sense,
driven by the data
(e.g., Sambridge
et al., 1995; Nolet
& Montelli, 2005;
Zaroli et al., 2015).

• Discrete tomographic problem. The continuous, linear tomographic prob-
lem (3.1.1) can therefore be written in a discrete fashion as follows:

di =
Mÿ

j=1
Gij ◊ mj¸˚˙˝

true parameters
¸ ˚˙ ˝

‘discrete’ forward problem

+ ni¸˚˙˝
‘discrete’ noise term

, 1 Æ i Æ N , (3.2.19)

where the elements Gij (of the so-called sensitivity matrix G) are as follows†††: ††† Remarks:
1) Note that:
Gij = Kij ◊ Vj ,
where Kij stands
for the average
of the continuous
sensitivity kernel
Ki(r) in j-th voxel,
with ‘volume’ Vj .
Here, (Kij)1ÆjÆM

is named a discrete
sensitivity kernel.
2) For our running
example (i.e., 3–D,
finite frequency,
dVS
VS

tomography),
the physical units
of di, ni, Ki(r),
Gij , m(r), mj ,
Vj and Kij are:
s, s, s.km≠3, s,
percent, percent,
km3 and s.km≠3,
respectively.

Y
______]

______[

Gij =
⁄

Ki(r)hj(r)d3r
¸ ˚˙ ˝

sensitivity kernel Ki projected

on model parameterization

= Kij ◊ Vj

Kij = 1
Vj

s
rœj-th

voxel

Ki(r)d3r = average of Ki in j-th voxel .

(3.2.20)

Fig. 3.2.12 shows a continuous finite-frequency SS sensitivity kernel Ki(r) and
corresponding discrete kernel (Kij)1ÆjÆM , for a voxel-like parameterization.
Note that the ‘discrete’ noise term, i.e. ni in (3.2.19), can be decomposed as:

ni¸˚˙˝
‘discrete’ noise

term in (3.2.19)

Ω≠ ni¸˚˙˝
‘continuous’ noise

term in (3.1.1)

+
Q

a
⁄

Ki(r)m(r)d3r ≠

Mÿ

j=1
Gijmj

R

b

¸ ˚˙ ˝
Parametrization-related, data prediction error

(‘continuous’ minus ‘discrete’ forward problems)

. (3.2.21)
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Figure 3.2.11: Parameterization of model space – I. (Top) Example of a regular, local model
parameterization, that consists in 2–D square cells. The continuous ‘true’ model (clown picture),
m(r), is discretized, i.e. turned into a finite set of M = 32◊32 true-model parameters, (mj)1ÆjÆM .
(Bottom) Example of an irregular, data-driven, local parameterization. Here, it consists in laterally
parameterizing the Earth’s mantle with a set of nodes (Delaunay mesh) whose spatial distribution
is adapted to ray density (i.e. a proxy for a priori local resolution). See Zaroli (2010) and Zaroli
et al. (2015) for details on such a nodes-based parametrization. The displayed dVS/VS ‘continuous’
model is N16-EB16 (885 km depth), that is, a geodynamic Mantle Circulation Model (Nerlich et al.,
2016) – modified from Freissler et al. (2020). Note that, since one cannot know what the ‘true’
model actually looks like, one cannot ensure that a specific parameterization of model space is
su�ciently accurate, to fully capture the form and amplitude of any of its structural features.
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Figure 3.2.12: Parameterization of model space – II. (a) 3–D, finite-frequency, SS-phase time-
residual (continuous) sensitivity kernel Ki(r) (120¶ epicentral distance, 22 s central period of a
passband Gaussian filter). It is discretized on a local Cartesian grid made of regularly spaced
50 km edge-length cubic cells, spanning a rectangular parallelepiped region (thick grey solid line).
The Earth’s surface and core–mantle boundary (transition zone) are depicted with thick (thin)
black solid lines, respectively, and the earthquake and receiver with a star and triangle. (b)
Same SS sensitivity kernel but after projection on a tomographic grid that consists in regularly
spaced 200 km edge-length cubic cells (i.e. voxels); note that the projected sensitivity kernel (i.e.
(Kij)1ÆjÆM , see (3.2.20)) looks like a ‘fat’ ray-theoretical kernel – that is, almost no sensitivity
variation all around the geometrical ray path (black dashed line). Modified from Zaroli (2019).

Let assume that the additional, parametrization-related, data prediction error
in (3.2.21) is also zero-mean and normally distributed, so that the ‘discrete’
data covariance matrix remains diagonal: Cd = diag(‡2

di
)1ÆiÆN , with elements:

(‡di)
2

¸ ˚˙ ˝
‘discrete’ data

variance

Ω≠ (‡di)
2

¸ ˚˙ ˝
‘continuous’ data

variance

+
1
‡

para
di

22

¸ ˚˙ ˝
variance due to the term, in (3.2.21), of

parametrization-related data prediction error

. (3.2.22)

In the course of Dubois (2020)’s PhD thesis, we have estimated ‡
para
di

to be
of order 0.5–1 s (1–1.5 s) for teleseismic S (SS, respectively) cross-correlation
time residuals measured at 22 s central period – while using a data-driven,
nodes-based, mantle parameterization (see Fig. 3.2.11) for the ‘discrete’ for-
ward problem, as well as various input, Earth-like, mantle models (dVS/VS).

• Continuous versus discrete inversion frameworks. The ‘continuous’
SOLA–Backus–Gilbert inversion scheme is carried out in such a way that the
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model space can retain its infinite dimensional nature†, and a specific, somehow† It is this fact that
really motivates
the entire Backus–
Gilbert approach,
which seeks not
to construct a
particular model,
but instead to
determine which
properties of the
‘true’ model can be
estimated from the
given data.

subjective, model parametrization need never be introduced (Sects. 3.2.1–2).
In practice, of course, it is necessary to discretize the data-sensitivity kernels
to perform numerical calculations. But there is a very important di�erence be-
tween discretizing sensitivity kernels, Ki(r), and discretizing the model, m(r);
see Figs. 3.2.11–3.2.12. Sensitivity kernels are determined through some well-
defined calculation, and one can ensure that a discretization is su�cient to fully
capture their form; see Fig. 3.2.12(a). With the model, however, we can never
know what it actually looks like, and so cannot verify that a given parametriza-
tion is su�ciently accurate (to fully capture the form and amplitude of any of
its features); see Fig. 3.2.11. The ‘continuous’ SOLA–Backus–Gilbert frame-
work enables numerically accurate sensitivity kernels to be e�ectively exploited
in tomographic inversions. This may be viewed as a major benefit compared to
‘discrete’ tomographic methods, for which sensitivity kernels are often inaccu-
rate††, see Fig. 3.2.12(b), as they are projected on some model parametrization,†† Consequences

would be that
some, if not all,
projected sensitiv-
ity kernels would
become unsuitable
for finite frequency
imaging purposes;
see Fig. 3.2.12(b).

see (3.2.20), prior to be exploited in the inversion – and these parameteriza-
tions are usually ‘coarse’ to limit the number of parameters (M) and keep
computationally tractable the problems of model estimation and/or appraisal.

• SOLA tomography: continuous or discrete? I aim to discuss when ‘con-
tinuous’ SOLA tomography should be preferentially used, rather than ‘dis-
crete’ SOLA tomography, and vice versa. Let M

Œ be the minimum number
of parameters required to parameterise the entire model space, so that every
projected data-sensitivity kernels are accurate. In the context of teleseismic,
finite-frequency, S -wave mantle tomography, it leads to M

Œ
ƒ 106–107. If

one aims at fully exploiting finite-frequency theory, but cannot handle dis-
crete SOLA inversions with M

Œ parameters, then one should definitely use
the ‘continuous’ SOLA approach. However, if the total number of data is too
high, for example N ∫ 105, it may not be tractable to compute the ≥N

2
/2

elements of the matrix F, see (3.2.14). Hence, one may have no choice but to
move toward a ‘discrete’ SOLA approach with a total number of parameters
M π M

Œ, and thus, as we shall see, simply have to project N sensitivity ker-
nels on a given, coarse tomographic grid (to build the matrix G, see (3.2.20)).

Summary. When facing very large-scale data sets, and provided ‘modest’
computational facilities, one may have no choice but to apply the SOLA–
Backus–Gilbert tomographic recipe††† in a discrete fashion.††† See Sect. 3.2.2.

• Discrete SOLA tomography. In the following, I intend to emphasize on the
main di�erences between discrete and continuous SOLA tomography, while
assuming a local, voxel-like model parameterization. Note that all the key
‘ingredients’ of the recipe for continuous SOLA tomography, introduced earlier
(e.g. tuning SOLA target kernels and trade-o� parameters), remain the same.

1. First of all, one explicitly seeks a k-th (model) parameter estimate, m̂k,
which represents a weighted average over the ‘true’ parameters, (mj)1ÆjÆM .
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This ‘discrete’ averaging process† takes place through a discrete averaging † For 3–D, dVS/VS

tomography, the
physical units of
m̂k, Vj , A(k)

j and
mj are: percent,
km3, km≠3 and
percent, respec-
tively. Rkj comes
without any unit.

kernel, (A(k)
j

)1ÆjÆM , that we wish to be optimally localized around the
k-th voxel, as illustrated in Fig. 3.2.13††. That leads to writing:

†† Although model
space obviously is
2–D in Fig. 3.2.13,
the ‘continuous’
average is written
as if it were 3–D,
for consistency
with main text (of
this chapter).

m̂k =
Mÿ

j=1

1
VjA

(k)
j

2

¸ ˚˙ ˝
Rkj

mj

¸ ˚˙ ˝
‘DISCRETE’

AVERAGING PROCESS

(+ propagated noise ) , (3.2.23)

Figure 3.2.13: “Resolution is no joke!” (C. W. Harris, personal communication) — (a) The
clown picture represents a continuous ‘true’ model, m(r); the red contour-line is a continuous
averaging kernel, A(k)(r), and the green cross the query-point location, r(k). In the continuous
SOLA (Backus–Gilbert) approach, one explicitly seeks a local (weighted) average of the form:
m̂(k)

¥
s

A(k)(r)m(r)d3r. (b) Model m(r) is turned (discretized) into M = 32 ◊ 32 (16 ◊ 16
for (c)) true-model parameters, (mj)1ÆjÆM ; the red line represents a discrete averaging kernel,
(A(k)

j )1ÆjÆM , and the green square the query cell (k-th parameter) centered on r(k). In the discrete
SOLA approach, one seeks a local average of the form: m̂k ¥

qM
j=1

Rkjmj , where Rkj = VjA(k)

j .
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where the components (A(k)
j

)1ÆjÆM have to be non-negative and to satisfy
to the following unbiased (discrete) averaging condition:

Mÿ

j=1
VjA

(k)
j

=
Mÿ

j=1
Rkj = 1 , (3.2.24)

where, as we shall see, the elements (Rkj)1ÆjÆM can be viewed as the
k-th row of a so-called ‘resolution matrix’, R.

