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1 INTRODUCTION

SUMMARY

Tomographic-geodynamic model comparisons are a key component in studies of the present-
day state and evolution of Earth’s mantle. To account for the limited seismic resolution, ‘tomo-
graphic filtering” of the geodynamically predicted mantle structures is a standard processing
step in this context. The filtered model provides valuable information on how heterogeneities
are smeared and modified in amplitude given the available seismic data and underlying inver-
sion strategy. An important aspect that has so far not been taken into account are the effects of
data uncertainties. We present a new method for ‘tomographic filtering” in which it is possible
to include the effects of random and systematic errors in the seismic measurements and to
analyse the associated uncertainties in the tomographic model space. The ‘imaged’ model is
constructed by computing the generalized-inverse projection (GIP) of synthetic data calculated
in an earth model of choice. An advantage of this approach is that a reparametrization onto
the tomographic grid can be avoided, depending on how the synthetic data are calculated.
To demonstrate the viability of the method, we compute traveltimes in an existing mantle
circulation model (MCM), add specific realizations of random seismic ‘noise’ to the synthetic
data and apply the generalized inverse operator of a recent Backus—Gilbert-type global S-wave
tomography. GIP models based on different noise realizations show a significant variability of
the shape and amplitude of seismic anomalies. This highlights the importance of interpreting
tomographic images in a prudent and cautious manner. Systematic errors, such as event mislo-
cation or imperfect crustal corrections, can be investigated by introducing an additional term to
the noise component so that the resulting noise distributions are biased. In contrast to Gaussian
zero-mean noise, this leads to a bias in model space; that is, the mean of all GIP realizations
also is non-zero. Knowledge of the statistical properties of model uncertainties together with
tomographic resolution is crucial for obtaining meaningful estimates of Earth’s present-day
thermodynamic state. A practicable treatment of error propagation and uncertainty quantifi-
cation will therefore be increasingly important, especially in view of geodynamic inversions
that aim at ‘retrodicting’ past mantle evolution based on tomographic images.
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mantle based on numerical simulations with subsequent assessment
of the quality of the model in terms of the present-day buoyancy

A fundamental goal of studies of Earth’s deep interior is to obtain a
quantitative understanding of the buoyancy distribution in the man-
tle and the forces that drive plate tectonics. This is generally done
in two ways: (1) either by trying to first image the present-day man-
tle structure based on seismic observations, and then to relate the
tomographically imaged variations in seismic velocities in one way
or the other to the buoyancy distribution and thus to the dynamics
of the mantle or (2) by forward-modelling of the evolution of the

distribution by comparison of secondary predictions to Earth obser-
vations (e.g. seismic body wave traveltimes, full waveforms, geoid
undulations, etc.). Oftentimes, such numerical mantle convection
models are just compared to tomographic images in terms of cor-
relations and spectral characteristics (e.g. Becker & Boschi 2002;
Bull et al. 2009; Nakagawa & Tackley 2010).

Over the course of the past decade, tomographic-geodynamic
model comparisons have shifted from qualitative comparisons of
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the location, morphology and spectral characteristics of seismic
structures to quantitative analyses involving the magnitude of the
heterogeneities. The morphology of structures in mantle flow mod-
els does in fact not so much depend on the internal parameters of
the governing equations, but is largely controlled by the surface
boundary conditions (which are often taken from plate motion his-
tory models). The magnitude of predicted thermal anomalies, on the
other hand, is much more fundamentally tied to mantle properties
such as its heat budget (e.g. importance of CMB heat flow relative to
total heat loss) and viscosity. It has been demonstrated that it is pos-
sible to relate the temperature field of a convection simulation to the
heterogeneities mapped by seismic tomography in a physically con-
sistent manner allowing for quantitative comparisons (Schuberth
et al. 2009a). Two aspects are crucial in such comparisons: (1) the
temperature-seismic velocity relation needs to properly account for
the inherent non-linearities (e.g. by using thermodynamically self-
consistent mineralogical models) and (2) the geodynamic models
have to be looked at through tomographic lenses; that is, they have
to be modified to reflect the effects of uneven data coverage and
regularization inherent to the respective tomographic model. Reg-
ularization is required to eliminate the non-uniqueness of the to-
mographic solutions, and the recovered heterogeneity generally is a
low-fidelity version of the true structure. In particular norm damp-
ing often results in low amplitudes and small average heterogeneity.
In global models, the limited resolving power of the tomographic
inversions can easily lead to average amplitude differences between
true and recovered heterogeneity by a factor of 2 (Schuberth et al.
2009a).

A good quantitative understanding of the damping effects and
related amplitude reductions in a given tomographic model is im-
portant, as geodynamic studies are moving away from forward sim-
ulations, starting from an unknown initial condition at some time in
the geological past, to so-called retrodictions, in which geodynamic
adjoint simulations are used to iteratively optimize for the initial
condition based on an assumed known ‘terminal’ state of the man-
tle (e.g. Bunge et al. 2003; Horbach et al. 2014; Colli et al. 2018).
The present-day thermodynamic state of the mantle in such appli-
cations is estimated from one of the existing tomographic models
(together with information from mineral physics). Estimates of the
terminal state, however, are only meaningful, if the magnitudes of
the seismic heterogeneities are correctly transformed into buoyancy
variations; that is, if the amplitude reduction introduced through the
regularization could somehow be accounted, and at best, corrected
for.

A useful tool to mimic the seismological lens is the so-called
‘tomographic filtering’ of geodynamic models using the resolution
operator associated with the tomographic inversion of interest (e.g.
Meégnin et al. 1997; Ritsema et al. 2007; Bull et al. 2009; Schuberth
et al. 2009a; Davies et al. 2012; Koelemeijer et al. 2018; Simmons
et al. 2019). The estimated model filtered in this way provides
valuable information on how true Earth structure might actually
be seen through tomographic lenses and how heterogeneities are
smeared and modified in amplitude. Although explicit knowledge
of the resolution operator, typically denoted R, is required for this
technique, as well as for the appraisal of a tomography’s underlying
local resolution, only few authors have fully computed it (by using
some approximations or using efficient computational strategies;
e.g. Boschi 2003; Soldati et al. 2006; Ritsema et al. 2007, 2011;
Koelemeijer et al. 2015; Bogiatzis et al. 2016). Calculating the res-
olution operator is computationally very intense (if not prohibitive
for large problems), since a complete tomographic inversion must be
performed for each of the model parameters (considering that some
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modern tomographic inversions try to constrain more than a million
free parameters). Recently, Simmons et al. (2019) demonstrated that
even for very large inversions, R can still be approximated using a
‘multiple impulse response method’.

While typical tomographic filtering using R allows to mimic
the effects of inhomogeneous data coverage and smearing, another
reason for a filtered model to be different from the true model is
the presence of noise in the seismic data. Like any observation,
seismic data are associated with errors and measurement uncer-
tainties (e.g. Gudmundsson ef al. 1990; Bolton & Masters 2001)
that can propagate as ‘noise’ into the model solution during the
inversion process. Thus, the full appraisal of any resulting tomo-
graphic image involves the analysis of both the resolution as well
as the uncertainties arising from propagated noise. Throughout the
paper, the term ‘model uncertainty’ is used restrictively in the sense
that it describes only the effect of propagated noise and we make a
clear distinction between uncertainty and resolution, which also is a
source of error in the model solution. Most important, uncertainties
in model parameters have not yet been taken into account for the
tomographic filtering of geodynamic models. This has mainly two
reasons: On the one hand, filtering with R cannot account for model
uncertainties through propagated noise because it merely describes
the mapping of a single ‘true’ model to its filtered version. On the
other hand, most global tomographies lack an explicit inspection of
their uncertainties because the large matrices required to evaluate
the model covariance are computationally difficult to deal with (e.g.
Nolet 2008).

