
Confidential manuscript submitted to Geophysical Research Letters

Supporting Information for
“Toward Seeing the Earth’s Interior Through Unbiased Tomographic
Lenses”

Christophe Zaroli1, Paula Koelemeijer2, Sophie Lambotte1

1Institut de Physique du Globe de Strasbourg, UMR 7516, Université de Strasbourg, EOST/CNRS,
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Further Details on the SOLA Method

We aim to provide further details on the SOLA (Subtractive Optimally Localized
Averages) method, recently introduced and adapted to large-scale, linear and discrete
tomographic problems by Zaroli [2016]. In the SOLA approach, both the model es-
timation and its appraisal are computed all at once; that is, the generalized inverse

matrix Ĝ
†

is directly evaluated (see Table 1). When considering a local and ‘orthonor-
mal’ model parametrization, as for the toy problem, the system to be solved for the
k-th row of the generalized inverse, Ĝ†k. = (Ĝ†ki)1≤i≤N , is as follows:(
GGT + η2kIN

)
Ĝ†k. = Gt(k) , subject to

M∑
j=1

N∑
i=1

Ĝ†kiGij = 1 , (1)

where ηk and t(k) = (T
(k)
j )1≤j≤M are the k-th trade-off parameter and target resolving-

kernel vector, respectively; k is the index of considered model parameter. Here all M
target kernels are imposed to be unimodular: {

∑
j T

(k)
j = 1, ∀k}. For an example for

some local and ‘irregular’ parametrization, the reader is referred to Zaroli [2016].

As mentioned in Sect. 2.4.2, and similarly to Zaroli [2016], we report that ‘glob-
ally coherent’ tomographic images (see Fig. 2(third column)) can be obtained when
using: 1) Target kernels whose size is tuned to the spatially irregular data coverage; and
2) Constant-valued trade-off parameters, {ηk = η, ∀k}. Note that 2) prevents us from
having to compute all M trade-off curves (resolution misfit versus model variance),
to select every ηk based on the ‘shape’ of such trade-off curves – hence significantly
increasing the total computational cost. In practice, η may roughly be determined
from analyzing a few trade-off curves, for randomly chosen pixels.

Let us now define the following quantities, using same notations as Zaroli [2016]:

x(k) =
(
x
(k)
i

)
1≤i≤N

, x
(k)
i = Ĝ†ki

x̂(k) =
(
x
(k)
i

)
2≤i≤N

c = (ci)1≤i≤N , ci =
∑M
j=1Gij

ĉ = (ci/c1)2≤i≤N
e1 = (δi1)1≤i≤N

B =

(
−ĉT
IN−1

)
Q(η) =

(
GTB
−ηĉT

)
y(k,η) =

(
t(k) − c−11 GTe1
−c−11 η

)
,

(2)
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where c1 is assumed to be non-zero and δ denotes the Kronecker symbol. Therefore,
solving the system (1) consists in solving for x̂(k) the following set of normal equations:(

Q(η)

ηIN−1

)
x̂(k) =

(
y(k,η)

0N−1

)
, (3)

using for instance the LSQR algorithm [Paige and Saunders, 1982], and then to infer
the final solution x(k), i.e., the k-th row of the generalized inverse, from x̂(k):

x(k) = Bx̂(k) + c−11 e1 . (4)

In terms of numerical considerations, since the rows of the SOLA generalized
inverse matrix can be computed in parallel on P processors, computing all M rows
takes t×M/P CPU-time, where t is the average CPU-time to numerically solve (3) –
provided that some constant-valued η holds. A crucial point is that the matrix Q(η),
of size (M + 1) × (N − 1), does not depend on index k, so that there is no need to
recompute it M times (as in the original Backus–Gilbert approach, see Zaroli [2016]).
Although the vector y(k,η) needs to be recomputed for every index k (i.e., M times),
that is computationally cheap. As a remark, only the last row of Q(η) and last element
of y(k,η) depend on η, so that Q(η) and y(k,η) may easily be reconstructed for different
η values. Furthermore, Zaroli [2016] shows that a simple mathematical trick (related
to re-ordering the data such that the first row of G is the sparsest one) allows the
matrix Q(η) to be almost as sparse as the sensitivity matrix G, which is very useful in
terms of storage, efficiency of the LSQR algorithm, and memory footprint.

Finally, one possible artifact that SOLA could be prone to arises when resolv-
ing kernels appear to be very oscillatory (i.e., significantly negative). That is, even
if they are constrained to be such that {

∑
j R̂kj = 1, ∀k}, they cannot anymore be

considered as truly ‘averaging’ kernels. Thus, in this special case, SOLA models may
not represent unbiased averages over the true-model parameters. To avoid such ar-
tifacts, following Pijpers and Thompson [1994], we progressively enlarge the size of
target resolving-kernels and solve for the new minimization problems (keeping η un-

changed) until: {
∑
j(R̂kj − T

(k)
j )2 < ξR̂, ∀k}. This allows us to ensure that all M

resolving kernels are mostly well localized (close to the target kernels) and non-negative
(non-oscillating). In practice, only a small fraction of the target kernels may have to
be enlarged, depending on how robust is the a priori local model resolution used to
generate the first generation of target kernels (first step in Sect. 2.4.2). Note that the
target kernels may also be enlarged to keep the model uncertainties limited (trade-off
between resolution misfit and model variance), that is: {σm̂k

< ξσm̂ , ∀k}. For the

toy problem, we use: (ξR̂ = 0.03, ξσm̂ = 0.3%); these numerical values are chosen
somewhat arbitrarily, tailored to our experiment.

Variability of DLS and SOLA Solutions

Figures S1–S4 illustrate the variability of damped least-squares (DLS) and SOLA
solutions (in terms of filtered true models, resolving kernels and propagated noise),
when changing some of the tunable inversion parameters – that is, the damping Θ and
trade-off parameter η (keeping unchanged the target resolving-kernels, for simplicity
reasons), respectively.

As a remark, when the data errors are poorly known, Θ is often somewhat
subjectively chosen based on the trade-off curve between data misfit and model norm.
Note that the DLS averaging bias effect is expected to vary as a function of Θ; it should
vanish for Θ = 0. Although there is also some subjectivity in the SOLA approach, when
choosing the target kernels and trade-off parameters, different choices would simply
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result in different, unbiased model estimates and appraisals, thus corresponding to
different, robust model interpretations.
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Figure 1. Variability of DLS solutions – (First column) True models; (Second and Third

columns) Filtered true models for some lower (Θlow = 0.4 × Θ) and higher (Θhigh = 1.9 × Θ)

damping value than used (Θ) in Fig. 2(second column), respectively.
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Figure 2. Variability of SOLA solutions – (First column) True models; (Second and Third

columns) Filtered true models for some lower (ηlow = 0.3 × η) and higher (ηhigh = 6.0 × η)

trade-off parameter value than used (η) in Fig. 2(third column), respectively.
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Figure 3. Variability of DLS solutions – (a–e, f–j) Resolving kernels for Θlow and Θhigh,

respectively; (k, l) Propagated data errors for Θlow and Θhigh, respectively.

Figure 4. Variability of SOLA solutions – (a–e, f–j) Resolving kernels for ηlow and ηhigh,

respectively; (k, l) Propagated data errors for ηlow and ηhigh, respectively. All target resolving-

kernels are kept unchanged as in Fig. 1(b).
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