2. Since the ‘discrete’ tomographic problem is linear (that is, di = q
j Gijmj+

ni = q
j(VjKij)mj + ni), one can seek the k-th parameter estimate m̂k

as a linear combination of the data:

m̂k =
Nÿ

i=1
x

(k)
i

di , (3.2.25)

where x(k) = (x(k)
i

)1ÆiÆN are some generalized-inverse coe�cients†.† The notation x(k)

is kept the same for
both the ‘continu-
ous’ and ‘discrete’
inversion schemes.
However, it should
be clear from the
context to which
x(k) one refers to.

3. From combining the previous equations, one finds that the weighted-
average parameter estimate m̂k, in (3.2.23), can be written out as:

m̂k =
Mÿ

j=1

Q

ccccccca

Vj

A
Nÿ

i=1
x

(k)
i

Kij

B

¸ ˚˙ ˝
A

(k)

j

R

dddddddb

¸ ˚˙ ˝
Rkj

mj

¸ ˚˙ ˝
‘DISCRETE’

AVERAGING PROCESS

+
Nÿ

i=1
x

(k)
i

ni

¸ ˚˙ ˝
PROPAGATED NOISE

(‘discrete’ noise in (3.2.19))

. (3.2.26)

In the discrete SOLA approach, a discrete averaging kernel, (A(k)
j

)1ÆjÆM ,
is then explicitly defined as a linear combination of N discrete sensitivity
kernels (Kij)1ÆjÆM (Kij stands for the average of Ki(r) in j-th voxel),
whose weights are given by the generalized-inverse coe�cients (x(k)

i
)1ÆiÆN :

A
(k)
j

=
Nÿ

i=1
x

(k)
i

Kij =
Nÿ

i=1
x

(k)
i

1
GijV≠1

j

2
. (3.2.27)

Fig. 3.2.14 shows a comparison between continuous / discrete averaging
kernels, built from combining continuous / discrete sensitivity kernels.
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Figure 3.2.14: Illustration (similar to Fig. 3.2.2) showing that: (a) In the continuous SOLA–
Backus–Gilbert approach, a continuous averaging kernel, A(k)(r), is explicitly defined as a linear
combination of continuous sensitivity kernels, Ki(r), whose weights are given by the generalized-
inverse coe�cients – that is, (x(k)

i )1ÆiÆN , corresponding to the continuous SOLA minimization
problem (3.2.13). (b) While in the discrete SOLA–Backus–Gilbert approach, a discrete averaging
kernel, (A(k)

j )1ÆjÆM , is defined as a combination of discrete sensitivity kernels, (Kij)1ÆjÆM , whose
weights are given by the generalized-inverse coe�cients – that is, (x(k)

i )1ÆiÆN , corresponding to
the discrete SOLA minimization problem (3.2.33). Note that, here, the cartesian grid (blue lines)
represents a local, regular, voxel-like parameterization of model space.

As a remark, the elements Rkj can be expressed as:

Rkj = VjA
(k)
j

= Vj

Q

cccca

Nÿ

i=1
x

(k)
i

Kij¸˚˙˝
Gij
Vj

R

ddddb
=

Nÿ

i=1
x

(k)
i

Gij . (3.2.28)

Statistically, the weighted-average parameter estimate m̂k writes:

m̂k ©

Mÿ

j=1

1
VjA

(k)
j

2

¸ ˚˙ ˝
Rkj

mj

¸ ˚˙ ˝
‘DISCRETE’

AVERAGING PROCESS

+ N (0, ‡
2
m̂k

)
¸ ˚˙ ˝

statistical propagation

of noise (normal distribution)

. (3.2.29)

As a reminder, the standard deviation ‡m̂k
is referred to, throughout

this work, as the uncertainty corresponding to the parameter estimate
m̂k, and can be formally expressed as follows:
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‡m̂k
=

ı̂ıÙ
Nÿ

i=1

1
x

(k)
i

22
(‡di)

2
, (3.2.30)

where the data errors (‡di)1ÆiÆN are those from (3.2.22). As a second
reminder, the ‘uncertainty’ ‡m̂k

merely represents the amount of noise
that may propagate into the ‘weighted-average’ parameter estimate m̂k.

4. Once a continuous SOLA target kernel T
(k)(r) has been defined, one needs

to turn it into a ‘discrete’ vector (T (k)
j

)1ÆjÆM , where T
(k)
j

represents the
average of T

(k)(r) in j-th voxel (of the model parameterization), that is†:† A simple Riem-
man sum is of-
ten e�cient enough
to numerically com-
pute

s
rœj-th

voxel fl S(k)
d3r.

Reminder: S(k) is
the spatial domain
(in model space)
over which the con-
tinuous target ker-
nel T (k)(r) is de-
fined, and vol{S(k)

}

stands for its ac-
tual volume; see
(3.2.11). Here, unit
of T (k)

j is km≠3.

T
(k)
j

=
s

T
(k)(r)hj(r)d3r
s

hj(r)d3r =
s

rœj-th

voxel

T
(k)(r)d3r
Vj

=

s
rœj-th

voxel fl S(k)

d
3r

Vj ◊ vol{S(k)}
, (3.2.31)

see Fig. 3.2.15. Since T
(k)(r) was normalized such that its integral is

one, one should verify that the discrete SOLA target kernel satisfies to:

Mÿ

j=1
VjT

(k)
j

= 1 . (3.2.32)

5. In the ‘discrete’ SOLA approach, one aims at minimizing the integrated
squared di�erence between each discrete averaging kernel (A(k)

j
)1ÆjÆM

and its corresponding discrete target kernel (T (k)
j

)1ÆjÆM . A minimization
problem is set up to directly compute each generalized-inverse vector
x(k) = (x(k)

i
)1ÆiÆN , for each query, k-th, voxel-like††, parameter, that is:†† In practice, one

may want the k-
th voxel to be ‘cen-
tered’ on the cor-
responding query-
point location r(k)

(which was used to
define the continu-
ous target kernel);
see Fig. 3.2.15(d).

Y
_______________]

_______________[

arg min:
x(k)œRN

Mÿ

j=1
Vj

Ë
A

(k)
j

≠ T
(k)
j

È2

¸ ˚˙ ˝
RESOLUTION MISFIT

Favoring averaging- close to target-kernel

+ [÷(k)]2
¸ ˚˙ ˝

Trade

o�

‡
2
m̂k¸˚˙˝

VARIANCE of m̂k
Moderating uncertainty

subject to
Mÿ

j=1
VjA

(k)
j

= 1 .

¸ ˚˙ ˝
AVERAGING

CONDITION

(3.2.33)

The previous constrained minimization problem (3.2.33) can be written:
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Figure 3.2.15: (a) The black disk represents a continuous SOLA target kernel, T (k)(r), centered
on a query-point location, r(k) (magenta cross). (b) The cyan grid represents a local parameteriza-
tion of model space. Here, cell’s area, Vj , is identical for all M = 16 ◊ 16 cells. The discrete target
kernel, (T (k)

j )1ÆjÆM , is displayed using a white-to-black color scale (normalized to maximum). As
a reminder:

s
T (k)(r) =

q
j VjT (k)

j = 1. (c) Illustration showing that T (k)

j is the average of T (k)(r)
in the j-th cell; see (3.2.31). (d) In practice, one may want the k-th cell to be centered on r(k).

Y
______]

______[

solve

Q

ca
ĜT

÷
(k) diag

1ÆiÆN

(‡di)

R

db x(k) =
A

t(k)

0N

B

,

subject to q
N

i=1 x
(k)
i

1q
M

j=1 Gij

2
= 1 ,

with:

Y
___]

___[

Ĝ =
1
Ĝij

2

1Æi,jÆN,M
, Ĝij = GijÔ

Vj
= Kij

Ò
Vj

t(k) =
1
t
(k)
j

2

1ÆjÆM
, t

(k)
j

= T
(k)
j

Ò
Vj .

(3.2.34)
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Derivation from (3.2.33) to (3.2.34)† is detailed in Text Box 3.5; (3.2.34)† (·)T is the trans-
pose operator. can be numerically solved using an LSQR-based approach (Zaroli, 2016).

Text Box 3.5: Discrete SOLA normal equations

Expanding out A(k)
j

and ‡m̂k in function of x(k), the system (3.2.33) writes:
Y
___]

___[

arg min:
x(k)œRN

q
M

j=1 Vj

Ëq
N

i=1 x(k)
i

1
GijV≠1

j

2
≠ T (k)

j

È2
+ [÷(k)]2

q
N

i=1

1
x(k)

i

22
(‡di)

2

subject to
q

N

i=1 x(k)
i

1q
M

j=1 Gij

2
= 1 .

