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S U M M A R Y 

A major challenge in seismic tomography consists in quantifying and representing model 
resolution and uncer tainty, par ticularly at global scales. This information is crucial for inter- 
pretations of tomographic images and their technical application in geodynamics. Ho wever , 
due to large computational costs, there have been onl y fe w attempts so far to coherently 

anal yse the spatiall y v arying resolving power for a complete set of model parameters. Here, 
we present a concept for an ef fecti ve e v aluation and global representation of the 3-D resolu- 
tion information contained in a full set of averaging kernels. In our case, these kernels are 
constructed using the ‘Subtracti ve Optimall y Localized Averages’ (SOLA) method, a variant 
of classic Backus-Gilbert inversion suitable for global tomography. Our assessment strategy 

incorporates the following steps: (1) a 3-D Gaussian function is fitted to each averaging kernel 
to measure resolution lengths in different directions and (2) we define a classification scheme 
for the quality of the averaging kernels based on their focus with respect to the estimated 

3-D Gaussian, allowing us to reliably identify whether the inferred resolution lengths are 
robust. This strategy is not restricted to SOLA inversions, but can, for example, be applied 

in all cases where point-spread functions are computed in other tomo graphic frame works. 
Together with model uncertainty estimates that are derived from error propagation in the 
SOLA method, our concept reveals at which locations, resolution lengths and interpretations 
of model values are actually meaningful. We finally illustrate how the complete information 

from our analysis can be used to calibrate the SOLA inversion parameters—locally tunable 
target resolution kernels and trade-off parameters—without the need for visual inspection of 
the individual resulting averaging kernels. Instead, our global representations provide a tool for 
designing tomographic models with specific resolution-uncertainty properties that are useful 
in geodynamic applications, especially for linking seismic inversions to models of mantle 
flow. 
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1  I N T RO D U C T I O N  

Global seismic tomography is the primary technique for revealing 
the physical structure of the deep Earth. The first tomographic mod- 
els of the Earth’s mantle, developed more than four decades ago, 
have mainly been concerned with mapping seismic heterogeneity 
at spherical harmonic degrees of 6–8; that is, at wavelengths of 
thousands of kilometres (Sengupta & Toks öz 1976 ; Aki et al. 1977 ; 
Dziewonski et al. 1977 ). Over the years, the resolution of global 
tomographic images has steadily been improving by the general 
increase in data coverage, by exploitation of data sets with com- 
plementary sensitivity, as well as through advanced forward and 
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urther intricacies arise from complex non-linear wavefield effects
nd trade-offs between physical parameters (e.g Hung et al. 2001 ;
avier et al. 2004 ; Zhang & Shen 2008 ; Mercerat & Nolet 2012 ;
chuberth et al. 2015 ; Koroni et al. 2022 ). The continuing desire

n tomographic studies to increase resolution beyond the current
imits is not an end in itself, but for global applications moti v ated
y the estimated thickness of the thermal boundary layers of the
antle and the associated expected size of slabs and plumes. In

ight of such geodynamic considerations, an accurate retrie v al of
eterogeneity at spatial scales of ∼100 km and less is crucial for
ubsequent quantitative inferences in studies of the lower mantle
e.g. Schuberth et al. 2009b ; Koelemeijer et al. 2018 ; Choblet et al.
023 ; Richards et al. 2023 ), reconstructed time evolution of man-
le flow (e.g. Bunge et al. 2003 ; Spasojevic et al. 2009 ; Shephard
t al. 2010 ; Horbach et al. 2014 ; Colli et al. 2018 ; Ghelichkhan
t al. 2021 ) and surface dynamic topography (e.g. Davies et al.
019 , 2023 ). In addition to the dynamically inherent size of thermal
nomalies, variations in mineral phase assemblage and chemical
omposition likely occur on even shorter scales (e.g. Stixrude &
ithgow-Bertelloni 2007 ; Papanagnou et al. 2022 ). 
Despite the great progress in global seismic tomography, rela-

i vel y fe w studies addressed explicitl y the problem of quantifying
he spatiall y v ariable resolving power of a gi v en inv ersion (e.g.
oschi 2003 ; Ritsema et al. 2004 ; Soldati et al. 2006 ; Ritsema et al.
011 ; Koelemeijer et al. 2016 ; Simmons et al. 2019 ). Those stud-
es have in common that their tomographic systems are based on a
inearization of the (weakly) non-linear problem, such that the quan-
ification of resolution is straightforward from a theoretical point of
iew. This requires the computation of the resolution matrix, which
llows for a complete characterization of the underlying effects of
mperfect data coverage and regularization. Moreover, the linear
ature of the solution lends itself to practical applications where
imited resolution is a critical aspect of quantitative model interpre-
ation. An example for this is tomographic filtering of geodynamic
arth models, which is a necessary step to obtain fair and consistent
omparisons between these independent theoretical predictions of
resent-day seismic heterogeneity and the tomographically imaged
tructures (e.g. M égnin et al. 1997 ; Ritsema et al. 2007 ; Schuberth
t al. 2009a ; Nerlich et al. 2016 ; Simmons et al. 2019 ; Freissler
t al. 2020 ). To gether with the posterior cov ariance matrix, which
ncludes the variances and correlations of model parameters, the
on-uniqueness and quality of the tomographic solution can be
ully appraised (e.g. Nolet 2008 ; Simmons et al. 2019 ). 

For non-linear systems, in contrast, a complete formal quantifica-
ion of resolution and uncertainty is often not viable in practice. In
ull wav eform inv ersions based on numerical wavefield simulations
nd adjoint techniques (e.g. Igel et al. 1996 ; Pratt 1999 ; Fichtner
t al. 2009 ; Tape et al. 2009 ; Colli et al. 2013 ; Krischer et al. 2018 ;
a et al. 2022 ; Rodgers et al. 2022 ), there is still a gap between the

elative wealth of information in the data and the available tools to
ssess the general non-uniqueness, especially in global models. One
ossibility to approach this problem is Bayesian inference (Taran-
ola 2005 ) in order to elegantly deal with the non-linearity. Ho wever ,
robabilistic approaches that rely on sheer random sampling of the
osterior probability density function are out of reach for global
cale applications due to the high computational costs of repeatedly
olving the forward problem in such anal yses. Se veral other strate-
ies have thus been proposed to address this issue, which mostly
nvolve an approximation of the Hessian matrix for the misfit func-
ion in the vicinity of the ‘optimal’ model. This is moti v ated b y the
nsight that the Hessian matrix may be exploited in a local sense as
he inverse of the posterior model covariance (e.g. Tarantola 2005 ;
ui-Thanh et al. 2013 ; Liu et al. 2021 ). It allows for some practical
nferences, such as in extremal bounds analysis (Fichtner 2010 ),
r for an efficient exploration of the model nullspace (e.g. Deal &
olet 1996 ; Liu & Peter 2020 ; Fichtner et al. 2021 ). Hessian-vector
roducts may also be used to compute local point-spread functions
e.g. Fichtner & Trampert 2011 ; Fichtner et al. 2013 ) that are equiv-
lent to the columns of the resolution matrix in a linear framework.
o wever , except for point-spread function tests for a few individual

ocations in the full-waveform models GLAD-M15 (Bozda ̆g et al.
016 ) and GLAD-M25 (Lei et al. 2020 ), these sophisticated meth-
ds have found only limited usage in global scale applications so
ar. 

It must be noted that even in the linear case, computing formal
esolution and uncertainty is a formidable challenge (e.g. Rawlinson
t al. 2014 ). Stochastic techniques may yield specific characteristics
f the resolution matrix, such as depth-dependent average resolu-
ion lengths (Trampert et al. 2013 ) or the main diagonal elements
MacCarthy et al. 2011 ). The diagonal entries give an indication of
he resolvability at the parameter location of interest, while reso-
ution lengths characterize the impact range of off-diagonal entries
epresenting interparameter trade-offs. More detailed information
an be extracted, for example by a statistical resolution matrix (An
012 ), or a stochastic estimation of point-spread function param-
ters, which can in turn be applied to both linear and non-linear
rob lems (F ichtner & Leeuwen 2015 ). It is also possib le in large-
cale problems to use direct approaches for computing the resolu-
ion matrix that involve efficient numerical strategies (Boschi 2003 ;
oldati et al. 2006 ; Bogiatzis et al. 2016 ). Alternati vel y, practical
pproximations can be made to estimate both the resolution matrix
nd the posterior covariance (e.g. Nolet et al. 1999 ; Simmons et al.
019 ). 

A straightforward method to compute directly the resolution as
ell as uncertainty can be found in the seminal work by Backus
 Gilbert ( 1967 , 1968 , 1970 ). In Backus–Gilbert theory, the es-

imates of individual model parameters can be interpreted as lo-
alized spatial averages around a given target location. In contrast
o the more commonly used linear methods in tomography, which
ften use Tikhonov regularization for norm damping, no a priori
onstraints on model values need to be prescribed that may bias
odel amplitudes. Instead, a certain control can be exerted on the

rade-off between a fav ourab le spatial structure of averaging kernels
that determine resolution) and the amount of data errors propagat-
ng into the averages as model uncertainties (Backus & Gilbert
970 ). 