Recently, Zaroli (2016) introduced the SOLA formulation of
linear Backus—Gilbert (B—G) inversions for global seismic tomog-
raphy that has several relevant advantages compared to a classi-
cal damped-least squares (DLS) inversion (Zaroli et al. 2017): (1)
SOLA B-G directly computes the generalized inverse operator G
of a given tomographic experiment while enabling an actual control
and straightforward quantification of model resolution and model
uncertainties, which is in practice often not possible with DLS for
global-scale applications; (2) SOLA B—-G may be computationally
more efficient than DLS, because it allows for embarrassingly par-
allel computations of the general solution to the inverse problem;
(3) there is no need of introducing any constraints on the model
values such as through damping in DLS for eliminating the non-
uniqueness of the problem (which does not imply that there is no
kind of regularization necessary in SOLA B—-G, see Section 2.2.2)
and (4) The resolution operator R can be constructed such that the
model is an unbiased localized average of the true parameters, which
is not necessarily fulfilled in DLS models. In other words, although
the SOLA B-G inversion may provide a blurred and distorted im-
age of the structures, each model parameter is—by design—the
true average over the local resolving volume. In particular in light
of estimating the buoyancy distribution from tomographic models
in geodynamic applications, this is of great importance. It means
that—given appropriate conversion of seismic velocity to density—
the mass would be ‘conserved’ locally within the resolving volume
through the unbiased averaging. The averaging volume itself is ex-
plicitly known a posteriori; that is, it is clear over which region
buoyancy forces have been integrated in the inversion process. The
SOLA B-G framework thus bears a large potential for linking seis-
mic data to geodynamic models in a quantitative way.

Considering these features of SOLA B—G tomography, we will
show how to incorporate model uncertainties in the tomographic fil-
tering of geodynamic models in the context of such inversions. We
first review classical tomographic filtering using R from SOLA B—
G and apply it to the geodynamic model of Nerlich et al. (2016). For
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convenience, we shall make use of the first SOLA B—G tomographic
model from Zaroli (2016), hereafter simply called SOLA-Z16. The
data that was used for SOLA-Z16 is a subset of the data used in
Zaroli et al. (2015) and comprises 79 765 finite-frequency delay
times measured at 22 s period for S and SS waves. With these mea-
surements, SOLA-Z16 covers the depth range from 400 to 1710 km.
Having computed a ‘classical’ tomographically filtered model, we
then illustrate how to obtain filtered images of the geodynamic
model that are able to account for noise in the seismic data, which
we call generalized-inverse projection (GIP). We particularly focus
on demonstrating that propagating noise has a considerable effect,
which can not be ignored for quantitatively linking geodynamic to
tomographic models. More specifically, we systematically investi-
gate how different noise realizations are mapped into model space.
We start this analysis with treating the uncertainty of each datum
with Gaussian noise statistics of varying magnitude, which gives
rise to model uncertainty that is equivalent to the model variance
estimated directly in the SOLA B—G framework. We then illustrate
the effects of potential biases in the noise statistics, such as, for
example, systematic errors due to modelling assumptions, uncer-
tainties in event parameters or those related to crustal corrections,
among others. Here, we study the effects resulting from the im-
perfect knowledge of crustal structure as one example. A bias in
the noise statistics is introduced through the difference between
two published crustal models. As we will show, the mean effect on
model parameters no longer is zero in case of biased noise.

2 TOMOGRAPHIC FILTERING

2.1 Preamble

The basic forward problem of linear seismic tomography can be
written as

d = Gm (4 noise), (D

where d is the data of size N, m the ‘true’ model parameters of size M
and G the sensitivity matrix of size N x M; that is, a linear operator
mapping the model parameters to the data space. In this study, each
row of the sensitivity matrix G represents a finite-frequency S-wave
sensitivity kernel projected onto the tomographic grid, but it could
also be ray-theoretical sensitivities or similar. The data vector d
thus represents a set of traveltime residuals, while the entries of the
true-model vector m are S-wave velocity perturbations (note that we
shall further elaborate on the data noise in Section 3). The solution
to the corresponding inverse problem is a model estimate m, which
can be expressed as a linear combination of the data

m=G'd, ()

with the matrix G' being some generalized inverse of G. We obtain
the main equation of tomographic filtering by combining eqs (1)
and (2) to get

m = Rm (4 propagated noise), 3)

where the resolution operator R is defined as R = G'G. The term
Rm is commonly referred to as the ‘tomographically filtered” ver-
sion of the true model. The true model can in general be any kind
of ‘synthetic’ model, but in tomographic-geodynamic model com-
parisons usually is taken to be the resulting present-day state of a
mantle convection simulation.

To calculate the tomographically filtered image of a ‘true’ model
m, directly calculating Rm is only possible if the model is given

in the parametrization defined by the associated tomographic grid.
In our case, for example, the SOLA-Z16 tomographic model is
irregularly locally parametrized with about 40,000 cells. Since geo-
dynamic models generally are based on rather different parametriza-
tions with many more parameters (nowadays with up to 10% grid
nodes), one first has to perform a reparametrization onto the tomo-
graphic grid.

As R does not contain information on model uncertainties,
tomographic-geodynamic model comparisons have so far been left
with ignoring the contribution of ‘propagated noise’ within the to-
mographic model. Before we introduce the new filtering approach
based on the SOLA B-G generalized inverse, we investigate the
results of the SOLA B-G tomographic filtering with R. To this
end, we start by reviewing how the resolution operator R is con-
structed in DLS and SOLA B—G inversion schemes. With this, we
want to highlight that R from SOLA B—G also has some favourable
properties that facilitate and improve the usage for tomographic
filtering.

2.2 Tomographic resolution operators

2.2.1 The damped least-squares approach

From a least-squares (LS) point of view, the general model solution
for the linear inverse problem would be

m = argmin,, (d —Gm)"C;'(d — Gm), 4)

where C, is the data covariance matrix describing the uncertainty
of individual measurements as well as potential intercorrelations. In
many practical applications, the data covariance matrix is assumed
to be diagonal: C, = diag(cfji )1<i<n (With oy, the standard deviation
of measurement d;); that is, the data noise is uncorrelated. Owing
to data errors and the ill-conditioning of G, the problem must be
‘regularized’ in practice (see e.g. Nolet 2008; Voronin & Zaroli
2018). For example, a so-called damping factor ® can be introduced,
leading to the damped least-squares (DLS) minimization problem
that can be formulated as follows:

i = argmin,, (d — Gm)'C;'(d—Gm) + m"C,'m, (3)
———
data model norm
misfit penalty

where for the sake of simplicity the prior model covariance matrix is
often chosen in the form: C,, = ®21,,, with I, the identity matrix
of order M. In other words, the main idea of the DLS approach is
to mutually minimize the data misfit and a damped L,-norm of the
model. One way to select an appropriate © consists in analysing
the trade-off curve between the reduced chi-square measure of data
misfit and the model norm (e.g. Nolet 2008). This way, it is possible
to deal with the problem of non-uniqueness (of the least-squares
solution) and construct reasonable global tomographic models. The
‘damped least-squares’ solution to the inverse problem can therefore
be written as

m=Gd=(G'C;'G+C,)'G'c;' d, (6)

generalized
mverse

where G' is the DLS generalized inverse matrix. Thus, the DLS
resolution matrix can be written as

R=G'G=(G'C;'G+C,H'G'C;'G, (7)

which clearly depends on © through the term C,,'. A common way
to estimate the DLS model solution m is to use the LSQR method
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(Paige & Saunders 1982), which does not require the explicit com-
putation of G’ and thus saves considerable computational efforts
when dealing with large problems, such as in this study. For more
details, the reader is referred to, for example, Nolet (2008) and
Zaroli et al. (2017).

