

National InSAR coverage – EGMS perspective French metropolitan territory

INFORMATION FROM SPACE

Anne Urdiroz, Sales manager, anne.Urdiroz@tre-altamira.com Fifamè Koudogbo, Project manager, fifame.koudogbo@tre-altamira.com

tre-altamira.com | © TRE ALTAMIRA 2019

Presentation of TRE ALTAMIRA – CLS Group

The CLS Group

Introduction to TRE ALTAMIRA – CLS Group

InSAR leader

TRE ALTAMIRA is the largest InSAR group worldwide.

TRE ALTAMIRA, world leader in ground motion monitoring services with satellite radar data.

Context of France metropolitan InSAR coverage

Background

- With the launch by European Space Agency of the Sentinel-1 mission, which offers free access to radar satellite data, initiatives are emerging in order to propose ground motion measurements into the Copernicus service portfolio.
- The development of a European Ground Motion Service (EGMS) is proposed as part of the Copernicus Land Service.
- As a precursor of such a service, the French Space Agency CNES Centre National d'Etudes Spatiales - launched the first pilot project over the whole metropolitan French Territory.
- In this framework, TRE ALTAMIRA has processed 4-year ascending and descending Sentinel-1 data (2015-2018).

The context of the study

French initiative towards EGMS

- >> The study considers the totality of the French Territory.
- » It extends over about 550 000 Km².
- Project complexity is related to the size of the study area, the diversity of its land cover and the topography.
- The challenge lies in the need to optimize the processing time while guaranteeing high quality results.

The context of the study

The Sentinel-1 coverage

- Sentinel-1 is the first of the five missions that ESA is developing for the Copernicus initiative.
- The mission ensures continuity of C-band SAR data to applications and builds on ESA's heritage and experience with the ERS and Envisat SAR instruments.
- > Ascending and descending archives are considered in order to minimize the impact of geometric distorsion and guarantee an optimal visibility also in mountainous areas.

The context of the study

Defining processing areas

- » To optimize the satellite coverage (due to the specific S1 burst acquisition), France metropolitan has been divided in several zones.
- » 31 zones have been defined in ascending and descending modes.

Ascending mode

Descending mode

A CLS Group Company

Ground motion measurement

S1 data stack

- The study considers a period of almost 4 years, from November 2014 until September 2018.
- » Since October 2016, the update frequency is 6 days.
- Thanks to the combination of S1-A/-B, an optimal data set in terms of temporal distribution is now available.
- » 9566 S1 images were processed

Track	Nb of processing areas	Periode d'étude		Nb d'images par track	Nb d'images total
T30	8	2015-03-12	2018-09-28	155	1240
T59	6	2015-05-01	2018-09-30	147	883
T88	5	2014-11-16	2018-09-26	165	82
T103	3	2015-05-04	2018-09-27	145	43
T132	5	2015-03-07	2018-09-29	131	655
T161	5	2015-02-13	2018-09-25	154	77(
TOTAL_ASC	32			897	480

Track	Nb of processing areas	Periode d'étude		Nb d'images par track	Nb d'images total
Т8	7	2014-11-11	2018-09-27	157	1099
Т37	5	2015-02-05	2018-09-29	157	785
T52	1	2015-05-01	2018-09-30	156	156
T66	1	2014-11-03	2018-09-25	175	175
T81	3	2014-11-16	2018-09-26	157	471
T110	6	2014-11-18	2018-09-28	158	948
T139	4	2015-03-20	2018-09-30	123	492
T154	3	2015-05-08	2018-09-25	155	465
T168	1	2014-11-10	2018-09-26	168	168
TOTAL DESC	31			1406	4759

Methodology for ground motion measurement

- TRE ALTAMIRA's strategy takes advantage almost unlimited parallel computing capacity offered on the cloud environment.
- An adapted SqueeSAR[®] chain has been developed in order to allow an unsupervised processing to be carried.
- The objective is to guarantee high quality and reliable results while limiting the need for interaction.

SqueeSAR® for ground motion measurement

- » SqueeSAR[®] is the latest and most advanced interferometric algorithm.
- » It identifies two sets of radar targets (measurement points) on the ground:

Permanent Scatterers ou PS

Distributed Scatterer ou DS

SqueeSAR[®] for ground motion measurement

Measurement in the radar LOS direction

- Radar satellites measure the **>>** motion in the radar image plane, i.e. in the Line of Sight (or LOS) direction.
- LOS is the direction in which **>>** the sensor looks at the Earth's surface.