A variant of the Backus–Gilbert method, called Subtractive Opti-
ally Localized Averages (SOLA), was introduced to global seismic

omo graphy b y Zaroli ( 2016 ). Originall y for mulated and ter med
OLA by Pijpers & Thompson ( 1992 , 1994 ) for 1-D inversions

n helioseismology, the method may have been discovered indepen-
entl y b y se veral authors in dif ferent contexts (e.g. Oldenburg 1981 ;
ouis & Maass 1990 ). In geophysics, it was further adapted for solv-

ng discrete and continuous 2-D and 3-D large-scale tomographic
roblems (Zaroli et al. 2017 ; Zaroli 2019 ) and has since been ap-
lied to surface wave tomography (Latallerie et al. 2022 ; Amiri
t al. 2023 ), normal modes (Restelli et al. 2024 ), and modelling the
adial magnetic field at the core-mantle boundary (Hammer & Fin-
ay 2019 ). The great advantage of the SOLA method compared to
he classic Backus–Gilbert formulation arises from the implemen-
ation of target kernels with prescribed finite size, which specify
he volume around the specific parameter location in which the in-
ersion shall provide the spatial average of the model values. The
arget k ernels mak e it possible to provide a priori information on
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the expected local resolution length scales (i.e. they allow for po- 
tentially exerting a rather direct control on the final resolution), 
while the so-called trade-off parameter moderates error propaga- 
tion. Moreover, the SOLA method enables perfectly parallel com- 
putations of the model values as well as of the averaging kernels 
and propagated uncertainty. So far , ho wever , there is no definite 
method or recipe for the automatic selection of the SOLA inversion 
parameters, namely the size of the individual target kernels and the 
particular choice for the trade-off parameters, throughout a com- 
plete model. In global seismic tomography, such a strategy would 
be particularly helpful due to the highly inhomogeneous data cover- 
age, leading to locally different quality of the tomographic solution. 
The remaining issue in that regard is the lack of tools for assessing 
the entire set of averaging kernels in a 3-D setting. Fur ther more, 
even if one can compute with SOLA, or any other tomographic 
method, a complete set of averaging kernels (or point-spread func- 
tions), one will never be able to visually calibrate and analyse each 
one indi viduall y. In other words, it is still a challenge in itself to 
ef fecti vel y represent and communicate the resolution information 
(Trampert 1998 ). 

The objective of this paper is therefore twofold: First, we want 
to explore for a pre viousl y used tomographic data set, how differ- 
ent inversion parameter choices in the SOLA method applied to 
global S -wave tomography lead to different local resolving power 
and model uncertainties. To this end, we systematically test several 
combinations of target kernels and trade-off parameters spanning 
the range from low-resolution to high-resolution inversions, each 
with varying degrees of resulting model uncertainty . Secondly , in 
order to ef fecti vel y anal yse the results from different inversion pa- 
rameter combinations, we develop a combined analysis of the res- 
olution length scales in 3-D together with a specific test of the 
adequateness of the method for estimating these lengths. This al- 
lows us to represent the practicall y rele v ant information on resolu- 
tion in the SOLA averaging kernels on a global scale, which can 
then be inspected alongside the uncertainty propagating into the 
model. 

We start with a brief re vie w of the SOLA method and describe 
the general tomographic system that we use in Section 2 and Ap- 
pendix A . Computational aspects regarding the efficient solution of 
the linear SOLA system are described in Appendix B . Section 3 
provides examples of typical SOLA averaging kernels for differ- 
ent inversion choices and moti v ates the de v elopment of a strate gy 
for estimating resolution lengths with a Gaussian approximation in 
Section 4 . Important for this analysis will be to test this Gaussian 
appro ximation, for w hich we introduce the concept of ‘focus’ that 
allows us to define different quality categories for the averaging 
kernels. In Section 5 , we provide global maps of tomographic reso- 
lution lengths in specific but globally coherent directions, estimated 
in a robust manner using the combined concepts of resolution and 
focus, together with the propagated uncertainty . Finally , we discuss 
the impact of the different possible choices of inversion parameters 
in the SOLA method in light of possible optimal design towards 
practical applications. 

2  T  O M O G R A P H I C  M E T H O D O L  O G Y  

2.1 Review of the SOLA Backus–Gilbert method 

The main insight of Backus–Gilbert theory is relati vel y straightfor- 
w ard: gi ven a finite amount of data, one can generally not retrieve 
exact point estimates of the Earth model parameters m ( r ) of interest. 
Nevertheless, it is often possible to infer at a model target location 
r ( k ) a unique weighted average ˆ m 

( k) , such that 

ˆ m 

( k) = 

∫ 
V 

A 

( k) ( r ) m ( r ) d 3 r , (1) 

where A 

( k ) ( r ) is the averaging or resolving kernel (Backus & Gilbert 
1968 , 1970 ). Classically, the objective is to obtain an optimally 
localized averaging kernel that approximates a delta peak at r ( k ) , 
constructed from a linear combination of N data(-sensitivity) ker- 
nels K i ( r ) . In the linear case, the data kernels K i ( r ) relate model
parameters m ( r ) to the measured data d i in the form of 

d i = 

∫ 
V 

K i ( r ) m ( r ) d 3 r + n i , i = 1 , ..., N , (2) 

where the data d i include an error (or noise) component n i that 
is assumed here to be independent and normally distributed with 
zero mean and variance σ 2 

d i 
. To compute global sets of averaging 

kernels A 

( k) ( r ) , we use the SOLA method (Zaroli 2016 ) that solves 
the following optimization problem: 

min 
x ( k) 

∫ 
V 

(
A 

( k) ( r ) − T ( k) ( r ) 
)2 

d 3 r + η2 σ 2 
ˆ m 

( k) (3) 

subject to 
∫ 

V 
A 

( k) ( r ) d 3 r = 1 , (4) 

where T 

( k ) ( r ) is a target (resolution) kernel, η the trade-off parameter 
and σ 2 

ˆ m 

( k) the model variance from error propagation. The solution of 
eqs ( 3 ) and ( 4 ) yields a set of coefficients x ( k ) that can be interpreted 
as (the k th row of) a generalized inverse operator and determines 
the estimated average ˆ m 

( k) , the averaging kernel A 

( k ) ( r ) and the 
model uncertainty from error propagation σ ˆ m 

( k) (plus covariance if 
desired): 

x ( k ) =⇒ 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∑ N 
i= 1 x 

( k ) 
i d i −→ ˆ m 

( k ) ∑ N 
i= 1 x 

( k ) 
i K i ( r ) −→ A 

( k ) ( r ) (∑ N 
i= 1 

(
x ( k ) i 

)2 (
σd i 

)2 
)1 / 2 

−→ σ ˆ m k . 

(5) 

The unimodular constraint in eq. ( 4 ), which is also implied by the 
classical Backus–Gilber t theor y, ensures that ˆ m 

( k) represents a phys- 
ical volumetric average. In the hypothetical presence of a constant 
model value around the target location r ( k ) , the estimated model 
amplitude would thus not be artificially scaled. Most important, the 
introduction of a target kernel T 

( k ) ( r ) in the SOLA method means 
that, instead of an ideal delta peak, as in the original Backus–Gilbert 
formulation, a practically more relevant spatial function is under- 
lying the construction of the averaging kernels. Different choices 
of T 

( k ) ( r ) then allow us to use information on the expected local 
resolution by varying the shape and weighting present in the target 
kernels. At the same time, the trade-off parameter η ensures that the 
fit to the target kernel and the variance of the propagated errors in 
the inferred averages can be controlled. Both T 

( k ) ( r ) and η may be 
selected with a subjective preference, however with the benefit that 
the inversion results include complete information on resolution and 
uncertainty. Note also that each choice of η and T 

( k ) ( r ) has a specific 
impact on all local model properties (for details on the SOLA in- 
versions used here, including computational aspects to solve the 
system ef ficientl y for all model parameters, see Appendices A 

and B ). 
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Figure 1. Left-hand side: cross-section of a target kernel with horizontal and vertical half widths w H/V = 600/300 km. The cyan ellipse marks the contour line 
at half maximum. Right-hand side: cross-section for an averaging kernel at the same target location. To get an idea of the fit to the target kernel, we also plot 
the target ellipse at half maximum. 

Table 1. SOLA inversion parameters used in this study. To facilitate discus- 
sion, a high resolution (HR) and a low resolution (LR) setup are introduced. 
Horizontal and vertical target resolutions w H/V correspond to the half widths 
at half maximum of the Gaussian target kernels (see eq. 6 ). 