The resulting DLS models are damped estimates of the true
model, since the DLS generalized inverse G' depends on the sub-
jective choice of a particular value for ®. This may lead to fil-
tered models Rm (and individual model parameter estimates) that
are locally biased toward either lower or higher values, especially
in regions with poor data coverage. In other words, the quantity
U = ZjW:] ‘Ri; may differ from 1 for some model parameter in-
dices k (Nolet 2008), which would represent an averaging bias. An
illustration of the consequences of such an averaging bias, which
may lead to misinterpretations of tomographic features, is given in
Zaroli et al. (2017).

2.2.2 The SOLA Backus—Gilbert approach

Rather than computing damped model solutions, the linear
SOLA Backus—Gilbert inversion scheme aims at seeking unbiased
weighted averages of the continuous true-model properties (Backus
& Gilbert 1967, 1968, 1970; Pijpers & Thompson 1992; Zaroli
2016; Zaroli et al. 2017). In other words, the model parameters
(1) 1<k<m are estimated as

g = / A® (rym (r)d®r (4 propagated noise) , ®)

where m denotes the continuous true model. For this average 71 to
be unbiased, the averaging kernel 4* has to satisfy the ‘unimodular
condition’:

/ AD (1) dr = 1. ©)

To get fully unbiased averages, these kernels should also be strictly
non-negative in order to meet the conventional definition of a weight
function, which may not always be honoured, depending on the
quality of the available data coverage. The most important aspect
concerning the averaging kernels, also sometimes called resolv-
ing kernels, is that they may inform us on the local resolution of
tomographic images.

In the case of a discretized representation of the physical domain,
one rather seeks each model estimate 712, as a weighted average over
the discrete true-model parameters () < < . that is:

M
ny = Zkamf (+ propagated noise) , (10)
j=1

with the kth row of the resolution matrix R such that
M

> Ry =1. (11)
j=1

We want to give a short review of the relevant quantities and
equations of the SOLA B—G tomographic scheme in the following.
The tomographic model SOLA-Z16 of Zaroli (2016) is irregularly
locally parametrized, with the mantle being vertically subdivided
in 18 distinct layers of 100200 km width and each layer being
laterally defined by an irregular spherical Delauney mesh whose
spatial distribution is optimized according to ray density (see Fig. 1).
This parametrization leads to 38 125 model parameters in total and
a minimal lateral resolving length given explicitly by the local grid
node spacing (ranging from about 200—-1000 km).
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In the case of such an irregular, local tomographic grid, let A(jk)
be the jth discretized component of the kth (continuous) averaging
kernel A%, and ¥; be the ‘volume’ associated to the jth parameter.
Then, Zaroli (2016) shows that one has the following relation be-
tween the averaging kernel components and those of the resolution
matrix

Ry = VA (12)

Note that in the case of a local and ‘orthonormal’ model
parametrization (i.e. all V; constant, say equal to one), one has
the relation Ry; = A(jk), which means that the kth row of the resolu-
tion matrix R represents the kth resolving kernel. For more details
concerning the parametrization of the SOLA-Z16 model, the reader
is referred to Zaroli (2010, 2016) and Zaroli et al. (2015).

In the following, X can be treated as the kth row of the SOLA
B-G generalized inverse matrix G, where k is an index representing
the kth model parameter. The key idea in the SOLA B—G method
(Pijpers & Thompson 1992, 1993) is to specify an a priori ‘target
form’ for each resolving kernel. That is, one has to specify M
target resolving-kernels 7, hereafter referred to as target kernels
for short, such that their spatial extent represents some a priori
estimate of the spatial resolving-length at each parameter location.
The SOLA B—G inversion scheme consists in solving for each vector
x® the minimization problem

. 2
min (A(") — T(k)) &dPr+nl ol steq (9), (13)
<0 NP
. model
resolutlon variance
misfit

which can be rewritten in a discrete fashion corresponding to our ir-
regular tomographic grid. The extra condition in eq. (9) is equivalent
to Zj‘il Ri; = 1; that is, it enforces the unbiased averaging over
the true model parameters. The left-hand term in eq. (13) defines a
resolution misfit between the kth averaging (resolving) kernel A%
and its associated target kernel 7®, whereas the right-hand term
reflects the model variance, aék, that both get minimized jointly
with different weighting given by the trade-off parameter 1. 1 can
be chosen freely to assure a certain balance between model resolu-
tion and uncertainties. In other words, by the very formulation of
the minimization problem, one has a certain control over those two
quantities that are crucial for the appraisal of tomographic models.
Although it would be possible to assign at each grid node r; a dif-
ferent value 1y, Zaroli (2016) and Zaroli et al. (2017) showed that
globally coherent tomographic images can be obtained with a con-
stant 7 for all grid nodes within one layer provided that the size of the
target kernels is tuned to the spatially irregular data coverage. This
way, it is possible to reduce the number of free tuning parameters in
the SOLA B—G inversion scheme and hence to decrease its compu-
tational cost. SOLA B-G solutions, like with any inversion scheme,
thus depend on tunable parameters, so that different choices would
result in different models. Nevertheless, although one can not evade
making specific choices for target kernels and trade-off parameters,
it is important to note that any particular solution represents unbi-
ased model averages, associated with different resolving volumes,
that each can be quantitatively analysed in conjunction with their
respective model uncertainties. Put differently, in contrast to the
regularization in DLS through damping and/or smoothing that act
directly on the model values, the problem of non-uniqueness is in
SOLA B-G dealt with by explicitly computing averaging kernels
under the unimodular condition in eq. (9) and the constraint on the
model variance controlled by the trade-off parameter.
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400 — 530 km 530 - 660 km

960 — 1110 km

660 — 810 km

810 — 960 km

1510 - 1710 km

1310 - 1510 km

Figure 1. Grid nodes of the SOLA-Z16 tomographic model (Zaroli 2016). The mantle is vertically parametrized by distinct depth layers and laterally by an
irregular spherical Delauney mesh that is optimized according to ray density. The SOLA-Z16 model is currently limited to the depth range between 400 and

1710 km owing to the coverage of the specific seismic data used.

Finally, to compute the SOLA B-G generalized inverse GT, re-
spectively its kth row x| Zaroli (2016) showed how to solve the
aforementioned minimization problem using the LSQR algorithm
(Paige & Saunders 1982). Note that each row of the SOLA B-G
generalized inverse (i.e. ) can be computed independently from
the others, thus making the SOLA B—G tomographic scheme well
suited for (embarrassingly) parallel computations. Once the gen-
eralized inverse coefficients x® = (xfk))lf,-S ~ are known, one can
directly infer the estimate 7, the resolving kernel A® (i.e. kth row
of resolution matrix R) and the uncertainty oy, as follows:

N (k) N
Dic1 X di — M
k N k
S D el — Ry (14)

@0 ) — o, -

Despite the fact that the SOLA B—G method does not specifically
aim at minimizing a data misfit, it has been shown in Zaroli et al.
(2017) that SOLA models computed from eq. (14) are actually able
to fit the corresponding data sets at the same level as DLS models.
We verified that this is likewise true for the SOLA-Z16 model used
here.

With the nice property of providing uncertainty information
alongside with resolution, the linear SOLA B-G tomographic
scheme is particularly suited for tomographic filtering and repre-
sents a useful tool for more quantitatively comparing tomographic
models and geodynamic predictions. Most important, since the full
generalized inverse is directly computed in the SOLA B-G ap-
proach, the calculation of R is straightforward and one can easily
access the individual model uncertainties (o5, )—which represent
the propagation of data noise into the model solution—by project-
ing a large number of noise realizations into model space using G.
We introduce this method in more detail in the following.