To obtain the normal equations corresponding to the ‘unconstrained part’ of the
previous minimization problem, we do the following (iÕ is fixed):

ˆ

ˆx(k)
iÕ

Q

a
Mÿ

j=1
Vj

C
Nÿ

i=1
x(k)

i

1
GijV≠1

j

2
≠ T (k)
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+ [÷(k)]2
Nÿ
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1
x(k)

i
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(‡di)

2

R

b = 0 ,

=∆
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i=1
x(k)

i

Mÿ

j=1

A
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Vj

B

¸ ˚˙ ˝
ĜiÕj

A
Gij
Vj

B

¸ ˚˙ ˝
Ĝij

+ x(k)
iÕ [÷(k)]2(‡diÕ )2 =

Mÿ

j=1

A
GiÕj
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B

¸ ˚˙ ˝
ĜiÕj

1Ò
VjT (k)

j

2

¸ ˚˙ ˝
t
(k)

j

.

Considering that 1 Æ iÕ
Æ N , the previous equation can be expressed as:

solve :
A

ĜĜT + [÷(k)]2 diag
1ÆiÆN

1
‡2

di

2B

x(k) = Ĝ t(k) ,

which is equivalent (in a ‘least-squares’ sense) to the following system:

solve :

Q

a ĜT

÷(k) diag
1ÆiÆN

(‡di)

R

b x(k) =
A

t(k)

0N

B

– as in (3.2.34). �

6. In terms of computational cost, it is (much) cheaper to set up a ‘discrete’
SOLA system (3.2.34), compared to a ‘continuous’ system (3.2.14):
(a) (3.2.14) mainly requires to compute N

2
/2 volumetric integrals

s
KiKiÕ ,

where (Ki, KiÕ) is a pair of continuous sensitivity kernels;
(b) (3.2.34) mainly requires to compute N discrete sensitivity kernels

(Kij)1ÆjÆM , i.e. to project N kernels Ki on a model parameterization.
7. To get started with discrete SOLA tomography, all what is needed for is:

(a) Computing† a sensitivity matrix, G;† G is often sparse
and can be com-
puted and stored
for large data sets.

(b) Computing††
P discrete SOLA target kernels, (T (k)

j
)1ÆjÆM .

†† For some applica-
tions, it is possible
to consider a selec-
tion of parameters
(P Æ M), for which
to solve (3.2.34).

Therefore, since all the classical (discrete, linear, DLS-based) tomographic
studies are routinely computing sensitivity matrices, see Sect. 3.3, it shall
be ‘straightforward’ to move on toward using the presented discrete SOLA
recipe (computing discrete SOLA target kernels is also a ‘trivial’ task).

– 58 –
Zaroli, C., 2021. Seismic tomography using SOLA–Backus–Gilbert inversion, HDR, University of Strasbourg.



3.2. SOLA–BACKUS–GILBERT TOMOGRAPHYChapter 3. SOLA tomography in a nutshell

• ‘Toy’ problem. In the following, I aim to describe – in a pedagogical way – a
synthetic, 2–D, ‘discrete SOLA’ tomographic experiment (Zaroli et al., 2017).

Figure 3.2.16: (a) Data coverage and parametrization of model space (M = 32 ◊ 32 cells). (b)
Gij is proportional to Lij (ray theory). (c) Circular forms of some target kernels, T (k). (d) ‘True’
model, m (dVS/VS). (d) Synthetic data, d Ω Gm + n. Modified from Zaroli et al. (2017).
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1. Tomographic settings are displayed in Fig. 3.2.16. Here the model param-
eters are shear wave velocity perturbations (dVS/VS), and the parametriza-
tion consists of M = 1024 square pixels (cells) of unit area each. In the
framework of ray theory, the N = 9778 data† represent onset time residu-† For given true-

model and noise
vectors, synthetic
data are computed
as: d Ω Gm + n.

als of direct S waves, whose the ray-paths are straight lines from one black
dot to another. All pairs of black dots with an inter-distance larger than
8 pixel units are ‘suitable’ ray-paths. The data covariance matrix†† is:

†† ‡n stands for the
standard deviation
of the normally
distributed, zero-
mean distribution
of noise, n.

Cd = diag(‡2
di

)1ÆiÆN = ‡
2
n
IN . The SOLA inversion parameters are tuned

according to the aforementioned recipe: 1) ray-density driven, circular-
shape target kernels†††, and 2) constant-valued trade-o� parameter, ÷.

††† Each target ker-
nel T (k) is centered
on the correspond-
ing query, k-th cell.

2. In the framework of discrete SOLA tomography, one can also compute
in a parallel fashion (i.e., mutually independent) P generalized-inverse
vectors x(k), with P Æ M , as schematically illustrated in Fig. 3.2.17.

Figure 3.2.17: Multiple discrete-SOLA minimization problems (3.2.34) can be solved in parallel,
by considering several – in fact, as many as the number of available ‘computers’ – subsets of cells.
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3. Note that, in the discrete SOLA (Backus–Gilbert) inversion approach,
there is always the possibility to focus on a restricted set of say P Æ M

query points, for which the generalized-inverse vectors (x(1)
, · · · , x(P )) are

e�ectively computed. In particular, one may want to consider all the M

cells as ‘query cells’ – that is, P = M . In such a scenario, it will prove
useful to introduce the following mathematical notations:

d = (di)1ÆiÆN
data vector

m = (mj)1ÆjÆM
true-model vector

G = (Gij)1Æi,jÆN,M
sensitivity matrix

d = Gm + n discrete tomographic problem

m̂ = (m̂j)1ÆjÆM
model-estimate vector

G† =

Q

cccccccca

x
(1)
1 · · · x

(1)
i

· · · x
(1)
N

... ... ...
x

(k)
1 · · · x

(k)
i

· · · x
(k)
N

... ... ...
x

(M)
1 · · · x

(M)
i

· · · x
(M)
N

R

ddddddddb

generalized-inverse matrix

m̂¸˚˙˝
MODEL

ESTIMATE

= G†d = Rm¸ ˚˙ ˝
FILTERED

TRUE MODEL

+ G†n¸ ˚˙ ˝
PROPAGATED

NOISE

model estimate splits up into two terms

R = G†G = (Rkj)1Æk,jÆM
model-estimate ‘resolution matrix’

Cm̂ = G†Cd(G†)T =

Q

cca

‡
2
m̂1

· · · o�-diag.

... . . . ...
o�-diag. · · · ‡

2
m̂M

R

ddb model-estimate covariance matrix

d̂ = Gm̂ data vector ‘predicted’ by model estimate

‰
2
red =

Y
_____]

_____[

1
N

1
d̂ ≠ d

2
T

C≠1
d

1
d̂ ≠ d

2

1
N

q
N

i=1

CqM

j=1
Gijm̂j≠di

‡di

D2 reduced-chi-square measure of data misfit.

(3.2.35)

– 61 –
Zaroli, C., 2021. Seismic tomography using SOLA–Backus–Gilbert inversion, HDR, University of Strasbourg.



3.2. SOLA–BACKUS–GILBERT TOMOGRAPHYChapter 3. SOLA tomography in a nutshell

Figure 3.2.18: (a) Discrete-SOLA tomographic models, m̂, obtained for di�erent values of trade-
o� parameter ÷ (from top to bottom: ÷high, ÷middle, ÷low, respectively, with ÷high = ÷middle

◊ 6.0,
and ÷low = ÷middle

◊ 0.3). The model estimate, m̂, can be decomposed into the sum of two terms:
(b) the filtered true-model, Rm, and (c) the propagated noise, G†n. Note that the reduced-
chi-square measure of data misfit, ‰2

red
, is: 1.174, 1.008 and 1.006, for the discrete-SOLA model

estimates, m̂, obtained for ÷high, ÷middle and ÷low, respectively. As a remark, here, one sees that
the lower ÷, the lower ‰2

red
. Modified from Zaroli et al. (2017).

4. The term Rm is commonly referred to as the ‘tomographically filtered’† From the defi-
nition of R, it is
clear that the k-th
row of R is related
to the (discrete)
averaging kernel
A(k) as stated in
(3.2.28). Averaging
kernels are then
also referred to, in
the literature, as
resolving kernels.

version of the true model m (e.g., Ritsema et al., 2007; Schuberth et al.,
2009a; Koelemeijer et al., 2017; Freissler et al., 2020). This filtering pro-
vides valuable information on how heterogeneities are smeared and modi-
fied in amplitude given the available seismic data and underlying inversion
strategy. The SOLA approach explicitly aims at building a resolution†

matrix, R, such that Rm represents an unbiased averaging process, see
(3.2.24). Fig. 3.2.18 shows, for the ‘toy’ problem, the SOLA model esti-
mate, m̂, see Fig. 3.2.18(a), which can be viewed as the sum of two terms:
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1) the filtered true-model, Rm, see Fig. 3.2.18(b), and 2) the propagated
noise, G†n, see Fig. 3.2.18(c). Results are displayed for three di�erent
values of trade-o� parameter, ÷. As expected, from the SOLA minimiza-
tion problem (3.2.33), the lower the trade-o� parameter: 1) the closer
the filtered true-model to the true model (indeed, the closer the averag-
ing kernels to the target kernels, the better the local resolution), and 2)
the more the amount of noise propagating into the model estimate.

5. The reduced-chi-square ‰
2
red is an essential measure of the statistical

goodness of data fit, for a given model estimate. In the hypothetical
case that, for every datum, we have (d̂i ≠ di)2

/‡
2
di

¥ 1 (every datum
is satisfied with a misfit of one standard deviation), then we expect
that: ‰

2
red ¥

1
1
N

◊
q

N

i=1 1
2

= 1. Note that the way the (discrete) SOLA
generalized-inverse matrix G† is computed, see (3.2.34), the SOLA model
estimate m̂ could, a priori†, not be expected to fit the data. However, † Contrary to least-

squares methods,
which explicitly
seek a set of model
parameters such
that it minimizes
the data misfit, see
Sect. 3.3.1.

when following the ‘recipe’ for tuning the SOLA target kernels and trade-
o� parameters, and inverting for all M parameters, I have demonstrated
that one can build a ‘globally coherent’ SOLA model-estimate, m̂, that
does fit the data – for the ‘toy’ problem, ‰

2
red is close to one, see Fig. 3.2.18.