Target resolution w H/V Trade-off parameter η
(horizontal/vertical) 

300/200 km η1 = 5 
600/300 km η2 = 10 
900/400 km η3 = 30 

High resolution (HR) setup : 300/200 km, η1 . 
Low resolution (LR) setup: 900/400 km, η3 . 
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.2 Resolution length and choice of tar g et kernels 

o obtain robust resolution information from the SOLA averaging
ernels, Pijpers & Thompson ( 1994 ) calibrated a practical thresh-
ld value based on visual inspection of their target fit. This way,
hey were able to distinguish well-localized from non-localized 1-D
veraging kernels and could use the prescribed target kernel peak
idth to infer resolution lengths. This is however not directly ap-
licable in our case. In 3-D tomography, the fit of A 

( k ) to the target
esolution might be good in a specific direction and poor in any
ther one. Therefore, no simple choice of target kernel T 

( k ) and
rade-off parameter η is reducing equally well the kernel difference
n all regions. Instead, additional information on possible shifts and
arying length scales in different directions is required to assess the
veraging kernels (see Section 4 ). Ho wever , with the choice of a
pecific target T 

( k ) , one can still promote a desired shape and size of
he A 

( k ) prior to the inversion. 
For this purpose, an intuitive parametrization for the target ker-

el T 

( k ) is gi ven b y 3-D Gaussian functions that have been used
re viousl y in seismolo gy for anal ysing tomo graphic resolution (see
.g. Fichtner & Trampert 2011 ; An 2012 ). The kernels are centred
t the target locations r ( k ) , which correspond to the points in a to-
og raphic g rid (see Section 2.3 ) By using a local Car tesian frame
ith origin at r ′ ( k ) (the prime indicates the change of basis), we can

lign the principal axes of the Gaussian function along the horizon-
al and vertical directions; that is they are oriented along tangents
n the latitudinal and longitudinal direction and along the radius in
he vertical direction, with respect to r ′ ( k ) . Our 3-D Gaussian target
ernels are then given by 

T ( k) ( x ′ , y ′ , z ′ ) = 

a 3 √ 

(2 π ) 3 · w x ′ · w y ′ · w z ′ 

× exp 

[ 

−a 2 

2 

( 

x ′ 2 

w 

2 
x ′ 

+ 

y ′ 2 

w 

2 
y ′ 

+ 

z ′ 2 

w 

2 
z ′ 

) ] 

, (6) 

here w x ′ ,y ′ ,z ′ are the half widths at half maximum and x ′ , y ′ and
 

′ refer to the axes in the local basis. Examples for a target ker-
el T 

( k ) and a resulting averaging kernel A 

( k ) are visualized in
ig. 1 . We specify the w x ′ ,y ′ in horizontal ( w H ) and w z ′ in verti-
al direction ( w V ) of T 

( k ) as target resolution lengths. As a remark,
heir relation to the standard deviation is w = a · σ , where a =
 

2 ln (2) ≈ 1.17. Using w is particularly useful because it allows
ne to relate the kernel width to its maximum at the peak, which
acilitates comparisons of the volumetric change of various kernels
ith different peak amplitudes. We directly evaluate eq. ( 8 ) on the
iscrete tomog raphic g rid (see Section 2.3 ). In contrast to Zaroli
 2016 ), the T 

( k ) are here not strictly normalized, that is we do not
nforce 

∫ 
V T 

( k) ( r ) d 3 r = 1 . This is done deliberately in order to pre-
erve the Gaussian shape of T 

( k ) within the finite volume V of the
rid. 

For the SOLA inversions in this study, we take three variations
f T 

( k ) using Gaussian functions of pro gressi vel y larger horizontal
nd vertical target resolution lengths ( w H/V = 300/200, 600/300,
00/400 km). Along with this, we test 3 different values for the
rade-off parameter η ( η1 = 5, η2 = 10, η3 = 30; see also Table 1 ).
ncreasing values for η generally promote smaller model uncer-
ainty σ ˆ m 

( k) while deteriorating the fit of the averaging kernel A 

( k ) to
 

( k ) . The range of values of η was chosen empirically from a few
OLA inversions for all T 

( k ) in order to cover a range of tomograph-
call y rele v ant le vels for σ ˆ m 

( k) , resolution length scales and target
ts. 

.3 Tomog raphic g rid and data set 

ince we are interested in quantifying the impact of different in-
ersion parameter choices, we choose a global grid that can well
epresent the shape of averaging kernels down to all target length

art/ggae178_f1.eps


996 R. Freissler, B. S. A. Schuberth and C. Zaroli 

Figure 2. Left: Fibonacci grid on a sphere for the 530-660 km depth layer using the algorithm by Swinbank & Purser ( 2006 ). The nodes are the upper vertices 
of spherical triangular prisms that are constructed by Delaunay triangulation. Right: Histogram of internode distances for all 18 depth layers. The total amount 
of unique lateral node connections (i.e. the number of triangle edges) covered in the histogram is 447,567. The average distance is ∼224 km. 
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scales; that is, it covers at least the smallest target half widths w H/V 

= 300/200 km used here. In general, we follow the parametrization 
strategy of Zaroli ( 2016 ), where grid nodes are the upper vertices 
of triangular prisms based on a spherical Delaunay triangulation for 
several distinct depth layers across the entire mantle. For details, the 
reader is referred to Zaroli ( 2010 , 2016 ). In radial direction, we take 
the 18 depth layers from SOLA-Z16 (Zaroli 2016 ) that are between 
100-200 km thick, whereas in lateral direction, we use approxi- 
mately equidistant spherical Fibonacci grids following Swinbank & 

Purser ( 2006 ). In Fig. 2 the grid nodes of the layer at 530-660 km 

depth are shown as an example. To create a suitable realization of 
the Fibonacci grid, we empirically determine a specific amount of 
points for each layer such that the maximum distance of neighbours 
from the spherical Delaunay triangulation is less than 300 km. The 
distribution of the node distances across all layers is shown in a 
histogram in Fig. 2 . Minimum and average neighbour distances are 
about 176 km and 224 km, respecti vel y. In total, the grid includes 
153,323 grid nodes. 

As tomographic data set, we use the source-receiver configura- 
tions from the SOLA-Z16 model (Zaroli 2016 ) that include 79,765 
cross-correlation traveltime measurements for S and SS seismic 
phases at 22.5 s central period (Zaroli 2010 ). Sensitivities to shear- 
wav e v elocity perturbations are calculated using paraxial finite- 
frequency kernels (Dahlen et al. 2000 ). The coverage of the data 
set is particularly suitable for investigating the velocity structure 
at depths between 400 and 1710 km (Zaroli 2016 ). Ho wever , there 
are mainly two relevant regions that have different characteristic 
behaviour for resolution. At depths of ≈400–810 km the finite- 
frequency kernels for teleseismic S-waves have not bottomed out 
y et, thus finding suitab le linear combinations of the data to enhance 
resolution locally can be more difficult there. In contrast, at depths 
below ≈810 km, larger horizontal volumes are covered by the finite- 
frequency kernels, leading to a higher chance for crossing volumes 
of sensitivity. To effectively investigate the resulting averaging ker- 
nels, we therefore focus on two particular depth layers in this study 
(at 530–660 km, midpoint at 595 km and 1110–1310 km, midpoint 
at 1210 km depth) representing each situation. 

3  S O L A  AV E R A G I N G  K E R N E L S  

To first get a rough appreciation of the behaviour of the SOLA 

a veraging kernels, w e visually inspect some examples before we 
proceed with the global analysis of all kernels in Section 4 . To this 
end, we show kernel cross-sections for the different combinations 
(see Table 1 ) of trade-off parameters η and target kernels T 

( k ) that 
we introduced in Section 2.2 . 

3.1 Influence of data coverage 

A compilation of different averaging kernels is shown in Fig. 3 for 
two end-member combinations of T 

( k ) and η. They represent a high- 
resolution (HR) inversion with η1 ( = 5) and a target kernel size of 
w H/V = 300/200 km (Figs 3 a and d), and the contrary case of a 
lo w-resolution (LR) in version using η3 ( = 30) and a target size of 
w H/V = 900/400 km (Figs 3 b and c). Dashed ellipses defined by 
horizontal and vertical semi-axes w H and w V indicate the size of T 

( k ) 

for the particular inversion (as shown in Fig. 1 ). Data coverage is 
particularly good in the Nor ther n Hemisphere (top row in Fig. 3 ), 
where one can see that both HR and LR inversion setups lead to 
averaging kernels that are overall well localized and fit the shape of 
the target kernels. In Fig. 3 (b) using the LR setup for an averaging 
kernel centred below North America, one can still observe stronger 
positive amplitudes south of Hawaii outside the broader target re- 
gion. Poor data coverage in the Southern Hemisphere (bottom row 

in Fig. 3 ) typically leads to increased power in side lobes, reflecting 
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Figure 3. Lateral and vertical cross-sections for four different averaging kernels in regions of good and poor data coverage in the Nor ther n and Souther n 
Hemisphere, respecti vel y. Left- and right-hand panels show target locations at 595 and 1210 km depth, respecti vel y. (a) and (d) ‘High-resolution’ setup (HR), 
A 

( k ) for a trade-off parameter of η1 = 5 and target kernel T ( k ) with horizontal/v ertical e xtent of w H/V = 300/200 km. (b) and (c) ‘Low-resolution setup (LR)’, 
A 

( k ) for η3 = 30 and T ( k ) with w H/V = 900/400 km. The low-resolution setup leads to a preference of lower uncertainty σ ˆ m 

( k) by using a larger trade-off 
parameter η3 at the cost of a worse fit to the target resolution. The latter is marked by dashed ellipses (drawn at the half widths at half maximum w H/V of each 
T ( k ) ). Values of the averaging kernels are normalized with their respective maximum. Because our tomog raphic g rid is fine enough for the target length scales, 
it follows that for an almost ideal fit, the darkest red values at the cut-off of the colour scale would all be within the target ellipses. Black contour lines in the 
vertical cross-sections further indicate iso-surfaces at 1/2, 1/4, 1/8, 1/16 and 1/32 of the peak value. 
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he difficulty of fitting the target kernel with a locally incomplete
ata set. For example, the averaging kernel in Fig. 3 (c) for the LR
etup is hardly centred and apparently dominated by a subset of
nidirectional data kernels reaching to the surface between Kergue-
en Islands and Australia. On the other hand, the A 

( k ) in Fig. 3 (d)
ombines poor data coverage with the HR setup, leading again to
ore pronounced side lobes, but also to a good fit to the target for

he bulk of the averaging sensitivity. Fig. 3 already suggests that
he target kernel has a strong control on the resolution properties of
 

( k ) (as expected), and that poor data coverage, although making the
veraging kernels more prone to oscillatory behaviour, is not nec-
ssaril y pre venting one from fitting the target resolution. Although
eing barely visible here, ne gativ e values in the averaging kernels
o exist, but their amplitudes are mainly located outside the target
egion and are generally small. A more quantitative analysis taking
his into account is presented in the classification scheme that we
evelop in Section 4.2 . 