2.3 Generalized-inverse projection

As mentioned in the beginning, classic tomographic filtering of
synthetic earth models based on 7Rm has proven to be an efficient
tool for the assessment of geodynamic models. In this regard, the
SOLA B-G method provides us now with a resolution operator R
that leads to an unbiased filtering of synthetic models—while so
far, DLS-based tomographic filtering studies have potentially been
suffering from biased-filtering effects—and additionally allows us
to perform a quantification of the effects of seismic data noise

that propagates into the tomographic solution. In the following, we
will illustrate that with the generalized inverse, it is possible, and
trivial, to take noise into account. Note that although we base our
illustration on the SOLA B—G tomography, this method works for
all cases where the generalized inverse can explicitly be computed.

In our study, we consider noise as any error in the traveltime
residuals; that is, the random measurement errors, which can only be
estimated and described statistically, as well as potentially present
systematic errors such as, for example, earthquake mislocation,
uncertainties in origin time or effects related to crustal corrections.
Let us therefore rewrite eq. (1) by explicitly adding the term that
accounts for data uncertainty in form of a vector of seismic noise
n = (n;)1<;<y, which describes the error affecting the measured
traveltime residual data d:

d=Gm+n. (15)

In the SOLA B-G tomographic inversion scheme, each entry of n
is generally assumed to be independent of all others and normally
distributed with zero mean and variance 0,12,~ . In other words, the
corresponding data covariance matrix C, is assumed to be diagonal,
that is: C; = diag(a] )1<i<w-

In addition to using the new, unbiased, SOLA B—G tomographic
resolution operator (R), the main goal of this study is to go beyond
the classic comparison of tomographic models with tomographi-
cally filtered versions (Rm®") of a given synthetic model. Indeed,
we believe that it should be more quantitative and robust to com-
pare tomographic models with what we call the GIP versions of the
synthetic models, hereafter denoted by m%"? and defined as

Ifl\lGIP — GT asm

=Gd, +Gn", (16)
where d¥" is a synthetic data set, in our study shear-wave trav-
eltime variations, composed of error-free synthetic data generated
in the model, d}..., and some random synthetic noise n®" that is
generated based on the statistical distribution of the real data noise.
To best represent the real-world situation, one should favour com-
puting full 3-D wave fields and full waveform seismograms in the
synthetic model to generate the ‘clean’ data, but this is currently
computationally intractable given the large number of earthquakes
included in the tomographic data sets. As the tomographic model
SOLA-Z16 utilizes finite-frequency kernels, alternatively one could
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syn

compute the synthetic data by d;,,, = Gm™", which would lead to:

IhGlP — GTGmsyn + ansyn
= Rm™ + Gn™ . (17)
—— N——’

tomographically

propagated
filtered model noise

Formally, GIP models are thus equal to the tomographically filtered
synthetic model plus a specific amount of noise propagating into the
model solution. Note that the generalized inverse G is therefore the
key for both the mapping from the true model to the filtered model
and the propagation of data errors.

The advantage of the GIP approach is that computing synthetic
data, in one way or the other, and projecting it to model space with
G' circumvents the need to reparametrize the model. The effects
of reparametrization (i.e. the loss of short-scale heterogeneity) are
rather unphysical and may vary with depth (Schuberth ez al. 2009a),
depending on the respective tomographic model. Schuberth et al.
(2009a) demonstrated that these effects can in an average sense be
corrected for when comparing geodynamic and tomographic mod-
els on statistical grounds, but it is not clear to what extent such a
correction in fact is necessary to represent the true physical situation
(e.g. whether and how much aliasing happens of short-scale struc-
ture into the long-wavelength tomographic images). The effects of
reparametrization are expected to become less relevant, the more
finely discretized the respective tomographic model. However, even
in case of large numbers of parameters (O(10%)), they can not be cir-
cumvented completely (Simmons et al. 2019), since contemporary
geodynamic models still have a much higher grid resolution.

The reparametrization is also necessary if one wants to compute
the synthetic data using Gm®"; that is, if the data sensitivity is rep-
resented in the tomographic model parametrization. To avoid both
the reparametrization as well as the computational costs related to
3-D full waveform simulations, we have chosen in this work to
experiment with the direct calculation of ray-theoretical traveltime
residuals in the synthetic model using earthquake-receiver locations
and seismic phases of the SOLA-Z16 seismic data set. For the ith
synthetic, ray-theoretical measurement, we also create some artifi-
cial noise component by drawing a random value from a normal
distribution A/(0, aj, ), with standard deviation o,, taken to be the
uncertainty of the ith datum from the real seismic data set. The gen-
eration of the entire noise vector n and the subsequent computation
of the particular corresponding GIP realization is repeated many
times for a sufficient number of draws in order to obtain meaningful
statistics and model uncertainties (we will further elaborate on this
in Sections 3.2 and 4). The use of ray theory is justified here, as
we want to generally show the practical feasibility to compute the
GIP. Also, the investigation of propagated noise is independent of
the way the model traveltime signal is generated. The restriction to
ray-theoretical traveltimes thus has no impact on the conclusions of
our study, as we are also not aiming at a comparison between GIP
models and the tomographic model SOLA-Z16 here.

Altogether, this new approach is a substantial improvement
over conventional tomographic filtering with R (see examples in
Sec. 3.1), because we have now the possibility to work with data
that have ‘seen’ the synthetic model and as we can additionally
explore various GIP models with a large number of different noise
realizations allowing us to consider model uncertainties (see exam-
ples in Section 3.2).
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3 EXAMPLES OF CONVENTIONAL AND
GIP FILTERING

3.1 Conventional filtering

For demonstrating the effects of the SOLA-Z16 tomographic filter
and the mapping of synthetic data into model space via G, we use
the geodynamic model N16-EB16 of Nerlich et al. (2016) (for de-
tails on the model, see Appendix A). In fact, the exact model setup
is not crucial for the current work. Important to note is only that
owing to the assimilation of plate motions as surface boundary con-
ditions, the locations of structures in this global mantle circulation
model (MCM), in particular cold downwelling slabs, are roughly
compatible with those found on Earth (i.e. as seen in tomographic
images). This is an important prerequisite for tomographic filter-
ing, as otherwise there would be a mismatch between the model
structures and how they would be seen by the uneven seismic data
coverage. To perform the necessary reparametrization, we follow
the interpolation method of Zaroli (2010) that allows projecting the
high-resolution geodynamic model onto the much coarser tomo-
graphic grid of SOLA-Z16.

In Fig. 2 the results of the conventional filtering approach using
R of SOLA-Z16 on the model N16-EB16 are shown, including
the reparametrization and filtering steps. The two most prominent
features of the original model in the mid-mantle are the fast veloc-
ity structures around the Pacific belt (especially North- and South
America and Southeast Asia) and a half-ring shaped low-velocity
structure in the Middle- and South Pacific (Fig. 2a). The general
effects of reparametrizing the model on the irregular grid of SOLA-
716 are a broadening of anomalies and a reduction of their magni-
tude, which are more severe in regions of lower grid node density, as
expected (Fig. 2b). After filtering with R, most features are further
spread out and an additional reduction of magnitude is apparent,
which overall leads to coherent large-scale anomalies in the tran-
sition zone and upper mid-mantle in the filtered model (Fig. 2c¢).
For example, a distinct low velocity structure appears in the North
Pacific, at a depth between 400 and 1310 km, with a maximum
amplitude and extent between 810 and 960 km. This is probably re-
lated to vertical smearing of structure from the upper mantle, due to
the averaging kernels of SOLA-Z16 that reach from the mid-mantle
almost up to the surface in this area. Plotting those averaging ker-
nels at a certain location would make it possible to spatially isolate
this effect, which however is not the scope of the current study.
Having the conventionally filtered models at hand, we have a clear
expectation on how the effect of limited resolution inherent to the
SOLA-Z16 filter alters the original model. On the other hand, this
classical filtering procedure entirely ignores the range of possible
models that would be conceivable if tomographic model uncertain-
ties were considered, which is in fact realized by computing GIP
models.