6. Interpreting a tomographic image (model appraisal) is not an easy task.
As sketched in Fig. 3.2.19, the conventional way to display a tomographic
image may be somehow a bit confusing. For example, here, each ‘pixel’ of
the image represents the value of a weighted-average parameter estimate,
m̂k, with a corresponding averaging kernel, A

(k), and uncertainty (on the
weighted average), ‡m̂k

. A major di�culty lies in the fact that: 1) the
spatial extent of averaging kernels may change rapidly, from one pixel
to another, and 2) the shape itself of each averaging kernel may not be
well ‘localized’ – so that, in the end, it may be uneasy to infer relevant††, †† In the sense:

‘easy to apprehend
for human brain’.

average properties on the ‘true’ model. Therefore, when the data cover-
age is spatially irregular and/or anisotropic (e.g., unidirectional rays as
in Fig. 3.2.16(a)), one may have no choice but to visually inspect every
averaging kernels. Whenever there are too many A

(k)’s, an alternative to
visualize the main properties of the underlying local resolution, may be
to design several input ‘true’ models, m, and see how they would look like
through the tomographic ‘lenses’, that is, to analyze††† the output filtered ††† Since analysing

Rm, for a given in-
put model m, ob-
viously depends on
the selected model
m, this cannot re-
place a careful anal-
ysis of R itself.

models, Rm. Examples are shown in Fig. 3.2.20(a,c), while considering
di�erent lenses (trade-o� parameters, ÷) and various input ‘true’ models.

7. From the very formulation of the SOLA minimization problem, it is clear
that, as the trade-o� parameter ÷ goes toward zero, the averaging kernel
A

(k) is expected to get closer to the target kernel T
(k) (and the uncertainty

‡m̂k
to get higher). It may then be interesting to focus on the ‘ideal’ case

for which one would have A
(k) = T

(k), that is, to visualize, for a given
input ‘true’ model, m, the output true model ‘filtered through the target
kernels’, Tm, to be compared to the output true model ‘filtered through
the averaging kernels’, Rm, where the matrix T is defined as follows:

– 63 –
Zaroli, C., 2021. Seismic tomography using SOLA–Backus–Gilbert inversion, HDR, University of Strasbourg.



3.2. SOLA–BACKUS–GILBERT TOMOGRAPHYChapter 3. SOLA tomography in a nutshell

T = (Tkj)1Æk,jÆM
, Tkj = VjT

(k)
j

, (3.2.36)

with (T (k
j

)1ÆjÆM the components of the discrete target kernel T
(k), corre-

sponding to the query k-th cell. Examples of the term Tm are provided
in Fig. 3.2.20(b), while considering three di�erent input ‘true’ models.

Figure 3.2.19: The SOLA approach provides a wealth of informations (weighted averages, m̂k,
uncertainties, ‡m̂k , averaging kernels, A(k), that one needs to carefully analyze for making robust
inferences on some true-model’s properties. Model appraisal is not an easy task, in particular when
the underlying local resolution (and uncertainty) di�ers from one pixel to another. One ‘Sherlock
Holmes’ may then not be enough to appraise many features. Modified from Zaroli et al. (2017).
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Figure 3.2.20: (a) Input ‘true’ models, m, filtered through (b) the target kernels, Tm, and (c)
the averaging kernels, Rm, for ÷high, ÷middle, ÷low, respectively. Modified from Zaroli et al. (2017).
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8. The SOLA-model uncertainties, corresponding to local-average estimates†,† Reminder: In the
SOLA approach,
the uncertainty
‡m̂k cannot inform
us on how much
the (local-average)
estimate m̂k may
di�er from the
‘true’ parameter
mk, at least when
the spatial varia-
tions of the ‘true’
model m are non
smooth and/or
the spatial extent
of the averaging
kernel A(k) is not
strictly restricted
to the k-th cell.

also play a key role in the appraisal of tomographic images. In the SOLA
approach, the uncertainty ‡m̂k

is directly calculated from the generalized-
inverse coe�cients x(k), see (3.2.30). Taking Fig. 3.2.21 as an illustrative
example, I now aim at discussing several points about these uncertainties.
(a) First, all the M uncertainties are displayed as ‘conventional images’

in Figs. 3.2.21(i) and (j), corresponding to high and low trade-o�
parameter (÷) values, ÷

high and ÷
low, respectively. They are in agree-

ment with the ‘propagated-noise’ images shown in Figs. 3.2.18(c, top)
and (c, bottom), respectively. Clearly, some patterns in the uncer-
tainty images can be identified and related to the previously chosen
target kernels, see Fig. 3.2.16(b). However, it is important to realize
that one cannot (always) ‘guess’ what uncertainty ‡m̂k

to expect for
a given, query k-th cell, since it depends on several factors††, such as:

†† Therefore, there
is no choice but to
‘compute’ the un-
certainties, through
the computation of
some generalized-
inverse operator
and the estimation
of data errors.

i. The size of target kernel T
(k) (here, driven by ray density).

ii. The value of trade-o� parameter ÷
(k) (here, ÷

(k) = ÷).
iii. The spatial extent of averaging kernel A

(k), which itself depends
on T

(k) and ÷
(k), but also on the actual ray coverage. That is,

when ray paths are locally anisotropic, ray density is a poor proxy
for local resolution; A

(k) is then expected to di�er a lot from T
(k).

iv. The number of ray-paths which are e�ectively influenced by the
spatial domain of A

(k). Statistically, the more the number of rays
(influenced by A

(k)), the more the amount of propagated noise,
(x(k))T n, tends to cancel out††† – hence the lower ‡m̂k

.††† Assuming zero-
mean, normally dis-
tributed noise n. (b) Second, without loss of generality, the variance of the estimate m̂k

writes: ‡
2
m̂k

= q
N

i=1(x
(k)
i

)2
◊ ‡

2
n
. Consequently, the higher (x(k)

i
)2,

the higher the ‘contribution’ of i-th ray-path to the uncertainty ‡m̂k

(and, somehow††††, to A
(k) and m̂k). For example, Fig. 3.2.21(a)†††† When comput-

ing A(k) and m̂k,
the elements of x(k)

are not squared:
their sign matters
(unlike for ‡m̂k ).

shows an averaging kernel, corresponding to some ‘query’ k-th cell
and ÷

high; the attached uncertainty is 0.02%, see Fig. 3.2.21(i); in the
following (main text), they are referred to as A

(k,÷
high) and ‡m̂

k,÷high
.

Fig. 3.2.21(b) shows the corresponding N ray-paths, blue-colored with
a level of transparency inversely proportional, for the i-th ray-path,
to the i-th, squared generalized-inverse coe�cient. This allows one
to identify which and how many rays are significantly contributing to
‡m̂

k,÷high
. Let’s focus now on a lower trade-o� parameter value, ÷

low.
Figs. 3.2.21(c) and (j) show the corresponding averaging kernel and
uncertainty (0.37%); in the following, they are referred to as A

(k,÷
low)

and ‡m̂k,÷low
; Fig. 3.2.21(d) shows the corresponding ray-paths (blue-

colored). As expected, from the trade-o� between resolution (i.e. size
of averaging kernel) and uncertainty, one sees that:

i. The size (i.e. spatial extent) of A
(k,÷

low) is smaller than for A
(k,÷

high).
ii. There are more rays (those with a low level of blue-color trans-
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parency) significantly contributing to ‡m̂
k,÷high

than to ‡m̂k,÷low
.

iii. The uncertainty ‡m̂k,÷low
is higher than ‡m̂

k,÷high
, which is in agree-

ment with the two previous points.

Summary. The lower the trade-o� parameter ÷, the closer the
averaging kernel A

(k) to the target kernel T
(k) (i.e. the better the

local resolution), the fewer the number of ‘ray-paths’ (that is, data,
data-sensitivity kernels, data errors) significantly contributing to the
solution (m̂k, A

(k), ‡m̂k
), and the higher the uncertainty ‡m̂k

.

(c) Third, Fig. 3.2.21(e) shows an averaging kernel for another query cell,
i.e. the k

Õ-th, and ÷
high; the uncertainty is 0.10%, see Fig. 3.2.21(i);

here, they are referred to as A
(kÕ

,÷
high) and ‡m̂

kÕ,÷high
. Figs. 3.2.21(g)

and (j) show, for ÷
low, the averaging kernel and uncertainty (0.32%),

here referred to as A
(kÕ

,÷
low) and ‡m̂kÕ,÷low

. Figs. 3.2.21(f) and (h) show
the blue-colored ray-paths. As expected, one also sees that:

i. The spatial extent of A
(kÕ

,÷
low) is slightly smaller than for A

(kÕ
,÷

high).
ii. More rays are significantly contributing to ‡m̂

kÕ,÷high
than to ‡m̂kÕ,÷low

.
iii. The uncertainty ‡m̂kÕ,÷low

is higher than ‡m̂
kÕ,÷high

.
Furthermore, it may be interesting to compare the averaging kernels
and uncertainties for the two previously considered query cells, i.e.
the k- and k

Õ-th. For the trade-o� parameter ÷
high, one sees that:

i. The spatial extent of A
(kÕ

,÷
high) is much smaller than for A

(k,÷
high),

that is, the local resolution is much better at the k
Õ-th cell.

ii. The uncertainty ‡m̂
kÕ,÷high

(0.10%) is much higher than ‡m̂
k,÷high

(0.02%), so there must be more rays significantly contributing to
‡m̂

k,÷high
than to ‡m̂

kÕ,÷high
(though uneasy to see in Figs. 3.2.21(b,f)).