.2 Variable tar g et kernel and trade-off parameter 

hile Fig. 3 visualizes the consequences of variable data coverage,
e can also systematically exploit the capabilities of the SOLA
ethod and in vestigate ho w different choices of target kernel and
rade-of f parameter af fect A 

( k ) and the propagated uncertainty σ ˆ m 

( k) .
ig. 4 features such a set of alternati vel y possible averaging kernels,
orresponding to the target location and the low-resolution example
f Fig. 3 (c) in the Southern Hemisphere. Here, we focus on vertical
ross-sections in west–east direction; complementary figures for all
ross-sections and kernels can be found in the online supplementary
aterial . The different averaging kernels are organized in a matrix

ayout, going from smaller to larger target kernel sizes from top
o bottom and increasing values for the trade-off parameter η from
eft- to right-hand side. 

An increase in η leads to an increase in model uncertainty σ ˆ m 

( k) ,
hich is indicated in each cross-section in Fig. 4 , ranging from
.47 per cent for the HR setup, down to 0.03 per cent dln( v S ) for the
R setup. Likewise, at constant η and growing target kernel sizes,
odel uncertainties also decrease. None of the averaging kernels

xactly attains the maximum amplitude of their underlying T 

( k ) . At
 target size of w H/V = 300/200 km, for example, the maxima of the
orresponding A 

( k ) are off by more than a factor of 2. For larger tar-
et lengths, this difference is less sev ere. Ov erall, an unsatisfactory
isual fit of the averaging kernels to their respective target kernels
s observed, which can be ascribed here to a single finite-frequency
ernel that seems to dominate the averaging. A different situation
s shown in Fig. 5 . At this location, the data coverage is excellent,
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Figure 4. Influence of increasing the trade-off parameter and target kernel size on the averaging kernels for a region of relati vel y poor data coverage in the 
southern Indian Ocean, east of the Kerguelen Islands at 595 km depth. Left-hand side: lateral cross-sections of the target kernel T ( k ) with horizontal and 
v ertical e xtent w H and w V , respectiv ely, used for the inversion. Right-hand side: vertical cross-sections (west–east) of the resulting averaging kernels A 

( k ) for all 
combinations of η ( η1, 2, 3 = 5, 10, 30) and T ( k ) . Dashed ellipses indicate the size of T ( k ) with semi-axes of length w H and w V . The kernel values are normalized 
with their respective half maximum to facilitate comparisons. Model uncertainties σ ˆ m 

( k) are given in per cent dln( v S ). 

Figure 5. Influence of increasing the trade-off parameter and target kernel size for a region of excellent data coverage in the central United States at 1210 km 

depth. Same layout as Fig. 4 . 
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which leads to a suite of averaging kernels that are Gaussian-shaped 
for all parameter combinations tested. Peak amplitudes of the av- 
eraging kernels for the lowest value of the trade-off parameter are 
close to their respective target kernel value and only moderately 
drop as η is increased. Even at lower model uncertainties σ ˆ m 

( k) , the 
kernels also mostly retain localization and recover the target shape. 

art/ggae178_f4.eps
art/ggae178_f5.eps


Resolution in global seismic tomography 999 

 

b  

i  

i  

t  

o  

m  

l  

a

4

A  

t  

i  

s  

c  

e  

s  

p  

b  

i  

o  

o  

t  

t  

k

4

O  

f  

3  

l  

(

w  

l
i  

o  

c  

T  

W  

t  

a  

m  

G  

w  

c  

p  

f  

f  

i
 

t  

i  

f  

c  

i

T  

(  

t  

t  

d  

i  

l

a

u  

t  

t  

p  

a  

(  

t  

m  

r  

a  

l  

F  

o  

i  

i  

r  

m  

p  

G

a  

e  

w  

t  

p  

t  

f  

∼  

fi  

t  

a  

i  

w  

t  

f

4

F  

t  

t  

m  

v  

m  

d  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/238/2/992/7680010 by guest on 17 July 2024
It is clear that a visual inspection of the averaging kernels might
e insufficient to judge on their quality and cannot be performed
ndi viduall y for every model parameter. Also, it does not provide
nformation on the length scales of resolution that need to be quan-
ified for a more thorough analysis. This raises the question of how
ne could assess the quality and nature of the A 

( k ) in a consistent
anner, such that sensible estimates and comparisons of resolution

engths can at best be made for the entire set of averaging kernels
ll together. 

 Q UA N T I F Y I N G  R E S O LU T I O N  

 general problem for inferring meaningful information on resolu-
ion in seismic tomography is that one cannot guarantee that every
ndividual averaging kernel is localized and reasonably Gaussian-
haped for a given selection of inversion parameters. Therefore, we
annot reliably use the prescribed size of the target kernels T 

( k ) to
xamine resolution on a global scale. Instead, resolution lengths
hould be quantified consistently for all averaging kernels and inde-
endent of the respective target form of T 

( k ) . In addition, it needs to
e determined whether the resulting length estimates are meaningful
n the given context, while bearing in mind the possible complexity
f the averaging kernels. A robust quantification and interpretation
f the resolution information contained in tomographic inversions
hus requires two individual tools: the concept of resolution lengths
ogether with a classification scheme for the quality of the averaging
ernels. 

.1 Gaussian estimates and resolution lengths 

wing to our choice of target kernels in the form of 3-D Gaussian
unctions, it is useful to independently determine also a best-fitting
-D Gaussian for each averaging kernel in order to quantify reso-
ution lengths. A general 3-D Gaussian parametrization is given by
see also Fichtner & Trampert 2011 ) 

˜ g ( k) ( r ′ ) = 

N 

∗a 3 √ 

(2 π ) 3 det C 

× exp 

[
−a 2 

2 
( r ′ − μ′ ) T C 

−1 ( r ′ − μ′ ) 
]

, (7) 

here the position r ′ and mean vector μ′ are defined in the same
ocal Cartesian coordinate system used for the target kernel T 

( k ) 

n eq. ( 6 ). Any non-zero mean location μ′ implies that the centre
f mass of the averaging kernel is displaced from the target lo-
ation (this is called ‘distortion’ by Fichtner & Trampert 2011 ).
he scaling factor N 

∗ represents the total mass of the Gaussian.
e include N 

∗ to facilitate finding suitable resolution length es-
imates (given by the half widths w x ′ ,y ′ ,z ′ ) that better reflect the
veraging volume around the main peak of A 

( k ) . The covariance
atrix C describes the spatial extent and rotation/tilting of the
aussian in the local framework and incorporates the half widths
 x ′ ,y ′ ,z ′ and parameters for correlation ρx ′ y ′ , ρx ′ z ′ and ρy ′ z ′ . The

omplete set of parameters for estimation would thus be given by
˜ 
 = ( N 

∗, μx ′ , μy ′ , μz ′ , w x ′ , w y ′ , w z ′ , ρx ′ y ′ , ρx ′ z ′ , ρy ′ z ′ ) . By using the
ull set of correlation parameters, one could therefore also extract
rom the averaging kernels minimum–maximum resolution lengths
n any necessary direction. 

For global comparisons of averaging length scales with respect
o the uncorrelated target kernels that w e ha ve chosen, it might
n fact be simpler for interpretation, but not less informative, to
ocus only on specific directions. To this end, we can neglect the
orrelations and simplify eq. ( 7 ) to get a Gaussian parametrization
n the following form: 

ˆ g ( k) ( x ′ , y ′ , z ′ ) = 

N 

∗a 3 √ 

(2 π ) 3 · w x ′ · w y ′ · w z ′ 
×

exp 

[ 

−a 2 

2 

( 

( x ′ − μx ′ ) 2 

w 

2 
x ′ 

+ 

( y ′ − μy ′ ) 2 

w 

2 
y ′ 

+ 

( z ′ − μz ′ ) 2 

w 

2 
z ′ 

) ] 

. (8) 

he reduced set of parameters for estimation is given by p =
 N 

∗, μx ′ , μy ′ , μz ′ , w x ′ , w y ′ , w z ′ ) , from which we obtain informa-
ion on the shift of the centre of mass μ′ of A 

( k ) away from the
arget location and resolution lengths w x ′ ,y ′ ,z ′ in the three directions
efined by the local Cartesian frame. Fitting is performed by us-
ng the Lev enberg–Mar quardt algorithm for solving the weighted
east-squares problem 

rg min 
p 

∑ 

j 

V j ( A 

( k) 
j − ˆ g ( k) ( r ′ j ; p )) 2 , (9) 

sing the volume V j associated with each j th grid node. For a prac-
ical initial guess, we use the specifications of the corresponding
arget kernel T 

( k ) at the location of interest. As a remark, other
arametrizations are possible that could approximate even more
ccurately the shape of averaging kernels. Fichtner & Trampert
 2011 ) pointed out that Gram–Charlier expansions can be used
o that end. These make it possible to approximate functions, or

ore strictly distributions, like the averaging kernels from a se-
ies of their cumulants (e.g. mean, variance, third central moment
nd more complicated quantities at higher orders). While this can
ead to more accurate approximations of the complete function,
ichtner & Trampert ( 2011 ) suggested that from a practical point
f view, these expansions might not al wa ys offer more physically
nterpretable information than the plain Gaussian approximation
tself. Ho wever , these and other suitable parametrizations may be
equired for analysing functions that are vastly different across the
odel domain, such as kernels for the trade-off between different

hysical model parameters (which is not the case for the A 

( k ) with
aussian targets T 

( k ) in this study). 
The difference between the two Gaussian parametrizations ˆ g ( k) 

nd ˜ g ( k) is visualized schematically in Fig. 6 . The semi-axes of the
llipse at half the maximum are the estimated resolution lengths
 x ′ ,z ′ ( + w y ′ in the actual 3-D ellipsoid), that can be compared to

he target widths w H/V . These estimates, as well as the remaining
arameters in p , may dif fer slightl y between the two parametriza-
ions. The largest mean absolute deviation between ˆ g ( k) and ˜ g ( k) we
ound for any length estimate and given parameter combination is
16 km. Ho wever , in case of kernels with reasonably good target
ts these differences are small, and we noticed that on global scales,

he choice between uncorrelated and correlated Gaussian has only
 minor effect (see Supporting Information ). A remaining problem
s the identification of complex averaging kernels that cannot be
ell approximated by either of the Gaussian parametrizations. We

herefore propose a practical strategy to deal with this issue in the
ollowing section. 