3.2 New filtering based on the GIP

3.2.1 Examples of GIP realizations

In Fig. 3 one of the many possible GIP models is shown, which can
be computed from the synthetic traveltime data in the MCM with
the method introduced in Section 2.3. In addition to the GIP model
obtained with added random noise (Fig. 3a), we also present the
GIP model without noise (Fig. 3b) and the propagated noise alone
(Fig. 3c); that is, the contribution of this specific noise realization to
the model resulting from G'n®™. On large scales, the GIP models
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Figure 2. Global maps of shear velocity variations of model N16-EB16 for five depth layers: (a) the original model averaged over the respective depth range;
(b) the reparametrized version of the MCM and (c) the tomographically filtered version. Variations are given relative to the corresponding average 1-D model
of the MCM. Reparametrization and filtering together lead to considerable smearing of anomalies and a reduction of the heterogeneity amplitudes.

(b) GIP w/o noise (c) propagated noise

660 — 810 km din(vs) [%]

2

Figure 3. Global maps of (a) the GIP model for one specific realization of noise; (b) the same GIP model without (w/0) noise. (c) Global maps showing where
the noise ends up in the model solution in case of the specific noise realization of (a). Note that column (a) is the sum of columns (b) and (c).
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with and without noise do not seem to differ severely for this noise
realization, but a closer look reveals some differences on smaller
scales that may play a role for geodynamic interpretations, for ex-
ample the exact shape of the low velocity structures in the Pacific
region. It is also clear from Fig. 3(c) that the noise in the data con-
tributes significantly to the final model estimate. The heterogeneity
structure induced by the propagated noise is apparently linked to the
irregular grid of SOLA-Z16, because pronounced small-scale pat-
terns are mostly present in regions of higher grid density, i.e. better
resolution. Remember that in SOLA B—G tomography, better res-
olution commonly means larger model uncertainties and therefore
a larger contribution of noise propagating into the model solution.
In Fig. 3(c) one can also observe a distinct difference between the
layers, where in regions of lower grid density the propagated noise
leads to either a positive or negative shift, which changes the overall
strength of anomalies between the GIP models with and without
noise. Note, however, that this is only one possible GIP model from
a large suite of models that cover the range of model uncertainties
given by the SOLA-Z16 inversion. Furthermore, we note that the
model resulting from the GIP approach also resembles the tomo-
graphically filtered model that is simply based on R, but here, they
are not strictly identical (see Section 4).

3.2.2 Effects from projected noise

In a next step, we want to consider a large number of GIP models to
investigate the effects of the full range of possible noise realizations
and how this varying noise propagates into model space. This is an
important step in that any tomographic image itself is just the result
of an inversion based on one specific noise realization incorporated
in the real-world measurements (estimated to each lie within one
standard deviation of the respective true datum). This also implies
that for any comparison of a geodynamic model and a tomographic
image, the range of uncertainties should be considered for the for-
mer, as only for the geodynamic model, the true mean model is
known. To explore this range, we redo the sampling of n®" from
the set of normal distributions A/ (0, 05[ ) one thousand times to con-
struct a set of GIP models, each corresponding to one realization of
the noise. Fig. 4 shows maps of four different GIP models at a depth
of 15101710 km: the GIP model without noise and three selected
GIP models that were computed with different noise realizations.
We show contour lines at a level of 0.25 per cent din(vs) for eas-
ier identification of local differences in the models with respect to
the GIP model without noise. This contour level corresponds to a
typical threshold in global tomography above which heterogeneities
may be interpreted as robust features. In each map, the 0.25 per cent
contour of the noise-free GIP model is shown with a black solid line
for comparison, while the respective contours of the GIP models
with noise are depicted with a blue dashed line. GIP model #1 (upper
right panel, same model as in Fig. 3b) displays mostly an increase
of the lateral extent of positive velocity anomalies (i.e. those above
the threshold). However, the slab in the Northern Pacific apparently
is separated into two parts here. GIP model #60 (lower left panel)
shows an even stronger increase in the extent of fast structures, with
the most striking feature of an elongated positive anomaly in the
Mid-Pacific south of Hawaii. In contrast, GIP model #200 (lower
right panel) features a strong decrease of fast seismic anomalies
and much stronger negative velocity anomalies, which leads to less
coherent and much more fragmented slabs. In particular, the com-
parison between the noise-free GIP model and GIP #60 reveals the
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importance of a correct treatment of uncertainties in the interpre-
tation of tomographic images: In the latter, one would be tempted
to interpret the ‘slab’ in the middle of the Pacific at mid-mantle
depths as a robust feature with all its geologic consequences, while
from the GIP model without noise one would argue for ‘normal
mantle’, which corresponds also to the underlying structure in the
original MCM (Fig. 2a) at that location. To some extent, the effects
of noise might be mitigated by removing the mean value from each
layer of the models as is common practice in many tomographic
studies. This, however, bears the danger of skewing the statistics of
the model uncertainties, which renders any evaluation or further use
more difficult. Here, we do not modify the models in such a way,
but rather keep the full noise effects for further analysis.

3.2.3 Statistical properties of projected noise

One important quantity that typically is computed for tomographic
models, and used for interpretations as well as for comparisons to
geodynamic models, is the average strength of heterogeneities in
each depth layer as given by the root-mean-square (RMS) of all
model parameters at one depth. In Fig. 5 we show distributions of
RMS profiles calculated for the set of 1000 GIP models to quantify
the variability in the average ‘imaged’ strength of seismic hetero-
geneity in our case. In our framework, the RMS can be computed
separately for each layer / with L grid nodes as

[L ~ GIP
v, 2
RMS(IhGIP)ZZ Zk:lLk(mk ) ’ (18)
Zk:l Vi

where k is the local grid node index and ¥ the volumetric weights
corresponding to the SOLA-Z16 tomographic grid (see also eq. 12).
The RMS distributions vary considerably with depth with generally
larger variances at greater depths. Important to note is that the ex-
treme values in the various layers are unrelated; that is, not related to
a single ‘extreme’ model. Put differently, the model with maximum
RMS (out of the 1000 models) in one layer does not necessarily give
rise to the maximum RMS in other layers. To get an impression of
the entire RMS distributions, we chose to use violin plots to infer
a continuous probability distribution from our limited set of 1000
GIP models. All distributions are positively skewed, meaning that
RMS outlier models show mainly stronger heterogeneity. Also, the
profile of the GIP model without noise is close to the minimum
at each layer, which suggests that the addition of noise seems to
commonly increase the imaged heterogeneity on average. In the
transition zone, RMS variations are moderate and the values do not
differ by more than 0.1 per cent dln(vs). At depths of 810-960 km,
the range of RMS amplitudes is at a minimum, which could be
related to the observation that in our data set many ray paths of SS
waves are bottoming in this region or because this is the first layer
where any rays are actually turning. For the remaining mid-mantle
layers, the variation of RMS is larger, so that values may differ by
up to 0.2 per cent dln(vs). Since the distributions are inferred from
merely a 1000 GIP models they can of course not cover the popula-
tion of possible models. Consequently, we tried to give reasonable
lower and upper bounds for the expected RMS amplitudes using
two GIP models, one in which we increased the magnitude of trav-
eltime residuals by their corresponding standard deviations from
the SOLA-Z16 data and one where we decreased the magnitude
this way (ignoring in this case the importance of covariance). Note
that those bounds can not be seen as extreme values or confidence
intervals for the RMS, but rather represent an approximate range
where we expect most GIP models to fall within.
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Figure 4. Effect of varying noise realizations on GIP models. Contour lines are shown at a level of 0.25 per cent d/n(vs) to give an impression of what could be
considered as reliably imaged fast structures. In each plot, black contour lines show the structure of the GIP model without noise and blue dashed lines show the
same contour level in the corresponding GIP model including a specific noise realization. Comparison of all four panels illustrates that certain tomographically
imaged features, like what appears to be a slab structure in middle of the Pacific in case of noise realization #60, might not be as robust as initially considered.
Note that we do not remove the mean value from each layer of the GIP models, which is common practice in many tomographic studies, as this bears the danger
of skewing the statistics of the model uncertainties in the further course of this work.