For a lower trade-o� parameter, ÷
low, one sees that:

i. The spatial extent of A
(kÕ

,÷
low) is smaller than for A

(k,÷
low), that

is, the local resolution is better at the k
Õ-th cell.

ii. The uncertainty ‡m̂kÕ,÷low
(0.32%) is now slightly ‘lower’ than

‡m̂k,÷low
(0.37%), thus indicating that there must be slightly ‘less’

rays significantly contributing to ‡m̂k,÷low
, compared to ‡m̂kÕ,÷low

(though uneasy to see in Figs. 3.2.21(d) and (h)).

Summary. When comparing two far-apart query cells, for example
the k- and k

Õ-th cells, if the local resolution is say better at the k
Õ-th

cell (A(kÕ)’s spatial extent smaller than A
(k)’s), then the uncertainty

‡m̂kÕ can be higher or lower than ‡m̂k
– depending on the number

of rays ‘significantly-contributing’ to each uncertainty.

Finally, in order to take uncertainties into account for appraising a model
solution, there is no choice but to calculate them – thus requiring to com-
pute a generalized-inverse operator (robust data errors are also needed).
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Figure 3.2.21: (a) Example of SOLA averaging kernel, A(k). (b) Corresponding ray-paths shown
with blue-color transparency, inversely proportional, for the i-th ray path, to the i-th squared
generalized-inverse coe�cient, (x(k)

i )2. This allows one to visualize the rays which contribute the
most to the corresponding uncertainty ‡m̂k (and, somehow, to the averaging kernel A(k) and the
estimate m̂k). (c, d) Similar to (a, b), for lower ÷. (e–h) Similar to (a–d), for another ‘query’ cell
(kÕ). (i) Uncertainties (corresponding to local averages). (j) Similar to (i), for lower ÷. Remark:
÷ = ÷high for (a, b, e, f, i), and ÷ = ÷low for (c, d, g, h, j). Modified from Zaroli et al. (2017).
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• Example. To illustrate that the SOLA–Backus–Gilbert inversion approach
can successfully be applied to large-scale discrete (linear) tomographic prob-
lems, in particular when dealing with ‘real’ data, I aim to present some results
of a global-scale mantle tomography study (Zaroli, 2016).

1. Tomographic settings. The data set consists in N = 79 765, globally
distributed, S - and SS -wave cross-correlation time-residuals, measured
at 22 s central period (Zaroli et al., 2010). The data-sensitivity kernels,
Ki, are calculated in a finite-frequency physical framework. An irregular,
data-driven parameterization of the model space (Earth’s mantle) is used.
The mantle is radially divided into 18 spherical layers, see Fig. 3.2.22(a),
which are spanned laterally with spherical triangles (Delaunay triangu-
lations), see Fig. 3.2.22(b), whose the spatial distributions are optimized
according to ray density. Let us denote as nodes all the vertices of every
triangles, located (in depth) at the ‘middle depth’ of their corresponding
layer, see Fig. 3.2.22(c). The tomographic grid† consists in M = 38 215 † The model esti-

mates, obtained for
all the nodes in a
layer, are linearly
interpolated, using
barycentric coordi-
nates (see Zaroli
(2010)), to build a
tomographic image.

model parameters (i.e., nodes). The physical parameter of interest is the
isotropic 3–D variation of shear velocity (dVS/VS = d ln VS), in the man-
tle, with respect to radial VS model iasp91 (Kennett & Engdahl, 1991).
It is straightforward to compute the sensitivity matrix G (Zaroli, 2010).

2. SOLA inversions. Each target kernel, T
(k), is a spheroid centred on a

‘query’ node (r(k)) of the tomographic grid. Focus is on the 400–1710 km
depth range, where our data coverage is the most relevant. The size of
T

(k) is specified according to the local size, both radially and laterally,
of the data-driven parametrization, see Figs. 3.2.23(a,f). Target kernels
are discretized (projected onto the parametrization), as required to set
up the discrete SOLA problems (3.2.34). A constant value is selected for †† Note the global

pattern: low/high
uncertainties in all
the regions with
low/high ray-path
density, and thus
with large/small
size target kernels
(and, consequently,
large/small size
resolving kernels),
respectively. This
means that, here,
with the given
ray-path coverage
and chosen target
kernels, the number
of ‘rays’ signifi-
cantly contributing
to the uncertainty
tends to be higher
in the regions with
poorer resolution.

the trade-o� parameter, ÷
(k) = cst, for every nodes within the transition

zone (400–1710 km depth), and another value (slightly di�erent) for those
in the mid lower mantle (660–1710 km depth). Fig. 3.2.23(b) displays, as
a ‘conventional’ image, the discrete-SOLA model estimates, m̂k, corre-
sponding to all the nodes, see Fig. 3.2.23(a), in the 1310–1510 km depth
layer. Fig. 3.2.23(c) displays all the uncertainties††, ‡m̂k

, corresponding to
the local-average estimates, m̂k, for the same 1310–1510 km depth layer.

3. Asking a question and getting a quantitative answer (model appraisal).
– Observation. Let focus on the Farallon subduction system (positive

velocity anomalies), taking place, in particular, in mid lower man-
tle, see Fig. 3.2.23(d) (zoom-in on the SOLA model at 1310–1410 km
depth). In addition to the main subducted slab (‘Farallon’) beneath
eastern North-America, one can identify two detached slab fragments
located further to the West (‘F1’ and ‘F2’). I have reported, in Zaroli
(2016), that F2 appears to be well localized, o�shore California, in
the 1310–1510 km depth layer. Although F1 and F2 have not been so
sharply imaged in previous global-scale P- and S -wave models (e.g.,
Van der Hilst et al., 1997; Montelli et al., 2004b; Ritsema et al., 2011),
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Figure 3.2.22: Irregular, data-driven parametrization of model space (whole mantle) – (a)
Radial parametrization: eighteen spherical layers. (b) Lateral parametrization: ray-density driven
Delaunay triangulation, obtained through an optimization process. Example: ninth layer (960–
1110 km depth). The green dots represent the ‘nodes’ (model parameters), which are the vertices
of every spherical triangles, located at the middle depth of the ninth layer. (c) Illustration of
a spheroid-shape, SOLA target kernel, T (k), centred on a ‘query’ node (k). The lateral (radial)
radius of T (k), denoted by a (c), represents the a priori, local, lateral (radial) resolving length,
respectively. Here, a is the average distance between the query node (k) and its six direct neighbor
nodes, and c is the width of the ninth layer. Modified from Zaroli et al. (2015) and Zaroli (2016).

recent regional-scale P-wave studies (Sigloch, 2011; Sigloch & Mi-
halynuk, 2013) have imaged both F1 and F2 and proposed that F1
could correspond to the deep root in lower mantle of the Cascadia
subduction system, and F2 be related to some intra-oceanic subduc-
tion. However, in the aforementioned studies†, mainly checker-board† All these studies

were based on a
classical, damped
least-squares (DLS)
inversion approach.

sensitivity tests were used to assess the resolution – coming with a
number of potential drawbacks (e.g., Lévêque et al., 1993; Rawlinson
& Spakman, 2016) – and there was no quantification of uncertainties.
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Figure 3.2.23: Global S-wave mantle tomography using discrete SOLA inversion — (a) Query
nodes, r(k), displayed as green dots in the 1310–1510 km depth layer, and lateral radius of spheroid-
shape target kernels, T (k), that is, the a priori, local, lateral resolving length (black-to-white color
scale). (b) ‘Conventional’ tomographic image showing the SOLA model estimates, m̂k (d ln VS), in
the 1310–1510 km depth layer. (c) ‘Conventional’ image showing the corresponding uncertainties,
‡m̂k , in the 1310–1510 km depth layer. (d) Zoom-in on the tomographic model around the feature
F2. Remark: 1410 km (1210, 1610) denotes the 1310–1510 km depth layer (1110–1310, 1510–1710),
respectively. (e) Constant-depth, 2–D sections showing the resolving kernel, A(k), obtained for the
query node (k), centered on F2. (f) Corresponding target kernel, T (k). Modified from Zaroli (2016).

– Question. Is the feature F2 really resolved (at least in our model)?
– Resolving length. In Fig. 3.2.23(d), a zoom-in on the SOLA model

is shown, at 1310–1510 km depth; F2 is contoured with a black solid
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line, and the green dot represents the ‘query’ node (k) located at the
center of F2. The corresponding target kernel T

(k) is displayed in
Fig. 3.2.23(f). Its form is that of a spheroid, centred on the query
node (k), at 1410 km depth, with lateral and radial radii 200 km each
(in fact, here, T

(k) is a sphere). The resolving kernel A
(k) is shown

in Fig. 3.2.23(e), in the 1110–1710 km depth range. Note that A
(k) is

confined into a small enough spatial domain, near the query node (k),
with respect to the size of F2. Thus, the local resolving length, both
laterally and radially, is small enough to claim that F2 is resolvable†.† Although that res-

olution analysis was
focused on a single
query point (cen-
tered on F2), in
general, it should
be better to investi-
gate the resolution
in a vicinity of the
feature of interest –
when local resolu-
tion varies rapidly.

– Local average/uncertainty. Moreover, the local weighted-average
estimate, and its uncertainty, are: m̂k = 0.85 % and ‡m̂k

= 0.18 %,
respectively – that is, ‡m̂k

is almost five times smaller than m̂k.
– Answer. Therefore, one can argue that the feature F2 is resolved

(given the data and their errors).

3.3 SOLA vs DLS tomography
Preamble. Without loss of generality, I shall consider a discrete linear tomographic
problem, for which ‘true’ parameters are perturbations with respect to a reference
model (in a probabilistic viewpoint, the a priori model would be zero). For more
details on least-squares inverse theory, for example on damped least-squares (DLS)
inversion – one of the most popular inversion approach in seismic tomography (in
one form or another) – the reader is referred to: Menke (1989), Snieder & Trampert
(1999), Tarantola (2005), Nolet (2008), Aster et al. (2012), Voronin & Zaroli (2018).