.2 Kernel classification based on the ‘focus’ 

or a robust interpretation of the resolution information, one needs
o know for every target location whether the Gaussian-based es-
imates of resolution length actually relate well to the shape and

ass of the averaging kernel (i.e. the integral over A 

( k ) for a given
olume). Since the centre of ˆ g ( k) is an estimate of the centre of
ass in A 

( k ) , the (main) peak regions of both functions should by
esign overlap. If we can measure, by comparison of the masses of

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae178#supplementary-data
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Figure 6. Concept for our resolution analysis and definition of the ‘focus’ for an averaging kernel A 

( k ) parametrized with a 3-D Gaussian. Yellow and blue 
indicate an uncorrelated and correlated version of the Gaussian, respecti vel y. Filled ellipses at the half widths at half maximum ( w x ′ /y ′ /z ′ ) define estimated 
resolution lengths, while the larger, unfilled ellipses at the half width at one-eighth maximum define the region used for computing the focus ξ (see Section 4.2 ). 
In contrast to the simpler, uncorrelated Gaussian ˆ g ( k) , the Gaussian ˜ g ( k) with correlation includes rotation with respect to the axes of the local Cartesian frame 
centred at the target location. This could be used for estimating minimum–maximum resolution lengths w min/max , which ho wever , w ould not lie along the same 
directions for all kernels. 
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the two kernels, if this is actually true for a given target location, it 
w ould allo w us to quickly identify for which choices of the trade- 
off parameter η and target resolution the resulting averaging kernels 
de viate significantl y from a Gaussian. 

To get a diagnostic tool for this specific problem, we develop in 
the following a global classification scheme for the averaging ker- 
nels, measuring their quality with respect to the best-fitting Gaussian 
ˆ g ( k) . First, it is necessary to define the actual volume of the peak 
region of ˆ g ( k) , for which we can draw inspiration from the simpler 
1-D case. For a 1-D Gaussian function, 76 per cent of the total area 
lies within ±w , the half width at half maximum (our measure for 
resolution length), around the mean. In higher dimensions, ho wever , 
this well-known concept does not hold. In fact, the integrated mass 
of ˆ g ( k) within the 3-D ellipsoid given by the three half widths at half 
maximum w x ′ ,y ′ ,z ′ (respecti vel y, the inner ellipse in Fig. 6 ) defined 
by { (

x ′ − μx ′ 

w x ′ 

)2 

+ 

(
y ′ − μy ′ 

w y ′ 

)2 

+ 

(
z ′ − μz ′ 

w z ′ 

)2 

≤ 1 

} 

(10) 

covers merely ≈29 per cent (if w x ′ = w y ′ = w z ′ ) of the total mass 
of the Gaussian. The exact value also depends on the specific half 
widths in each direction, and thus may vary for different ˆ g ( k) . Since 
the SOLA kernels determine average values in volumetric regions, 
we consider 29 per cent of the total mass to be insufficient to properly 
describe the characteristics of A 

( k ) . Therefore, we aim to reproduce 
the 1-D convention, with roughly 76 per cent of the total mass, for 
the 3-D situation here as well. This can be achieved by scaling up 
the ellipsoid in eq. ( 10 ) and replacing the w x ′ ,y ′ ,z ′ with the corre- 
sponding half widths at one-eighth maximum from the best-fitting 
Gaussian ̂  g ( k) (the outer ellipses in Fig. 6 ). In practice, we determine 
the ellipsoid by evaluating ˆ g ( k) directly on the tomog raphic g rid and 
including all nodes that hold values larger than one-eighth of the 
maximum (taken from the continuous function). The absolute mass 
ˆ g ( k) 

in inside this spatial domain E 

( k ) then approximately represents 76 
per cent of the total mass ( ̂ g ( k) 

in + ˆ g ( k) 
out ). The exact numeric value, 

ho wever , may still differ by a few per cent of the total mass depend- 
ing on the size and location as well as on the error from e v aluation 
on a discrete g rid. Having for mulated an expectation on the volume 
and mass ̂  g ( k) 

in of the peak region, we can then separate the mass con- 
tribution of the associated averaging kernel A 

( k ) within and outside 
the ellipsoid E 

( k ) : ∫ 
r ′ ∈ E ( k) 

A 

( k) ( r ) d 3 r ︸ ︷︷ ︸ 
A 

( k) 
in 

+ 

∫ 
r ′ / ∈ E ( k) 

A 

( k) ( r ) d 3 r ︸ ︷︷ ︸ 
A 

( k) 
out 

= 1 . (11) 
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Note again that the total mass of A 

( k ) is equal to 1 in the SOLA
ethod owing to the unimodular condition in eq. ( 4 ). Generally,

oth A 

( k) 
in and A 

( k) 
out include positive as well as ne gativ e kernel values.

o wever , the negative contributions to A 

( k) 
in were found to not exceed

–3 per cent for any averaging kernel that we computed. For more
han ∼80 per cent of all averaging kernels, negative values in A 

( k) 
in are

1 per cent and v anished completel y for ∼8–25 per cent (depending
n the specific T 

( k ) and η). We then define the ‘focus’ ξ of the
veraging kernel based on the mass ratio of A 

( k) 
in and ˆ g ( k) 

in as 

= 

( 

A 

( k) 
in 

A 

( k) 
in + A 

( k) 
out 

) 

/ 

( 

ˆ g ( k) 
in 

ˆ g ( k) 
in + ˆ g ( k) 

out 

) 

= 

A 

( k) 
in ( ̂ g ( k) 

in + ˆ g ( k) 
out ) 

ˆ g ( k) 
in 

. (12) 

he normalization with the total mass ( ̂ g ( k) 
in + ˆ g ( k) 

out ) of ˆ g ( k) within
he model domain allows one to take into account possible errors
hrough discretization (for the absolute values of ̂  g ( k) 

in ) and ellipsoids
 

( k ) that are intersected by the surface. Using these relative mass
ontributions is helpful because it makes ξ a uniform metric for
ll A 

( k ) . In case that the unimodular condition for A 

( k ) (eq. 4 ) is not
ulfilled, for example when using other kernels that are not derived
y a Backus–Gilbert type inversion, one should modify the focus ξ
nd normalize A 

( k) 
in also with the total mass of the averaging kernel

i.e. one should use the more general expression of ξ in eq. 12 ).
o finally classify the quality of the averaging kernels, we define 5
ategories for ξ : 

(i) ξ < 0.5, ‘Not Focused’ : 
 

( k ) is hardly focused and likely degraded by multiple peaks or
trong side lobes, often due to either individual finite-frequency
ernels dominating the averages or strong sensitivity in the upper
antle; 
(ii) ξ ≥ 0.75, ‘Sufficient (Suff.)’ : 

hreshold between acceptable and unacceptable kernel fit with re-
pect to ˆ g ( k) ; ensuring that all sufficient A 

( k) 
in are at least more con-

entrated inside the Gaussian ellipsoid E 

( k ) rather than outside of
t; 

(iii) 0.9 ≤ ξ < 1.1, ‘Good’ : 
eviation of A 

( k) 
in from the ideal case is less than 10 per cent; 

(iv) ξ = 1, ‘Ideal’ : 
elative mass contributions of A 

( k ) and ˆ g ( k) within ellipsoid E 

( k ) are
qual; 

(v) ξ ≥ 1.1, ‘Highly Focused’ : 
 

( k ) is more peaked, that is has significantly more mass within the
llipsoid E 

( k ) than ˆ g ( k) . 

This classification with the focus can be seen as a heuristic tool
or deciding on the quality of the kernels, since a relative redis-
ribution of the mass of A 

( k ) to outside the peak region is clearly
ssociated with a decrease in ξ . Therefore, although these focus
ategories do not fully characterize the detailed shape of a spe-
ific av eraging kernel, the y yet provide a basic way to test whether
he Gaussian approximation is locally plausible. The classification
cheme also gives an indication for the fit to T 

( k ) , if ̂  g ( k) is not shifted
r broadly stretched beyond the target resolution length. This is be-
ause averaging kernels that agree well with ˆ g ( k) tend to be also
entred. 