In order to quantify the amount of propagated noise, we chose
to use 1000 GIP models as a compromise between computational
effort and a relevant sample size and computed RMS values. This
limited number of models of course affects the capability to gener-
alize our findings on the distribution of RMS values, as one cannot
directly calculate or estimate the true distribution from a finite set
of data. Therefore, we have to treat the RMS results with some
caution, although we think that the general trend can be delineated.
Also, considering eq. (18), our RMS distributions can be qualified
as the square-root of the linear combination of dependent scaled
non-central chi-squared distributions. Such distributions can not
generally be computed analytically and numerical solutions only
exist for much ‘simpler’ cases, for example the linear combina-
tion of independent chi-squared distributions (Bausch 2013). In our
case, computing GIP models is thus a necessary step to quantify the
expected mantle heterogeneity with RMS from uncertainty infor-
mation, and it will be necessary in future to develop a scheme for
deciding between acceptable models and statistical outliers.

We now come back to looking at individual model parameters,
and note that independent from the noise-free GIP model, we can
analyse the corresponding 1000 GIP realizations of G'n®" to see
where the propagated noise ends up in model space (see Fig. 6, up-
per rows). We computed from the total set of GIP models the mean

value for each model parameter for the depth ranges of 530-660 km
and 1110-1310 km and also show maps in which the standard de-
viation at each parameter is subtracted or added, respectively. The
observation that the mean model is ‘white’ indicates that the set of
1000 GIP models provide an adequate sampling of each model pa-
rameter. Thus it comes as no surprise that the maps considering the
standard deviations show approximately the model uncertainties of
SOLA-Z16, which are evidently linked to the data-driven structure
of the irregular tomographic grid.

3.2.4 Exploring the effects of systematic errors

The general assumption in most tomographic applications is that the
data uncertainty follows a normal distribution. This, however, could
be a rather strong assumption given the many sources of uncertainty
in seismic data, especially if systematic errors from inadequate mod-
elling are present. Therefore, one may wonder how filtered models
would look like if the noise in the real data was not normally dis-
tributed around zero. For example our imperfect knowledge of the
crust or frequency-dependent crustal effects (Dubois ez al. 2019)
may lead to wrong crustal corrections that can be interpreted as a
systematic bias in the noise term. How would G project this biased
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Figure 5. Distribution of RMS values estimated from a set of 1000 GIP models that are computed using independent noise realizations (right-hand panel; light
blue violin plots). The RMS profile of the GIP model without noise (black dotted line) does not always coincide with the peak of the inferred RMS distributions
from the set of 1000 GIP models. Maximum RMS values (blue dashed line) result from a GIP model in which the seismic noise was artificially chosen such as
to increase, for all at the same time, the magnitude of the synthetic traveltime residuals by their respective standard deviation oy, , whereas the minimum RMS
(green dashed line) results from decreasing all residual magnitudes by oy, . Note that in the case of those two extreme RMS profiles, the covariance of the data

and model parameters are neglected.

noise into model space and how would model uncertainties change?
Taking the crustal effects as one example, we try to give a quan-
titative answer to this question by considering again a large set of
noise realizations in which such a systematic component of noise
from crustal corrections is added to the random noise. In the case of
systematic biases, this approach is kind of a Monte Carlo error prop-
agation strategy to quantify model uncertainties (see e.g. Aster ez al.
2005). Since we do not know the uncertainties of crustal travel times,
we may reasonably estimate the potential bias they could cause by
calculating the difference between traveltimes in models CRUST1.0
8teust0 (Laske et al. 2013) and CRUST2.0 8¢/ (Bassin et al.
2000) for each ray path of the SOLA-Z16 data set. We are aware
of the fact that other choices for the two crustal models could have
been made, and as both CRUST1.0 and CRUST2.0 are coming from
the same research group, we consider our choice as a conservative
estimate of the crustal noise bias. Considering that the crustal mod-
els are themselves uncertain, we can treat the traveltimes in each
crustal structure as random variables which we assume to follow a
normal distribution N/ (§z1020 52 ) where §¢71-920 are the
traveltimes in the crust that were actually computed for each source-
receiver configuration using ray theory, and o ., is the standard
deviation of the traveltime differences Af™™t = §¢fms20 — ggerostl0
of all ray paths. We compute again one thousand realizations of
the systematic noise component by drawing random realizations
dtest020 from both corresponding normal distributions and com-
puting their difference d#f™20 — g0 Each realization of the
biased noise n®® is thus given by

nbias =n"" 4+ (dtcmle.O _ dtcrustLO) , (19)

which we finally use to get one thousand realizations of the propa-
gated biased noise G'n®®.

Fig. 7 compares histograms of the set of realizations of biased
and unbiased noise for three different ray paths. In general, the
bias that we introduce leads to a shift of the mean away from zero
and a broadening of the distribution quantified by higher (sample)
standard deviations depending on the exact source-receiver configu-
ration and the structural differences between the two crustal models.
Owing to its non-zero mean, one can see in Fig. 6 that the resulting
mean model of the propagated biased noise is no longer white (i.e.
the mean contribution to the seismic heterogeneity is not zero any
more), as in case of the propagated random noise. For the layer
between 530 and 660 km one can clearly see an imprint of the crust
in the mean model, which is dominated by a positive signal in the
oceans and a mostly negative one on the continents. Interestingly,
the propagated biased noise shows a sharp contrast approximately
across the Date Line in the Pacific. We made different tests with the
generalized inverse operator to ensure that this is not an artefact,
and we found that it can be explained by the combination of effects
from the difference in crustal models, the shape of the tomographic
grid, the way G' acts on the input data and the source-receiver
configurations of the tomographic data set (see Fig. 1 and Fig. S2
in the supplementary material). Also in the layer between 1110 and
1310 km there is a notable model response to the biased noise that is
however less strong than in the upper layer. In addition to the mean
model we subtracted or added, respectively, the standard deviation
at each model parameter from the set of 1000 models to indicate
how strong values may locally vary. This suggests that the presence
of systematic biases—which the GIP method is able to handle as
an additional noise term—can alter the way we see the true Earth
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Figure 6. Statistics of the projected noise from the set of 1000 GIP realizations for two depth ranges. In each row, the maps show the mean (middle column)
and = standard deviation (right- and left-hand column, respectively) at each model parameter. For each depth, the top row shows the statistics for the Gaussian
zero-mean random noise based on the noise assumptions from the SOLA-Z16 tomographic model, while the middle row shows the effects of adding to
it a biased-noise component related to uncertain crustal structure. The bottom rows illustrate the model uncertainty in case of the biased-noise component

alone.

with linear seismic tomography, which may lead in the worst case
to incorrect model interpretations.

4 DISCUSSION AND PERSPECTIVES

In Section 3.2, we demonstrated that computing a suite of GIP
models is a viable approach to investigating the effects of both
limited resolution as well as uncertainties. Key to this method is the
explicit knowledge of the generalized inverse G' that maps synthetic
data and noise to the model space. Based on the GIP approach,
we provided a quantification of model uncertainties resulting from
realistic realizations of noise in the seismic data. As expected, the
various noise realizations significantly alter the ‘filtered’ models.
This is true not only for the morphology of structures and the

average seismic heterogeneity as quantified, for example, with RMS
profiles, but also for the apparent strength of single anomalies. This
can, as our results show, lead in the worst case to misinterpretation of
mantle dynamics owing to ‘structures’ that actually are not present
in the noise-free model and, even more important, in the underlying
‘true’ Earth. This implies that for a comprehensive link between
seismic information and geodynamic considerations, uncertainties
in the seismic data play a vital role and should always be considered.