3.3.1 Discrete DLS inversion
• DLS inversion: basic principles. From a ‘least-squares inversion’ point of

view, the model solution, m̂, corresponding to the linear, discrete tomographic
problem, d = Gm + n, would be the one that gives the best fit to the data††:†† Remark:

argmin:
m̂ œRM

F(m̂)

means that one
seeks a real-valued,
M -dimensional,
vector, m̂, mini-
mizing F(m̂).

m̂ = argmin:
m̂ œRM

(Gm̂ ≠ d)T C≠1
d

(Gm̂ ≠ d)
¸ ˚˙ ˝

DATA

MISFIT

(3.3.1)

where Cd is the data covariance matrix, usually assumed to be diagonal:
Cd = diag(‡2

di
)1ÆiÆN (uncorrelated, zero-mean noise, n). Owing to data errors

and ‘imperfect’ data coverage, least-squares inverse problems (3.3.1) are, at
least partly, ‘underdetermined’, causing the non-unicity of the model solution.
To remove that non-uniqueness, one may seek a model that minimizes both
the data misfit and the model ‘complexity’ (a process named model regulariza-
tion), leading to the so-called damped least-squares (DLS) inversion approach,
for which the minimisation problem can be formulated as follows:
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m̂ = argmin:
m̂ œRM

(Gm̂ ≠ d)T C≠1
d

(Gm̂ ≠ d)
¸ ˚˙ ˝

DATA

MISFIT

+ m̂T C≠1
m

m̂
¸ ˚˙ ˝

MODEL

REGULARIZATION

. (3.3.2)

The DLS solution can be written† in terms of its ‘generalized inverse’, G†: † In this chapter
some notations (m̂,
G†, R, Cm̂) are
kept the same for
both the (discrete)
SOLA and DLS
inversion schemes.
It should be clear
from the context to
which one refers to.

Y
_________]

_________[

m̂¸˚˙˝
DLS model

estimate

=
Ë
(GT C≠1

d
G + C≠1

m
)≠1GT C≠1

d

È

¸ ˚˙ ˝
DLS ‘generalized inverse’

matrix, G† (see text box 3.6)

◊ d = Rm¸ ˚˙ ˝
filtered

true model

+ G†n¸ ˚˙ ˝
propagated

noise

,

with R = G†G¸ ˚˙ ˝
model-estimate

resolution matrix

, and Cm̂ = G†Cd(G†)T

¸ ˚˙ ˝
model-estimate

covariance matrix

.

(3.3.3)

In a ‘probabilistic’ view, Cm should represent a prior model covariance matrix,

Cm =

Q

cca

‡
2
m1

· · · o�-diag.

... . . . ...
o�-diag. · · · ‡

2
mM

R

ddb , (3.3.4)

and m̂ a ‘maximum likelihood’ solution – though it may be di�cult†† to de- †† That is ‘the’
reason why the
(SOLA) B–G phi-
losophy carefully
avoids using any a
priori information
on the model itself
(see Sect. 3.1.2).

termine ‘objective’, physically-based, Cm’s (i.e., a priori informations on the
model itself). For example, there is not much prior knowledge on the charac-
teristics (e.g., extreme values, spatial correlations) of seismic-velocity anoma-
lies in the (deep) Earth. Recognizing this di�culty, the DLS approach used in
many tomographic applications aims at mutually minimizing the data misfit
and a ‘damped’ L2-norm††† of the model (i.e., ‘subjective’ regularization):

††† L2-norm:
||m̂||= (

q
j m̂2

j ) 1
2 .

Other ad hoc model
regularization con-
straints (L1-norm,
roughening opera-
tor, etc.), that is,
other Cm’s, might
be preferred.

m̂¸˚˙˝
DLS model

estimate

= argmin:
m̂ œRM

Nÿ

i=1
(

Mÿ

j=1
Gijm̂j ≠ di)2

/‡
2
di

¸ ˚˙ ˝
DATA MISFIT ( = N◊‰

2

red )

+ �2
¸˚˙˝

trade-o� via the

damping factor

◊ ||m̂||
2

¸ ˚˙ ˝
MODEL

NORM

, (3.3.5)

which corresponds to defining Cm through the simple (ad hoc) form††††:
†††† With irregular
parameterizations,
one should rather
use: Cm Ã �≠2

◊

diag(1/Vj)1ÆjÆM

(Zaroli et al.,
2015).

Cm = �≠2
◊ IM (zeroth-order Tikhonov regularization) , (3.3.6)

with � the so-called damping factor and IM the identity matrix of order M .
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Note that, here, the DLS solution (m̂, R, Cm̂, see (3.3.3)) clearly depends on
the (ad hoc) damping factor �, through the term Cm, see (3.3.6). As a remark,
if d and G were scaled by the data errors, and if Cm = �≠2IM , then Cd = IN

and the DLS generalized-inverse matrix writes: G† = (GT G + �2IM)≠1GT .

Text Box 3.6: Damped Least-Squares (DLS) generalized inverse

Let the quantity F(m̂) = (Gm̂ ≠ d)T C≠1
d

(Gm̂ ≠ d) + m̂T C≠1
m m̂, that we wish to

minimize, see (3.3.2). Here, we consider that the model parameters represent (e.g.,
velocity) perturbations with respect to a reference model (the a priori model would
then be zero, in a probabilistic view), and do not consider any particular form for Cd

or Cm, except that the data covariance matrix Cd is symmetric. We want to show
that ˆF(m̂)

ˆm̂
= 0M leads to the following system: GT C≠1

d
(Gm̂ ≠ d) + C≠1

m m̂ = 0M ,
from which it is trivial to infer the general expression for the DLS generalized inverse
matrix, G†, that is: m̂ = G†

◊ d =
51

GT C≠1
d

G + C≠1
m

2≠1
GT C≠1

d

6
◊ d, see (3.3.3).

Taking the derivative of F(m̂) with respect to m̂k, and setting the result to zero, we
have: ˆF(m̂)

ˆm̂k
= ˆr̂

T
C

≠1

d r̂

ˆm̂k
+ ˆm̂

T
C

≠1
m m̂

ˆm̂k
= 0, where the parameter index k is fixed, and

r̂ = Gm̂ ≠ d (data residual). Expanding out the partial-derivative terms, we obtain:
Y
_____________________________________]

_____________________________________[

ˆr̂
T

C
≠1

d r̂

ˆm̂k
= ˆ

ˆm̂k

3q
N

i=1 r̂i

q
N

p=1

1
C≠1

d

2

ip
r̂p

4

=
q

N

i=1

Q

cccca
ˆr̂i

ˆm̂k¸ ˚˙ ˝
Gik

q
N

p=1

1
C≠1

d

2

ip
r̂p + r̂i

q
N

p=1

1
C≠1

d

2

ip

ˆr̂p

ˆm̂k¸ ˚˙ ˝
Gkp

R

ddddb

=
q

N

i=1 Gik

q
N

p=1

1
C≠1

d

2

ip

1q
M

j=1 Gpjm̂j ≠ dp

2

+
q

N

p=1 Gpk

q
N

i=1

1
C≠1

d

2

ip¸ ˚˙ ˝
(C

≠1

d )
pi

1q
M

j=1 Gijm̂j ≠ di

2

= 2 ◊
q

N

i=1 Gik

q
N

p=1

1
C≠1

d

2

ip

1q
M

j=1 Gpjm̂j ≠ dp

2

ˆm̂
T

C
≠1
m m̂

ˆm̂k
= ˆ

ˆm̂k

1q
M

j=1 m̂j

q
M

l=1
!
C≠1

m

"
jl

m̂l

2

= ˆ

ˆm̂k

Q

am̂k

q
M

l=1
!
C≠1

m

"
kl

m̂l +
q

M

j=1
j ”=k

m̂j

q
M

l=1
!
C≠1

m

"
jl

m̂l

R

b

=
q

M

l=1
!
C≠1

m

"
kl

m̂l +
!
C≠1

m

"
kk

m̂k +
q

M

j=1
j ”=k

!
C≠1

m

"
jk

m̂j

= 2 ◊
q

M

l=1
!
C≠1

m

"
kl

m̂l

=∆
q

N

i=1 Gik

q
N

p=1

1
C≠1

d

2

ip

1q
M

j=1 Gpjm̂j ≠ dp

2
+

q
M

l=1
!
C≠1

m

"
kl

m̂l = 0 , 1 Æ k Æ M ,

which can be written in the matrix form: GT C≠1
d

(Gm̂ ≠ d) + C≠1
m m̂ = 0M . �

• DLS trade-o� curve. One way to select an appropriate � consists in analyz-
ing the trade-o� curve between the reduced chi-square measure of the data mis-
fit, ‰

2
red = ‰

2
red(d, m̂(�)), and the L2-norm of the model, ||m̂||

2= ||m̂(�)||2, see
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Fig. 3.3.1. This way, it is possible to deal with the problem of non-uniqueness† † In contrast to
the regularization
in DLS through
‘damping’ that acts
directly on the
model values, the
problem of non-
uniqueness is in the
SOLA approach
dealt with by ex-
plicitly computing
averaging kernels
under the unbiased
averaging condition
and the constraint
on the model
variance controlled
by the trade-o�
parameter.

(of the least-squares solution) and construct ‘reasonable’ models. It allows
one to seek the most data-fitting and the less complex model (Occam’s razor
principle) – here, the model complexity is simply measured by the L2-norm.