.3 Examples for resolution quantification and 

lassification 

efore we apply the previously introduced methods on a global
cale (see Section 4.4 ), we demonstrate more explicitly how they
ct together to describe resolution. Therefore, instead of averaging
ernels that are obviously Gaussian-shaped (see Fig. 5 ), we consider
wo less-intuitive examples in Fig. 7 . Again, we use a high-resolution
nd a low-resolution setup (Figs 7 a and b, respecti vel y). Unlike the
veraging kernels, the functions ˆ g ( k) are defined beyond the mantle
omain V , and the associated Gaussian ellipsoids for the focus ξ
at max/8) may thus come close to or extend through the surface.
s a consequence, the best-fitting Gaussian ˆ g ( k) in Fig. 7 (a) can
ield a vertical half width w z ′ of 322 km that is considerably larger
han the target length of w V = 200 km. The estimated resolution
engths in horizontal direction of 370 and 340 km (north–south and
est–east, respecti vel y) are as well somewhat larger than the actual

arget length of w H = 300 km. 
The averaging kernel for the low-resolution case in Fig. 7 (b) is

v en more comple x. It e xhibits localized smearing of uppermost
antle structure from individual data kernels, and several distinct

ocal maxima in and outside the target region. Resolution lengths
stimated by ̂  g ( k) are in horizontal direction 890 and 864 km (north–
outh and west–east) and in vertical direction 459 km. They are thus
orizontally narrower but vertically larger than the target lengths of
 H/V = 900/400 km. There is also a considerable shift of the centre of

ˆ g ( k) from the target location of μ′ = ( −66 , −97 , −106) km, which
ight not be expected b y merel y inspecting the cross-sections at

hese azimuths. Overall, it is at least debatable whether the best-
tting Gaussian ˆ g ( k) is an adequate approximation in this case.
or the A 

( k ) in Fig. 7 (a) we obtain a focus value ξ = 0.89 (i.e.
ertainl y ‘suf ficient’ and almost in the range of ‘good’ kernels),
eaning that although the target shape is not fully matched, the

est-fitting Gaussian ̂  g ( k) can be used with confidence for describing
ocal resolution lengths. The averaging kernel in Fig. 7 (b), ho wever ,
s classified as insufficient, with a focus value ξ = 0.62 suggesting
hat maxima present outside the ellipsoid E 

( k ) may have a significant
mpact on the corresponding model estimate for the average value.
urther resolution estimates and focus values ξ for the averaging
ernels in Fig. 3 can be found in the supplementary material . 

.4 Global classification of resolution 

he results of our kernel classification on a global scale, for all
re viousl y used combinations of the trade-off parameter η and the
arget kernels T 

( k ) , are visualized in Figs 8 and 9 . As expected, we
nd overall a larger number of Gaussian-shaped averaging kernels
t smaller values for η. The percentage of acceptable A 

( k ) ( ξ ≥
.75) is shown above each map, varying between 8–79 per cent at
95 km and 34–91 per cent at 1210 km depth. While there is a
trict trend of fewer acceptable averaging kernels towards higher η,
his is not necessarily the case when increasing the size of T 

( k ) . The
argest number of acceptable kernels is actually obtained for the
nter mediate target ker nel size with w H/V = 600/300 km using η1 

left-hand column in Fig. 8 ). Consistently fewer acceptable kernels
re found for the target resolution of w H/V = 900/400 km. Note
hat this difference between the target sizes does not imply that

odel averages are better constrained at the smaller scales rather
han at large ones as we are not investigating the resolving power
tself here, but the appropriateness of the Gaussian approximation.
nstead, the classification maps suggest that one could lower the
rade-off parameter η even further and obtain a larger number of
aussian-shaped averaging kernels also for the larger target sizes.

Highly focused’ kernels (i.e. ξ ≥ 1.1), are only observed for the HR
nversion (Fig. 8 , top left-hand panel) at a few target locations east
f Hawaii. This category suggests that narrower Gaussian estimates

ˆ g ( k) may be possible in those cases and the associated resolution

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae178#supplementary-data
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Figure 7. Averaging kernels A 

( k ) and their best-fitting Gaussians ˆ g ( k) using (a) the high-resolution setup ( η1 , T ( k ) with horizontal and v ertical e xtent w H/V = 

300/200 km), below Western Australia and (b) the low-resolution setup ( η3 , T ( k ) with w H/V = 900/400 km), below Venezuela. Both target locations and the 
corresponding lateral cross-sections are at 595 km depth. Vertical cross-sections are marked by blue and yellow dots. Larger dots specify the ne gativ e direction 
for the local coordinate system in which resolution lengths and shifts of the centre are quantified. Additionally, the value for the focus ξ is shown, which serves 
as a metric for quantifying the appropriateness of ˆ g ( k) (see Section 4.2 ). 
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lengths could then be regarded as upper bounds of the size of the 
corresponding A 

( k ) . Alternati vel y, increased focus v alues could in 
some cases be explained by an overshooting local maximum at the 
peak combined with pronounced ne gativ e kernel values outside the 
peak region. The trend in Fig. 8 then also suggests that a larger 
value for η, with consequently lower model uncertainty, can be 
chosen locally if such a highly focused A 

( k ) is not desirable (note 
again that the trade-off parameter can in principle be chosen for each 
target location indi viduall y). Gi ven all the combinations of T 

( k ) and 
η that we tested, a consistent classification of ‘sufficient’ and better 
is only possible in a few regions of excellent data coverage in the 
Nor ther n Hemisphere. 

5  G L O B A L  R E S O LU T I O N  A N D  

U N C E RTA I N T Y  M A P S  

The tools presented in the previous section allow us to inspect the 
resolution lengths for the varying tomographic parameter setups, in 
connection with a basic test of the validity of the Gaussian approxi- 
mation. On a global scale, this has the power to reveal concisely the 
impact of the different inversion parameters on resolution. In com- 
bination with the propagated model uncertainties σ ˆ m 

( k) , which are 
straightforw ardl y calculated with the SOLA method (see eq. 5 ), this 
also makes it possible to uncover the locally varying trade-offs be- 
tween resolution and uncertainty. To illustrate this, we show global 
maps of the estimated resolution lengths for all inversion parameter 
combinations in Figs 10 –13 . We apply our classification scheme to 
mask all ‘insuf ficientl y’ focused averaging kernels in these maps. In 
addition, the mean and standard deviation of all resolution lengths, 
gi ven b y averaging kernels classified as ‘suf ficient’ and better, are 
specified above each map. 

For vertical resolution estimates at 595 km depth, one can ob- 
serve a strong variability for the case with target lengths of w H/V 

= 300/200 km (Fig. 10 , top row). At this target size, the mean 
vertical resolution length ranges between 316 and 329 km across 
all trade-off values and with increasing values of η, one can see 
a clear progression towards larger vertical extent of the averaging 
kernels. Minimum–maximum values of vertical resolution for each 
target size w V = 200, 300, 400 km are 211–501 km, 321–521 km 

and 416–534 km, respecti vel y. The maps therefore show that the 
vertical target length only is approached in regions of high data 
co verage, but o verall cannot be reached by any ‘sufficient’ aver- 
aging kernel. Numerous A 

( k ) deviate strongly ( > 100 km) from the 
vertical target resolution in Fig. 10 , but they do not all necessarily 
fall in the category of ‘insufficient’ averaging kernels (e.g. beneath 
the North Pacific). This means that a useful Gaussian ˆ g ( k) was ob- 
tained, although a more accurate fit to the target kernel T 

( k ) could 
not be achieved at these locations. We chose to additionally indi- 
cate the non-Gaussian A 

( k ) as shaded areas to roughl y anal yse the 
range of estimated lengths there, even if they are less reliable. The 
vertical resolution lengths in those regions are in fact often in line 
with surrounding acceptable A 

( k ) , but may as well be anomalously 
low or high, quite strikingly for instance around the East Pacific 
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Figure 8. Classification of averaging kernels based on the focus ξ at a depth of 595 km depth for different target resolution lengths and trade-off parameters 
η. Blue colours mark averaging kernels that are suf ficientl y (‘Suf f.’) well approximated b y the best-fitting Gaussian ̂  g ( k) , meaning that resolution length can be 
robustly extracted from ˆ g ( k) . ‘Good’ averaging kernels are subdivided in at levels of ξ = 0.9, 0.95, 1.0 and 1.05 to reveal their deviation from the ideal case in 
more detail. Red colours accordingly indicate more comple x av eraging kernels A 

( k ) that are often af fected b y strong kernel side lobes. Percentages above the 
maps display the relative amount of acceptable A 

( k ) . 

Figure 9. Classification of averaging kernels based on the focus ξ at a depth of 1210 km. 
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ise (we analyse an example for this region in more detail in Sec-
ion 6.1 ). An opposite trend can be observed in the mid-mantle at
210 km depth in Fig. 11 , where the prescribed target lengths are
verall fitted well on a global scale. At this depth, the mean val-
es of the estimated vertical resolution lengths are however often
maller compared to their target, and the full range of estimates is
76–239 km, 261–336 km and 351–423 km for w V = 200, 300,
00 km, respecti vel y. 

Maps of longitudinal resolution lengths for the same depths
re shown in Figs 12 and 13 . The global mean values for each

art/ggae178_f8.eps
art/ggae178_f9.eps


1004 R. Freissler, B. S. A. Schuberth and C. Zaroli 

Figure 10. Vertical resolution lengths of the averaging kernels at 595 km depth, as estimated from the best-fitting Gaussian ̂  g ( k) . Shaded areas mark the regions 
where the classification from Fig. 8 indicates that the A 

( k ) are insuf ficientl y Gaussian-shaped and that resolution length must be interpreted with caution there. 
Mean values and standard deviations of the resolution lengths of all ‘sufficient’ averaging kernels are given above each map. Contour lines are drawn at 200, 
300, 400 and 500 km. 