A typical scenario in Earth in which this would come into play is
the seismic structure of the mantle below hot spots and the question
of whether it is associated with deep mantle-upwellings (i.e. plumes)
rising from a thermal boundary layer at the CMB (e.g. Montelli
et al. 2004; French & Romanowicz 2015; Chang et al. 2016). It is
known that the detectability of such features, especially in the deeper
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Figure 7. Histograms for three examples of unbiased (u) and biased (b)
noise realizations of specific ray paths. Maps in the upper right corner of
each panel depict the corresponding source-receiver configuration (blue star
and red triangle, respectively). Additionally, the sample mean and standard
deviation of the unbiased and biased noise data are given.

mantle, depends on the data coverage, the technique used to solve
the forward and inverse problems and other factors (Maguire et al.
2018). To answer the question of the existence of a given structure,
it is necessary to quantify resolution as well as noise that propa-
gates into the tomographic solution and to then assess the resulting
images in the light of this additional (and non-negligible) informa-
tion. However, a straight-forward appraisal of tomographic images
is currently impracticable with full-waveform or probabilistic inver-
sions (e.g. Fichtner & Trampert 2011; Rawlinson ef al. 2014). An
alternative that will have the potential to robustly constrain the very
nature of those features could be to perform an analysis based on the
GIP approach using geodynamic models constructed from consis-
tent physical and mineralogical considerations while having at hand
and dealing with all possible uncertainties (not only in the seismic
data, but also in the mineralogical and geodynamic parameters). As
we have illustrated, the quantification of the effects of seismic data
uncertainty in the model space can be solved elegantly with the
SOLA B-G generalized inverse, and the accurate assignment of the
data (co-)variance then in fact constitutes the main challenge.
Having available good estimates of the seismic data uncertainties
and, in particular, a way to map them into model space is going to
be a crucial component not only for the assessment of geodynamic
forward models, but even more so for inverse models of mantle
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convection. Retrodictions of the past evolution of the mantle via
adjoint geodynamic simulations depend on estimates of the state of
the mantle at present-day in terms of buoyancy, and tomographic
models serve as the basis for this estimation. As with any inversion,
the way the misfit functional is stated is of fundamental importance,
influencing what actually is propagated back in time as the adjoint
field. In the case of geodynamic adjoints, one typically computes
local differences between an initial “first-guess’ forward-modelled
field at present day and the tomographic estimate. In this process,
it is on the one hand vital to understand the effects of resolution,
as this will have direct impact on the misfit calculation. Generally,
one expects structures in the forward-modelled geodynamic field to
be represented on shorter scales than the structures resolved with
currently available seismic data and tomographic methods. Fur-
thermore, to learn about the behaviour of Earth’s mantle from its
evolution over time in comparison to the geologic record, it will be
crucial to investigate not only a single model, but an ensemble of
models based on a set of different tomographic estimates. Such a
suite of tomographically derived mantle states can, with the method
introduced in this study, be generated conveniently using the SOLA
B-G generalized inverse. Given the uncertainties of the seismic
data, one can obtain a range of different tomographic realizations—
by random sampling of the data uncertainty distribution—that will
cluster around the mean tomographic model. It is clear that a suf-
ficiently large number of drawings is required to provide a good
coverage of the posterior model covariance (e.g. in our case, 1000
random draws appeared to be sufficient). As the geodynamic adjoint
simulations pose a massive computational challenge, it may be un-
feasible to run inversions back in time for such large ensembles, and
future research needs to be directed towards finding ways of how to
best represent tomographic model uncertainty in such applications
with a limited number of noise realizations.

Given the above considerations, it is important to discuss the
role of seismic noise in more detail. In the statistical framework
applied in our approach, we may regard the vectors d (including
noise) and m as random variables, in which each entry follows a
normal distribution with a specific mean and variance. In this case,
the mean of m is given by the GIP model without noise, while
models deviating from the mean model include a particular amount
of propagated noise that is statistically described at each model
parameter with a corresponding uncertainty. For the interpretation
of'these uncertainties in context of the model space, it is however not
sufficient to merely look at the variance of individual parameters
(which is an explicit output of the SOLA B-G method). Rather,
it is necessary to deal with the covariance of model parameters,
which is implicitly incorporated in our method by applying G' to
the synthetic data set including a large number of particular noise
realizations.

Having an estimate of the model covariance matrix C,—
representing the uncertainties and inter-correlations of ‘individual’
parameters m;—is important for several applications such as not
only the problem of geodynamic retrodiction, but also for com-
puting uncertainties of seismic travel times predicted by a given
tomographic model (Simmons et al. 2019). Although we do not ex-
plicitly state the SOLA B—G model covariance matrix, Cj,, in this
study, it would be straightforward to calculate it as

C; = Gic,(GHT, (20)

with the (diagonal) data covariance matrix C,. It is important to bear
in mind that, within the SOLA B-G inversion scheme, the model
estimates 71, represent some ‘weighted averages’ of the true-model
parameters, spatially localized around each point r; (noting that a
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specific averaging volume may still encompass several grid points).
Hence, the SOLA B-G model covariance matrix C; represents
the propagation of data noise into these averages (i.e. given by the
diagonal elements a,%”(), and how these averages are intercorrelated.
However, in the general case, it cannot inform us on how much the
value of 711, may differ from the true-model parameter n;,—at least
when the spatial variations of m are non smooth and/or the spatial
extent of the kth resolving kernel is far from a Dirac delta function
(Zaroli 2019). Still, in case of spatially varying parametrizations
adapted to the data coverage and corresponding choices of the target
resolving kernels, the unbiased SOLA B-G averages 1, may be
localized enough to sufficiently represent the true-model parameters
my, so that C; is also a good approximation of the actual model
covariance C,, related to the individual parameters. Future research
will be necessary in this direction to better understand the effects of
parametrization as well as the choice of target kernels and trade-off
parameters.

A few additional remarks: For large tomographic problems in
general, it may be unfeasible to obtain the full model covariance
matrix, because its direct calculation becomes a computationally
challenging task requiring efficient numerical algorithms that often
rely on matrix factorization techniques (e.g. Soldati e al. 2006;
Ballard ef al. 2016; Bogiatzis ef al. 2016). In another approach to
computing model covariances for the tomographic model LLNL-
G3D-JPS with O(10°) parameters, Simmons et al. (2019) approx-
imated the resolution matrix R using a multiple-impulse response
strategy for reducing the computational burden and used it together
with an a priori covariance matrix to get an a posteriori covari-
ance CP*' = (I — R)CP™" (see e.g. Tarantola 1987). However, they
report that they had to correct for unreasonable covariance esti-
mates and the need to condition the matrices such that they become
easier to handle for some practical applications, for example the
calculation of path-specific traveltime uncertainties. Note that one
cannot incorporate some a priori model covariance in the SOLA
B-G method, which may seem as a drawback of the method. In
our view this can be advantageous, as it avoids the need of having
to incorporate some ad hoc, often unphysical, a priori model con-
straints. In studies using Bayesian inference, the choice of the prior
probability distribution is a critical issue and the probabilistic inver-
sions are typically based on the assumption of zero-mean Gaussian
statistics. As we have shown in this study, the latter assumption is
not necessary in the GIP approach with SOLA B—G. Furthermore,
probabilistic inversions are hampered by the curse of dimensional-
ity (e.g. Sambridge et al. 2013; Fichtner et al. 2018), and thus are
currently unpractical for large tomographic inversions that may, for
example, comprise the whole mantle using a relevant data coverage.
For such problems, the GIP approach can still be used to represent
the information content of C,, without the need to fully state it, as
the calculation of G' is computationally highly efficient and easily
parallelizable in SOLA B-G inversions. In other words, it would
still be trivial to calculate GIP models (and thus consider model co-
variance) even for very large tomographic problems. In this respect,
it is worth mentioning that it would also be possible to estimate the
model covariance matrix of SOLA B—G by computing the so-called
sample covariance matrix C;;, from a set of propagated noise models
(G'n®"). Together with the advantage that no reparametrization of
models is necessary, the GIP approach may therefore prove very
useful in future applications.