Figure 3.3.1: DLS trade-o� curve, ||m̂(�)||2 (‘model norm’) versus ‰2

red
(d, m̂(�)) (‘data misfit’),

corresponding to the ‘toy’ problem, see Fig. 3.2.16. Three DLS (SOLA) models are displayed for
decreasing values of � (÷), that is: m̂�

high

DLS
, m̂�

middle

DLS
and m̂�

low

DLS
(m̂÷high

SOLA
, m̂÷middle

SOLA
and m̂÷low

SOLA
– see

Fig. 3.2.18), respectively. Model m̂�
middle

DLS
was defined such that ‰2

red
(d, m̂�

middle

DLS
) æ 1. Remark:

�high = �middle
◊ 1.9 and �low = �middle

◊ 0.4; ‰2

red
(d, m̂�

high

DLS
) = 1.126, ‰2

red
(d, m̂�

middle

DLS
) = 1.002

and ‰2

red
(d, m̂�

low

DLS
) = 0.944. Note that: the two SOLA models m̂÷low

SOLA
and m̂÷middle

SOLA
do fit the data

as well as the DLS model m̂�
middle

DLS
, and are visually closer to the ‘true’ model, m, in particular

where the data coverage is poor (lower-right triangle). Modified from Zaroli et al. (2017).

Note that, the lower �, the lower ‰
2
red(d, m̂(�)) and the higher ||m̂(�)||2. In

general, one may also expect that, the lower �, the better the model resolution
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and the higher the model uncertainties (merely describing the propagation of
noise into the model) – though, as we shall see, this view may sometimes be too
simplistic and even erroneous†. If the data errors (‡di) were well known, one† That is, the DLS

solution (hence the
resolution and un-
certainties) can be
locally ‘biased’.

should select, from a statistical point of view, the value for � corresponding
to ‰

2
red = 1. Otherwise, a common practice consists in trying to identify the

‘corner’ of the ‘L-shape’ trade-o� curve, and select the corresponding � value.
It may be useful to analyze a couple of model solutions, for lower and higher �
values, to better apprehend the range of ‘acceptable’ solutions, see Fig. 3.3.1.

• Averaging bias e�ect. Figure 3.3.2 shows the three DLS models (m̂�high

DLS ,
m̂�middle

DLS , m̂�low

DLS ), marked on the DLS trade-o� curve displayed in Fig. 3.3.1.

Figure 3.3.2: (a) DLS models, m̂, obtained for di�erent values of damping parameter � (from top
to bottom: �high, �middle, �low, respectively, with �high = �middle

◊1.9, and �low = �middle
◊0.4),

corresponding to the ‘toy’ problem, see Fig. 3.2.16. The model estimate, m̂, is decomposed into two
terms: (b) the filtered true-model, Rm, and (c) the propagated noise, G†n. These three models,
m̂, are marked on the DLS trade-o� curve shown in Fig. 3.3.1. Modified from Zaroli et al. (2017).
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These DLS models, m̂, are decomposed into the sum of two contributions:
the filtered true-model, Rm, and the propagated noise, G†n. Note that, in
the regions where the ray coverage is good (upper left triangle), the SOLA
and DLS filtered true-models look similar, see Figs. 3.2.18(b) and 3.3.1(b),
respectively, indicating that their resolution, R, is locally similar. However,
in the regions of poor ray coverage (lower right triangle), the SOLA and DLS
filtered true-models often di�er – more or less, depending on the true model,
m, and on the actual SOLA and DLS resolving kernels (i.e. the rows of R).
For a robust interpretation of DLS or SOLA tomographic images (that is, for
a robust model appraisal), we wish that Rm represents a weighted-averaging
process over the true-model parameters, m. The k-th row of the resolution ma-
trix, R, here referred to as Rk. = (Rkj)1ÆjÆM , represents† the resolving (aver- † Stricto senso, it is

A(k) which repre-
sents the resolving
(averaging) kernel.
However, Rk. and
A(k) are closely re-
lated, see (3.2.28).

aging) kernel, linearly relating m̂k to the true parameters (m̂k ¥
q

M

j=1 Rkjmj).
Let us define the averaging bias quantity, Uk, related to m̂k, as follows:

Uk =
Mÿ

j=1
Rkj . (3.3.7)

Therefore, for every index k, we wish that Rk. be: 1) spatially localized (near
the location of m̂k), 2) non-negative, and 3) such that Uk = 1.
Contrary to the SOLA approach††, the DLS inversion scheme may lead to †† In the SOLA ap-

proach, specifying
a target resolving
kernel T (k) favors
Rk. to be well lo-
calized and non-
negative, and from
the very formula-
tion of the min-
imization problem,
Uk is guaranteed to
be one, see (3.2.24).

model estimates that are locally biased toward either lower (if Uk < 1) or
higher (if Uk > 1) values, especially in the regions of poor data illumination
(Zaroli et al., 2017). Remark: Since uneven data coverage has been, and will
remain, a serious issue in seismic tomography, from local to global scale, such
averaging bias e�ect should systematically be investigated in DLS models.
Fig. 3.3.3 aims at illustrating this point: two input ‘true’ models, m, are filtered
through the DLS resolving (averaging) kernels†††, that is, Rm. Fig. 3.3.3(c)

††† The two termi-
nologies, ‘resolving
kernel’ and ‘av-
eraging kernel’,
are alternatively
used in the lit-
erature and this
manuscript. How-
ever, when a (DLS)
resolving kernel is
biased (Uk ”= 1),
it would be better
to not refer to it
as an averaging
kernel (since it does
not describe an
averaging process).

displays the DLS averaging bias quantity, Uk, corresponding to the damping
factor �middle. Clearly, some apparent structural features, in the DLS filtered
models (Rm), can be directly related to the averaging bias e�ect. For example,
in the lower right corner (of the model space) the bias e�ect consists in locally
increasing, up to 80%, the amplitudes, thus artificially giving rise to the darker
blue anomaly – that Sherlock Holmes is staring at, in Fig. 3.3.3(b).
In those poorly covered regions, the input anomalies also tend to be more
stretched (smeared and elongated) in the DLS filtered models, see Fig. 3.3.3(b),
than in the SOLA ones, see Fig. 3.2.20(c). Indeed, the shape of DLS resolving
kernels is often more stretched, compared to SOLA kernels, see Fig. 3.3.4.

Summary. In regions of poor data illumination, DLS tomographic models
may su�er from an averaging bias e�ect (and some enhanced stretching e�ect)
– so that the ‘true-model’ features may be better retrieved in SOLA models.
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Figure 3.3.3: (a) Input ‘true’ models, m, filtered through (b) the DLS averaging (resolving)
kernels, Rm, for decreasing values of the damping factor � (from top to bottom: �high, �middle,
�low, respectively). (c) Averaging bias quantity, Uk =

qM
j=1

Rkj , corresponding to �middle. Some
apparent structural features in DLS filtered models (Rm) can be directly related to the averaging
bias e�ect, such as in the lower right corner of the model space (poor data illumination) where the
bias e�ect is to locally increase up to 80% (Uk = 1.8) the amplitudes, thus artificially giving rise
to the darker blue anomaly, that Sherlock Holmes is staring at. Modified from Zaroli et al. (2017).

• Resolving kernels. DLS resolving kernels can sometimes be misleading, in
terms of model interpretation (appraisal). For example, Fig. 3.3.4(e) shows
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a DLS resolving kernel, RkÕ., located in the lower-right corner region (dense,
anisotropic ray coverage); index k

Õ refers to the considered pixel. Its spatial
extent is closely restricted around the k

Õ-th pixel, and its value at the k
Õ-th pixel

location is relatively† high (RkÕkÕ = 0.46). At first glance, one could be tempted † If RkÕkÕ was equal
to one (and RkÕ.

be zero elsewhere),
the resolution cor-
responding to the
kÕ-th pixel would
then be ‘perfect’.

to conclude that the value of m̂kÕ represents a true-model averaging process
taking place over a small-size area around the k

Õ-th pixel (‘good’ resolution),
with a moderate uncertainty (‡m̂kÕ = 0.23%), on that local average.
However, since the averaging bias quantity UkÕ is larger than one (UkÕ = 1.8),
see Fig. 3.3.3(c), the value of m̂kÕ actually represents a biased local average
(biased toward 80% higher amplitude). Such an averaging bias makes it di�-
cult to interpret apparent features in DLS models (near the k

Õ-th pixel, in this
example). The appraisal of DLS models would even be more di�cult if Uk

were not quantified. I urge the reader to do so in the case of DLS tomography
(that is, to calculate†† and carefully analyze the averaging bias quantity). †† If possible in

terms of compu-
tational cost, see
toward the end of
Sect. 3.3.1.

As a final remark, Fig. 3.3.4(j) shows that the k
Õ-th SOLA averaging kernel†††

††† The kÕ-th SOLA
averaging kernel
is guaranteed to
be unbiased, see
(3.2.24), that is:
UkÕ = 1.

expands over a broad-size region. That means that the SOLA resolution is
quite ‘poor’ near the k

Õ-th pixel, as expected from the local, very anisotropic,
ray-path distribution, see Fig. 3.2.16(a).

Figure 3.3.4: (a–e) Five examples of DLS resolving (averaging) kernels, A(k), for the damping
factor �middle. As a remark, A(k) is almost equivalent to Rk., that is, the k-th row of R. (k) DLS
model uncertainties, (‡m̂k )1ÆkÆM , for �middle. (f–j) Five examples of SOLA averaging kernels,
for the trade-o� parameter ÷middle. The black circles represent the SOLA target kernels, T (k). (l)
SOLA model uncertainties for ÷middle. As a reminder, these uncertainties are merely describing the
statistical propagation of data noise into the model estimates. Modified from Zaroli et al. (2017).