Figure 11. Vertical resolution lengths of the averaging kernels at 1210 km depth. Same as Fig. 10 with shaded areas given by Fig. 9 . 
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selection of w H/V and η as well as the associated distributions of 
longitudinal resolution lengths are quite similar at both depths. 
The respective target lengths are well approached in many re- 
gions. At 595 km depth, minimum–maximum values of longitu- 
dinal resolution for the different target resolutions w H = 300, 600, 
900 km (again across all values of η and for all ‘sufficient’ and 
better averaging kernels) are 253–673 km, 495–826 km and 778–
1082 km, respecti vel y. At 1210 km depth, a larger number of ‘suf- 
ficient’ averaging kernels relative to the total number per layer is 
found. Still, the corresponding ranges are slightly narrower with 

art/ggae178_f10.eps
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Figure 12. Longitudinal resolution lengths of the averaging kernels at 595 km depth, as estimated from the best-fitting Gaussian ˆ g ( k) . Same layout as Fig. 10 . 

Figure 13. Longitudinal resolution lengths of the averaging kernels at 1210 km depth. Same layout as Fig. 11 . 
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inimum–maximum values of 293–581 km, 560–778 km and 828–
104 km. Fairly similar maps and trends can be found for the esti-
ated latitudinal resolution lengths (shown in Appendix C , Figs C1

and C2 ). 
To complete the results for our tests of SOLA inversion param-

ters, we show the associated global maps of propagated model
ncertainty σ ˆ m 

( k) in Figs 14 and 15 . As intuiti vel y expected, the
ncertainty increases systematically with lower values of η, but
lso with smaller target sizes. A possible reason for this could be
hat fewer finite-frequency kernels interact within the smaller target
ernel volume in this case. The highest global mean and largest
ariability thus correspond to the HR inversion setup ( η1 , w H/V =
00/200 km) with σ ˆ m 

( k) = 0.668 ± 0.138 per cent at 595 km depth,
nd 0.478 ± 0.112 per cent at 1210 km depth. For the largest tar-
et kernels with w H/V = 900/400 km, the model uncertainties are
 anishingl y small. This indicates that lower values for η should be
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Figure 14. Propagated model uncertainty σ ˆ m 

( k) at 595 km depth for different target kernel sizes and trade-off parameters. Dashed contour lines are only drawn 
at the values shown in the colour bar. Values above each map show the global mean ± standard deviation. 

Figure 15. Same as Fig. 14 (model uncertainty σ ˆ m 

( k) ) at a depth of 1210 km. 
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chosen at larger target scales compared to the best choice of η at 
smaller target resolution. Overall, there is no strict pattern emerging 
for the variability of the model uncertainty with respect to the asso- 
ciated resolution length estimates. Instead, one can observe regions 
of reduced σ ˆ m 

( k) both where the potential for overall high resolution 
is observed (e.g. around Japan, with ‘ideal’ focus), but also where 
our classification tool suggested a poor Gaussian approximation of 
the averaging kernels. 
6  D I S C U S S I O N  

6.1 Role of the Gaussian appr o ximation 

As shown in Section 4 , an approximation of the averaging kernels 
A 

( k ) by some parametric function is crucial for determining their 
resolving power shown in our global resolution maps. In this re- 
spect, Gaussian functions are a convenient choice and serve as a 
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Figure 16. Example of a poorly centred averaging kernel A 

( k ) in the vicinity 
of the East-Pacific Rise for the high-resolution inversion setup ( η1 , target 
resolution w H / w V = 300/200 km). The lateral cross-section at 595 km 

(top plot) does not reveal the main peak due to its vertical shift of about 
−190 km and the limited vertical half width of 105 km. The kernel is 
insuf ficientl y focused ( ξ < 0.75), which implies that its best-fitting Gaussian 
is not representative for the complete averaging volume. Ellipses and contour 
lines are explained in Fig. 7 . 
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ool for both estimating resolution lengths and for identifying ker-
els of more complex shape and consequently low focus. Earlier
tudies have also relied on the Gaussian approximation in order to
arametrize the resolution matrix (An 2012 ) or the point-spread
unctions based on the Hessian matrix (Fichtner & Trampert 2011 )
rior to the actual inversion step. In contrast to this earlier work,
e computed entire sets of averaging kernels without additional as-

umptions on their structure, and tested subsequently if a reduction
f their complexity in the form of a Gaussian parametrization is war-
anted. Although using the SOLA method and targeting Gaussian-
haped averaging kernels here, it was not possible to obtain robust
esolution proxies from the kernels at every location and at reason-
ble levels of uncertainty (highlighted by the classification in Figs 8 ,
 and uncertainty maps in Figs 14 , 15 ). We therefore suggest that
ur concept should be applied to new data sets, including hypothet-
cal ones, also to investigate potential improvements in resolution
esulting from additional seismic stations at new locations. 

The reliability of our resolution length analysis, including the
omputation of the kernel focus ξ , clearly depends on the quality
f the individual Gaussian approximations. For example, an irreg-
lar feature was discovered by the classification scheme at a depth
f 595 km (Fig. 8 ), suggesting strongly non-Gaussian averaging
ernels around the East-Pacific Rise. Across this region, the ker-
els are insuf ficientl y focused and show notably low estimates of
ertical resolution lengths for all inversion parameter combinations
Fig. 10 ). In Fig. 16 , we provide an example of such a kernel using

1 and target lengths w H/V = 300/200 km (i.e. the ‘high-resolution’
cenario). It is strongly shifted to greater depths with respect to
he target location by about 190 km, as estimated from the cen-
re of the best-fitting Gaussian. While the Gaussian appears to fit
his kernel well at the level of the half width at half maximum,
he low value for the focus of ξ = 0.25, ho wever , suggests a poor
pproximation. This is mainly due to elevated averaging values and
scillations of the kernel outside the plane of the cross-section (in-
icated for example by the local maximum visible in the lateral
ross-section in Fig. 16 ). The estimated resolution lengths may thus
till be reasonable even for these complex kernels, while the focus
uccessfully points out their inadequacy for describing comprehen-
i vel y the resolution characteristics. Again, this demonstrates why
he computation of resolution lengths from 2-D cross-sections can
e potentially misleading. A more robust assessment of resolution
engths for these complex scenarios instead requires some combina-
ion of accurate estimates, based for example on the 3-D Gaussian
arametrization, and a classification that we realize using the con-
ept of ‘focus’ here. Our analysis illustrates that both together are a
seful way to extract the rele v ant information on resolution reliably
rom a large set of averaging kernels. 

.2 Implications for SOLA tomography 

 key result of Zaroli ( 2016 ) was that choosing a constant value for
he trade-off parameter η per layer can produce coherent SOLA to-

ographic images (i.e. showing geodynamically interpretable large-
cale features) with bounded uncertainty on a global scale. In con-
rast to Zaroli ( 2016 ), in which spheroidal, constant target functions
f variable size adapted to an irregular data-driven grid were used,
e chose a laterally (almost) equidistant model parametrization and

ested a homogeneous Gaussian target kernel size consistently at
ll model locations. Our results show that, for a given selection of
nversion parameters η and T 

( k ) , the model uncertainties σ ˆ m 

( k) from
ropagated data errors ma y ha ve a low variability across all target
ocations. This supports the notion that, from the perspective of error
ropagation, it is indeed viable to use one single trade-off parameter
e.g. here η2 with the current data set) per tomographic layer. In pre-
ious applications of the SOLA method it has so far not been clear,
o wever , whether the averaging kernels also reasonably fit the target
ernels T 

( k ) at a given level of uncertainty. The classification scheme
e veloped here of fers additional guidance in this regard by making
t possible to assess the quality of the averaging kernels with re-
pect to a best-fitting 3-D Gaussian instead of the target kernel. For
ertain research questions it might be further on desirable to obtain
lobal tomographic models with different characteristics, favouring
ither high-resolution, uniformly good ‘focusing’ of averaging or
esolving kernels, low uncertainty σ ˆ m 

( k) , or a regionall y v ariable mix
hereof. It is, for example, not clear whether geodynamic inversions
hat aim at retrodicting past mantle evolution would benefit from
ither homogeneous tomographic resolution or from homogeneous
odel uncertainty (see e.g. Colli et al. 2020 ). This in turn requires

he joint adaptation of target kernels T 

( k ) and trade-off values η( k ) 
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for e very indi vidual parameter location. Such an analysis is be- 
yond the scope of this study, but can readily be tackled with the 
tools developed here. For the given shape of the target kernels in 
terms of a Gaussian, we have demonstrated that it becomes clear 
from just a few inversions, which range of values for η( k ) is prac- 
ticall y rele v ant and whether another size or shape for the target 
function T 

( k ) should be used. This empirical procedure is necessary 
because no automatic criterion or rule exists to determine the ‘ideal’ 
SOLA inversion parameters at every target location without exces- 
sive testing. For global applications, this would be computationally 
prohibitive. The joint analysis of model uncertainties σ ˆ m 

( k) and the 
focus ξ , which we used to set up the classification scheme for the 
averaging kernels, in comparison, is practically viable and provides 
essential information for selecting useful local combinations of T 

( k ) 

and η( k ) , globally. 