Apart from the examples of using the GIP approach shown
in this study, there is a broad range of further applications. A
quantitative comparison between MCM models and a SOLA B-G

tomography that specifically focuses on a full incorporation of reso-
lution and uncertainty will obviously be the subject of future work.
Such comparisons should preferably feature models of the whole
mantle, and efforts to obtain a global SOLA model are currently
under way (see Dubois 2020). A practical tool for the comparisons
could further be to plot SOLA B—G’s averaging kernels in order to
visualize resolving volumes and to explain effects of smearing and
lacking data coverage. For the generation of the synthetic data in the
geodynamic model, it would also be favourable to compute travel
times using finite-frequency sensitivity instead of ray-theory. This
would reduce the difference between the tomographically filtered
version of the synthetic model and the noise-free GIP model to the
effect of reparametrization that is inherent to the classic approach
(see supplementary figures). Also, recently (Zaroli 2019) moved
the SOLA B—-G inversion scheme from a discrete to a continuous
model representation named ‘parameter-free SOLA tomography’.
In this method it is now possible to fully make use of the data sensi-
tivity kernels for the inversion, as they do not need to be projected
on an often coarse tomographic grid as is the case in parameter-
based inversions. Applying this parameter-free scheme in a global
context and using the GIP approach introduced here could dramat-
ically sharpen our view of mantle structure and give us a reliable
tomographic basis for answering related geodynamic questions.

5 CONCLUSIONS

In this proof-of-concept study, we have presented the GIP as a novel
approach for computing tomographically filtered synthetic models
of Earth’s mantle. In this approach, it is possible to account not
only for the limited resolution, but also for the effects of noise
(i.e. errors) in the seismic data allowing for systematic investiga-
tions of tomographic model uncertainties. A particular GIP model
is generated by applying the generalized inverse operator G to a
synthetic seismic data set calculated in a ‘true’ mantle model to
which a random noise contribution can be added. Explicit knowl-
edge of the generalized inverse operator thus is a prerequisite to be
able to apply this method. In the specific case considered here, we
took advantage of the recently introduced SOLA Backus—Gilbert
tomographic inversion, in which G' can efficiently be calculated for
tomographic problems on a global scale. To illustrate the potential
of the GIP approach, we applied G' of Zaroli (2016) to a synthetic
set of traveltime variations computed in a mantle circulation model.
A large number of noise realizations were generated by repeatedly
drawing random values from zero-mean normal distributions with
standard deviations given by the uncertainty of each individual da-
tum as estimated in the original SOLA-Z16 tomographic model.
The projection of noisy synthetic data via the generalized inverse
then demonstrates where and in which way, data uncertainties might
end up in model space. We found significant differences between
the various GIP realizations, which highlights the importance of
interpreting and assessing tomographic images in a prudent and
cautious manner.

For the entire ensemble of GIP realizations, the mean of the
model parameters is equivalent to the GIP model for the noise-free
data in case of Gaussian random noise, as expected for a large num-
ber of drawings. In other words, the mean contribution of random
noise is zero. Besides looking at random noise, we demonstrated
that it is also possible to project noise components to the model
space that exhibit systematic deviations from a typically assumed
Gaussian distribution. To provide an example of such a biased noise
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contribution, we looked at systematic errors related to the
crustal correction and imperfectly known crustal structure that
potentially affect tomographic inversions. The GIP models were
significantly altered by the biased noise propagating into the
model solution compared to the initial case with random noise.
In particular, the mean of the biased-noise contribution in model
space no longer is zero. The great potential of the GIP approach
therefore lies in the fact that one is able to specifically quantify
the contribution of systematic data errors in model space. It will
thus be increasingly important to have good estimates for such
uncertainties available in future.

In addition to investigating the effects of the biased noise on
the mean model, we looked at the (co-)variance of model parame-
ters. In case of random noise, the SOLA B-G tomographic inver-
sion scheme can provide the individual model uncertainties directly,
which is not possible any more in case of systematic errors. Future
research needs to be directed towards understanding how to in-
clude the model covariance information—that can be obtained with
the GIP approach—in geodynamic simulations. In other words, the
uncertainty in the initial seismic data needs to be systematically
explored in future geodynamic modelling efforts. For example, for
the retrodictions using geodynamic adjoints, it will be important
to provide estimates of the present-day thermodynamic state of the
mantle in a statistically meaningful manner.
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SUPPORTING INFORMATION

Supplementary data are available at G.JI online.

Figure S1. Difference between the noise-free GIP model and the
tomographically filtered model (i.e. based on R,,). As noted in the
main text, both models should formally be equivalent. The dif-
ference results from two effects: (1) The reparametrization that is
necessary to compute the tomographically filtered model and (2) the
use of ray-theory (instead of finite-frequency theory, underlying the
data sensitivity matrix G of SOLA-Z16) to compute the synthetic
data that is needed to compute the GIP model.

Figure S2. Difference in crustal thickness between models
CRUST1.0 and CRUST2.0 for the spherical harmonics degree s=1.
This signal contributes (together with the shape of the tomographic
grid, the way G acts on the input data and the source-receiver
configurations of the tomographic data set) to the sharp contrast in
the biased-noise GIP model close the Date Line in the depth range
between 530 and 660 km in Fig. 6 of the main text.

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

APPENDIX: THE GEODYNAMIC MODEL
N16-EB16

For N16-EB16, mantle circulation was modelled using the parallel
finite element code TERRA (Bunge & Baumgardner 1995; Bunge
etal. 1996, 1997; Bunge & Richards 1996), which solves the conser-
vation equations for mass, energy and momentum at infinite Prandtl
number and very small Reynolds number (no inertial forces) in a
spherical shell. A numerical mesh of more than 80 million finite
elements was used to achieve a high resolution, which is a pre-
requisite for modelling global mantle flow at earth-like conditions.
Large-scale flow structures are linked to the history of surface plate
motions back to 230 Ma as given by the global Earthbyte model
of Miiller et al. (2016). For the CMB, a free-slip (no shear-stress)
boundary condition was applied as well as a relatively high heat-
flux of 12 TW (about 35 per cent of the surface heat flow), which
is achieved by setting the CMB temperature to 4200 K. Except for
the plate motion history model (and a minor change in the viscosity
profile), model N16-EB16 is the same as model S09-M2 from Schu-
berth et al. (2009b), which was deliberately set up such as to feature
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a minimum set of assumptions; that is, it represents a simple, yet
sufficiently realistic, model of the mantle general circulation while
complexity is reduced to a minimum. A variety of studies have
shown that such simple models of mantle flow are compatible on
statistical grounds with a range of observations (e.g. tomographic
images, seismic body wave traveltime residuals, the geoid as well as
true polar wander estimates; Schuberth ez al. 2009a, 2012; Schaber
et al. 2009; Davies et al. 2012; Koelemeijer et al. 2018). The seis-
mic heterogeneity corresponding to model N16-EB16 is obtained
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by post-processing its temperature field using the thermodynamic
mineralogical software framework MMA-EoS (Chust et al. 2017)
and the assumption of a pyrolite composition. MMA-EoS evaluates
phase equilibria and thermodynamic properties of multicomponent
systems by Gibbs energy minimization. In addition, the seismic ve-
locities derived from the thermodynamic model were corrected for
the effects of anelasticity following Stixrude & Lithgow-Bertelloni
(2007). For further details on the model setup the reader is referred
to Nerlich ez al. (2016).
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