• SOLA vs DLS models. Fig. 3.3.1†††† shows that, with the aforementioned †††† See text em-
phasized in red in
figure’s caption.

recipe for tuning target kernels and trade-o� parameters, one can easily obtain
a (discrete) SOLA model which does fit the data as well as the ‘best’ DLS
model (the model for which ‰

2
red = 1), and whose the apparent features seem

to be ‘visually closer’, when compared to that ‘best’ DLS model, to those from
the ‘true’ model – in particular in the regions with poor ray-path illumination.
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• Global mantle tomography: uncovering the bias e�ect. We aim at
quantifying the averaging bias e�ect in whole-mantle, ‘real-data-based’, DLS
tomographic models (Zaroli et al., 2017). When considering a large number
of data and model parameters, computing the DLS model resolution matrix,
required to evaluate the DLS bias e�ect, can become computationally chal-
lenging†. Thus, in most global-scale DLS tomographic studies, the resolution† See toward the

end of Sect. 3.3.1. matrix has often been ignored, or at best its diagonal elements have been
approximated (e.g., Trampert et al., 2013; Rawlinson & Spakman, 2016).

Figure 3.3.5: Quantitative illustration of the local averaging bias e�ect in model S40RTS.
(Left) Input model, m; (Middle) Filtered model, R̃S40m; (Right) Model S40RTS. (a) Large-size-
white (medium-size-gray, small-size-black) triangles denote all receivers located within the Pacific
or Antarctica regions for which there is a large (moderate, small) number of recorded body-wave
arrival times in S40RTS data set, respectively. Modified from Zaroli et al. (2017).

We consider model S40RTS, one of the few models for which the resolution
matrix, here referred to as R̃S40, was fully calculated (Ritsema et al., 2011).
S40RTS consists of isotropic, 3–D shear-wave velocity variations in the whole
mantle, resulting from a joint DLS inversion of surface-wave, body-wave and
normal-mode data. In particular, we aim to investigate how much and where
S40RTS may be locally biased toward higher amplitudes. Such averaging bias
e�ects may be expected to happen in mantle regions below isolated receivers
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(e.g., located on oceanic islands), where body-wave ray paths should predomi-
nantly be unidirectional (vertical). Indeed, such anisotropic ray coverages are
similar to that encountered in the previous ‘toy’ problem (for example, the bias
e�ect occurring in the lower-right corner; see Figs. 3.2.16(a) and 3.3.3(b)).

Let us consider the input model m shown in Fig. 3.3.5(left), which consists of
3–D shear-wave velocity perturbations, spatially distributed like a Gaussian
random field within the whole mantle, except in the Pacific and Antarctica
regions, where four very long-wavelength low-velocity anomalies are super-
imposed (much longer than the local resolving lengths), centered in Hawaii,
Tahiti, Samoa and Mt Erebus. These broad-extent, slow features are radi-
ally extending throughout the entire mantle, and laterally varying from dlnVs
ƒ ≠1.3% at their center to zero in a linear fashion over 40 degrees great-circle
distance, see Fig. 3.3.5(d). Some isolated (groups of) receivers, for which there
are many recorded arrival times in the S40RTS data set, appear to be located
at these four locations – see the large-size-white triangles in Fig. 3.3.5(a).

The filtered model R̃S40m is shown in Fig. 3.3.5 (middle). Quite remarkably,
note the four darker-red anomalies showing up at all four locations, for instance
at 400 km depth, see Fig. 3.3.5(b). Amplitudes have been locally enhanced, up
to 50% higher values (dlnVs ƒ ≠2%), thus creating some artificial, ‘hotspot-
like’ features (!), see Figs. 3.3.5(e,h). Below Hawaii (Tahiti), this averaging
bias e�ect is significant from the near-surface down to 1200 (700) km depth –
amplitudes are increased by 10–50% (10–25%), respectively.

Model S40RTS is shown in Fig. 3.3.5(right) to be compared† with the filtered † One should bear
in mind that
S40RTS is the
sum of the filtered
(unknown) true-
mantle model and
the propagated
(unknown) data
noise.

model R̃S40m. Four low velocity features are visible in S40RTS, for instance at
400 km depth, below Hawaii, Tahiti, Samoa and Mt Erebus, see Fig. 3.3.5(c)
– often referred to as ‘hotspots’ (e.g., Montelli et al., 2006). The apparent
Hawaii and Tahiti hotspots, see Figs. 3.3.5(f,i), do overlap with the mantle
regions where the previously identified averaging bias e�ect is significant, see
Figs. 3.3.5(e,h), which then raises the following question:

– What is the actual imprint of the bias e�ect on these apparent hotspot
features? Recall that the bias signature also depends on what the (input)
true model is and how it spatially relates to the resolving kernels††. †† Artificial struc-

tures that may
potentially appear
in DLS filtered
models, Rm, owing
to some averaging
bias e�ect, clearly
depend on R and
m, see Fig. 3.3.3.

– Could this bias imprint be misleading in terms of physical interpretations?
Could the apparent low shear-wave velocity structures, interpreted as the
Hawaii and Tahiti hotspots, to some extent be questioned?

Although there are other geophysical, geochemical or geological evidences fa-
voring such hotspot features in the mantle (e.g., Courtillot et al., 2003), these
results should at least be a ‘quantitative reminder’ that:

Summary. The appraisal of DLS tomographic images should definitely be
more quantitative, to avoid physical misinterpretations (if any); in particular,
a thorough quantification of potential averaging bias e�ects is crucial.
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• Computational e�ciency. We aim to compare the theoretical, computa-
tional e�ciency of the (discrete) SOLA and DLS inversion methods, when it
comes to calculate the full generalized inverse matrix – required to infer the
model estimate and the resolution and uncertainty (model appraisal).

– As previously mentioned, the DLS generalized-inverse matrix , G†, can be
expressed as: G† = (GT G + �2IM)≠1GT . It can be calculated from the
eigen decomposition of GT G. However, since GT G is much less sparse
than G, it may be too large to be diagonalized or even to fit in computer
memory for large-scale applications. Thus, the generalized inverse has not
been (could not be) computed in most DLS tomographic experiments.

– It is extremely parallel to compute the SOLA generalized inverse, G†,
since each row is obtained independently from the others (see Sect. 3.2.3
and Fig. 3.2.17). Furthermore, as detailed in Zaroli (2016), computing
the k-th row of G† only involves one LSQR inversion of a unique (i.e.,
independent from index k) matrix Q(÷), of size (M + 1) ◊ (N ≠ 1), that is
almost as sparse as G – so that Q(÷) can easily fit in computer memory,
and its sparsity still be exploited by the LSQR algorithm.

Summary. Depending on the computational facilities (e.g., number of pro-
cessors), the SOLA approach may be (much) more e�cient than the tradi-
tional DLS inversion scheme, for computing a full generalized-inverse matrix.

Remark. Another, computationally cheaper, way to estimate the DLS model
solution, m̂, is to directly solve the DLS minimization problem (3.3.5), for
example using the LSQR algorithm. When dealing with too ‘large’ problems
and ‘limited’ computational facilities, this strategy saves considerable compu-
tational e�orts, but does not allow one to have direct access to the DLS model
resolution and uncertainty – since the generalized inverse is not computed.
Note that such a shortcut, toward estimating only the model solution, m̂,
does not exist in the SOLA (Backus–Gilbert) approach, since one is forced to
directly solve for the generalized inverse to infer, all at once, the model solution
and the corresponding (crucial) resolution and uncertainty informations.

• Example. I aim to briefly present a visual comparison of ‘real-data’ based,
DLS vs (discrete) SOLA models – corresponding to the aforementioned, global-
scale, finite-frequency S -wave tomographic study (Zaroli, 2016). Let DLS-Z16
and SOLA-Z16 denote the DLS and SOLA models, respectively; note that
only the inversion approach di�ers. DLS-Z16 and SOLA-Z16 are shown in
Figs. 3.3.6(a, b) within the transition zone, at 530–660 km depth. Though the
models look similar, significative di�erences can be spotted. As an example,
the reader may focus on the complex system of subducted slabs (positive
anomalies) related to the subduction regions of New-Hebrides-Fiji, Tonga-
Kermadec and Hikurangi. DLS-Z16 and SOLA-Z16 are shown in Figs. 3.3.6(c,
d) at 1310–1510 km depth, focussing on the Farallon subduction system. In
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general, one sees that tomographic features appear to be ‘smoother or better
focalized’ and with ‘higher amplitudes’ in SOLA-Z16 (compared to DLS-Z16).

Figure 3.3.6: Comparison of two, global-scale, dVS/dVS tomographic models: (a, c) DLS-Z16
(DLS inversion) and (b, d) SOLA-Z16 (‘discrete’ SOLA inversion). Focus is set on (a, b) several
active subduction zones, at 530–660 km depth, and on (c, d) the ancient and complex Farallon
subduction system, taking place at 1310–1510 km depth. Modified from Zaroli (2016).

3.3.2 Take-home messages
To conclude, Fig. 3.3.7 summarizes some important ‘take-home’ messages about
the SOLA–Backus–Gilbert inversion scheme, that I have recently introduced and
adapted to solve linear(ized) seismic tomography problems. In particular, SOLA is
compared to the classical DLS approach – one of the most popular inversion method
used in seismic tomography studies over the past decades (in one form or another).
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Figure 3.3.7: Key points of SOLA–Backus–Gilbert vs Damped Least-Squares inversion methods,
for solving linear tomographic problems. Modified from Zaroli (2016, 2019) & Zaroli et al. (2017).
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Afterword
In this chapter, we have seen what both discrete and continuous SOLA–Backus–
Gilbert tomography is about (Zaroli, 2016, 2019), and why it should be preferred
to the classical (discrete) DLS approach (Zaroli et al., 2017). In particular, we have
explained why the continuous SOLA inversion approach may be expected to be more
accurate, but also more costly (computationally), than the discrete SOLA formalism.
Last, but not least, we have emphasized that all what is needed for to get started with
discrete SOLA tomography is the same sensitivity matrix (G) as required to perform
DLS tomography, and an estimation of prior local model resolution (through the
target kernels, T

(k)). Consequently, it should be ‘straightforward’ for everyone who
is somehow experienced with DLS tomography to move on toward (at least) discrete
SOLA tomography – and thus be among the first tomographers to be able to start
experimenting with the half-century-old inversion philosophy of Backus & Gilbert !
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