7  C O N C LU S I O N S  

We have presented a practical concept and its application for the 
assessment of resolution and uncertainty of tomographic images 
on a global scale. It is based on: (1) explicitly available averaging 
ker nels and uncer tainties, here enabled by the SOLA method, (2) a 
3-D Gaussian parametrization of the averaging kernels for estimat- 
ing resolution lengths consistently and (3) a classification scheme 
for identifying regions where the Gaussian approximation may not 
accurately represent the spatial averaging. Through this combina- 
tion, it is possible not only to investigate and visualize the resolution 
information for all the averaging kernels together, but also to indi- 
cate in a straightforward fashion in which regions the results can be 
reliably interpreted. At the same time, it shows in which locations 
specific care must be taken, for example where individual analysis 
of the local resolving power of the given data set may be advisable. 

Instead of interpreting model values, we used the approach pre- 
sented here for testing various combinations of SOLA inversion 
parameters in terms of their effects on final resolution and uncer- 
tainty, as there is no formal way to determine any ‘ideal’ setup. 
Our analysis shows that only a few inversions are required for a 
given realization of the target kernels to pinpoint whether their size 
or shape needs to be adapted and which range of values for the 
trade-off parameter is useful. This in turn is important for effec- 
ti vel y selecting the proper combinations of these parameters at each 
target location in case of specific requirements (e.g. tuning towards 
more homogeneous resolution or more homogeneous model uncer- 
tainty). Finally, we emphasize once more that the general analysis 
performed here as well as the classification scheme are not restricted 
to the setup based on SOLA. They can also be applied to the closely 
related resolution concept for point-spread functions, in case they 
are explicitly available. 

In summary, the analysis with our tomographic framework re- 
v ealed conclusiv ely that resolution lengths from the SOLA method 
can be primarily tuned by the choice of target kernel size, and only 
to a lesser extent by the trade-off parameter. Despite this design 
control, a good focusing of the averaging kernels (i.e. adequacy 
of the approximation with a Gaussian) cannot be guaranteed on a 
global scale with the data and possible inversion setups used here 
(especially for a target resolution going down to ∼300 km horizon- 
tally and ∼200 km vertically). Most notably, as expected with body 
waves, one has less control on vertical than on horizontal resolution 
length, especially at shallower depths in the mantle. Ho wever , a lat- 
erall y homo geneous distribution of uncertainty is generally possible 
by choosing locally varying trade-off parameters. Additionally, the 
SOLA uncertainties remind us that even if averaging kernels or 
point-spread functions with high resolution could be obtained ev- 
erywhere with specific regularization choices, the estimated model 
may be highly speculative in regions of poor data coverage. It is for 
these reasons that a proper and coherent quantification of resolution 
and model uncertainty is of critical importance, since this is a pre- 
requisite to better inform independent geophysical studies that rely 
on global tomographic images. 
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In the original theory, Backus and Gilbert propose to construct 
optimal kernels A 

( k ) ( r ) by approximation of a delta peak δ( r −
r ( k ) ) in terms of a specific deltaness criterion (Backus & Gilbert 
1968 ), for example by minimizing the so-called spread (Backus 
& Gilbert 1970 ). For a perfect delta peak, the linear averaging in 
eq. ( 1 ) would simply show that ˆ m 

( k) ≈ m ( r ( k) ) , which is however 
only possible if the data were complete and free of errors. Instead, 
one will typically need to accept A 

( k ) ( r ) that deviate from δ( r −
r ( k ) ), due to the available set of data kernels K i ( r ) and in order to
moderate the propagation of data errors into the inferred averages. 
A tomographic model would then consist in a collection of M local 
averages, ˆ m 

( k) , for k = 1,..., M . Rewriting eq. ( 1 ) in a discrete 
notation with volumetric weights V j appropriate for each j th grid 
node as 

ˆ m 

( k) = 
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ne can see that the averaging kernels projected onto a discrete
odel parametrization represent a single row of the resolution op-

rator R k· . The operator R can then be used to retrieve information
n the resolution for a specific model parametrization, while A 

( k ) ( r )
ssentially refers to the local resolution for the continuous model
 ( r ( k ) ) (Trampert 1998 ). Theoreticall y, howe ver there is no need to
iscretize the model, as the Backus–Gilbert approach essentially
olves a continuous inverse problem. This can be exploited fully
or example by the ‘parameter-free’ SOLA approach (Zaroli 2019 ),
hile in this paper we still make use of the discrete formulation

s described in Zaroli ( 2016 ). A noteworthy limitation is that the
heory does not guarantee that the collection of averages together
ctually explains the data. We tested this for our class of models
hat use only body waves at the moment, and we observed that the
lobal misfit reduction can actually be comparable to and some-
imes even be better than in classic damped-least squares inversion
ith model norm damping. Ho wever , the question of data misfits in
OLA tomo graphies, especiall y for dif ferent inversion parameter
hoices, might be a rele v ant subject for future investigations. 

P P E N D I X  B :  E F F I C I E N T LY  S O LV I N G  

H E  S O L A  B - G  S Y S T E M  

aroli ( 2016 ) explained how (the discrete version of) the SOLA
ptimization problem in eq. ( 3 ) can be solved together with the uni-
odular constraint eq. ( 4 ) using a least-squares approach. There-

ore, the SOLA system can be rewritten in the following fashion
see Appendix A1, Zaroli 2016 ): 

ˆ  ( k,η) = arg min 
ˆ x ( k) 

∥∥∥∥
[

Q 

( η) 

η I N−1 

]
ˆ x ( k) −

[
y ( k,η) 

0 N−1 

]∥∥∥∥2 

2 

. (B1) 

oth the matrix Q 

( η) , of size ( M + 1) × ( N −1), and the right-hand
ide y ( k , η) , which incorporates the target kernel, depend on the
hoice of a particular trade-off parameter η. The complete solu-
ion x ( k ) can finally be recovered from ˆ x ( k) (the intermediate so-
ution in eq. B1 ). Considering our tomog raphic g rid and data set,
n each inversion we need to solve for the Backus–Gilbert coef-
cients x ( k ) with a SOLA system matrix Q 

( η) of size 153 324 ×
9 764 ( ∼2 per cent non-zero elements, ∼2 GB). As one needs
o perform a single inversion for ever y g rid node, computational
osts for empirically testing inversion parameters can thus quickly
ecome prohibitive. The SOLA method has the computational ad-
antage that the left-hand side of the corresponding linear system
n eq. ( B1 ) is independent of the target location r ( k ) , that is for a
iven η the SOLA system matrix Q 

( η) does not change. This en-
bles perfectly parallel computation over all M model parameters.
o this end, one could simply increase the number of processors P
t the cost of having to store 2 · P times the SOLA system matrix
 . This obviously becomes problematic if the available computing
ystem is limited in RAM, especially if the tomographic systems
ecome even larger than the ones considered in this study. Alter-
ati vel y, using improved parallel solvers based on LSQR (Huang
t al. 2013 ; Lee et al. 2013 ) or using instead efficient direct methods
Bogiatzis et al. 2016 ) are other possible options that we consid-
red and list here for documentation. We decided to solve eq. ( B1 )
y using a GPU version of the algorithm LSMR (Fong & Saun-
ers 2011 ). We use LSMR as implemented by Krylov.jl (a package
f selected Krylov methods written in the programming language
ulia , see Montoison & Orban 2023 ), where, conveniently, no sig-
ificant code changes are required compared to the CPU version.
nce the GPU compute kernel is compiled, different left-hand sides
 

( k , η) can be asynchronously copied from a CPU to the GPU and
olution vectors can be ef ficientl y recovered for each run without
dditional time spent for data transfer or solver setup. This way,
erforming the inversion for a single model parameter in our com-
utations was about 50–100 times faster on the GPU (using double
recision) compared to a single CPU. Also, this only requires that
 

( η) , a large but highly sparse matrix, fits twice into GPU memory.
s a remark, LSMR is recommended to be used over LSQR by Fong
 Saunders ( 2011 ) if iterations have to be stopped early. This could

heoretically be exploited to keep the solver time limited in case a
easonable maximum number of iterations for all inversions glob-
lly is found. Ho wever , w e ha ve not drawn on this here and relied on
he stopping criteria suggested by Fong & Saunders ( 2011 ). For a
i ven trade-of f parameter η, we found that the time to solution was
ractically constant for all model parameters and overall increased
oughl y b y a factor of 2 for an equal decrease in η (i.e. solutions
or η1 = 5 took about twice as long as for η2 = 10). The use of
PUs therefore proves to be very useful for SOLA inversions with
 least-squares approach and can greatly reduce the time required
or computing a complete model with M parameters. As a final
ote, we used 2 NVidia RTX A5000 in this study, but modern GPU
lusters and supercomputers often feature many more units. From
 computational point of view, it should thus be straightforward to
se larger grids and data sets with the SOLA method than presented
ere. 

P P E N D I X  C :  A D D I T I O NA L  G L O B A L  

E S O LU T I O N  M A P S  

o complete the global analysis, we show additionally the estimated
atitudinal resolution lengths in Figs C1 and C2 . Plots for the hor-
zontal and vertical shifts of the centres of mass of the averaging
ernels can be found in the supplementary (online) material, as
ell as comparisons between the uncorrelated and correlated (i.e.

ncluding rotation) 3-D Gaussian estimates. 
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Figure C1. Latitudinal resolution lengths of the averaging kernels at 595 km depth, as estimated from the best-fitting Gaussian ˆ g ( k) . Same layout as Fig. 10 . 
As shown in the main text, shaded areas highlight regions of low ‘focus’ (i.e. the Gaussian is inadequate to reliably estimate resolution length for the averaging 
kernel). 

Figure C2. Latitudinal resolution lengths of the averaging kernels at 1210 km depth. Same layout as Fig. 11 . 
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