- The green color identifies stable MP.
- The yellow to red color identifies MP moving away from the sensor.

SqueeSAR[®] for ground motion measurement

Combining Ascending and Descending

- The total decomposition of the motion can be done by combining measurement in ascending and descending modes.
- It consists in the resolution of a trigonometric system with two unknowns (vertical and East-West components) based on the knowledge of D_{LOS_A} and D_{LOS_D}.

SqueeSAR® for ground motion measurement

Data combination approach (1/4)

Data combination requires that the same target is identifiable from either the ascending and descending geometry but in general different geometries see different object over the ground.

- The area is divided into small patches of terrain (a grid of 80x80 m cell is used) and it is assumed that the MP contained into the same cell are affected by similar motion.
- 2. The measurements of all the MP located in the same cell are averaged and referred to a *pseudo-MP*. This is performed for each geometry separately.
- 3. Data combination for 2D estimation is performed for all the cells containing *pseudo-MP* from both geometries.

La stratégie de traitement

Points de référence REF (1/2)

- » SqueeSAR[®] measurements are relative to a Reference Point (REF), assumed to be motionless.
- » REF is selected by its radar characteristics and motion behaviour in the monitored period:
 - High radar quality of the target: It has to be affected by a low phase noise in all the images of the processed dataset.
 - Not affected by displacement rate variations (no-linear movement or seasonality) in the monitored period.
- » One REF has been taken for each of the 31 zones processed independly.

SqueeSAR[®] for ground motion measurement

Precision of the ground motion measurement

- The precision of the ground motion measurement is given by the standard deviation.
- » It depends on:
 - Distance to the REF
 - Quality of the processed dataset
 - Quality of the radar targets
 - Quality of the atmospheric noise estimation

Standard deviation values are not provided for each measure of the time series but only for the average displacement rate.

Motion component	Measurement direction	Spatial resolution	Standard deviation
	LOS	≈ 20 m	2-3 mm/year
Annual displacement rate	Vertical	80 m	3-4 mm/year
	East-West	80 m	5-6 mm/year

Typical values of precision for a MP less than 1 km from the REF using a dataset of at least 30 scenes covering a 2-year period

SqueeSAR[®] for ground motion measurement

Geolocalisation precision

The results of the study

The display scales of LOS ground motion

Project results

Processing performance

- » More than 15 millions Measurement Points were detected in each mode
- Points are not distributed in the same way throughout the territory. PS and DS distribution is related to the ground coverage.
- Point density is around 22.5% PS/km² in ascending mode and 20.75% PS/km² in descending mode.

Track	Nb de pts de mesure	Surface analysée	Densité
Т30	2929622	152729.5	19.2
T59	4319438	153270.8	28.2
T88	1287368	53835	23.9
T103	939466	43319.8	21.7
T132	2877055	133809.2	21.5
T161	2724468	132318.6	20.6
TOTAL_ASC	15077417	669282.9	22.53

Track	Nb de pts de mesure	Surface analysée	Densité
T8	3211091	179625.8	17.9
T37	3526003	132663.6	26.6
T52	197655	13513.1	14.6
T66	72740	3804.1	19.1
T81	1526233	73363.1	20.8
T110	3148404	164548.5	19.1
T139	2251845	112751.5	20
T154	710743	43010.8	16.5
T168	623504	12406.8	50.3
TOTAL_DESC	15268218	735687.3	20.75

Project results

PS/DS distribution in ascending mode

The results of the study

The display scales of Vertical and East-West ground motion

The asc and desc results are combined in order to derive the Vertical and East-West components of the displacement.

© TRE ALTAMIRA 2019

MILANO

Ripa di Porta Ticinese, 79 20143 Milan - Italie Tel: +39 02 4343 121

BARCELONA

C/ Corsega, 381-387 E-08037 Barcelona - Espagne Tel.: +34 93 183 57 50

VANCOUVER

Suite #410 475 W. Georgia Street Vancouver, BC V6B 4M9 - Canada Tel: +1 604 331 2512

FRANCE (Siège CLS)

Parc Technologique du Canal 11, Rue Hermès F-31520 Ramonville St Agne Tel: +33 5 61 39 47 19

CHILI

Almirante Señoret 70, Oficina 74 Valparaíso Tel: +56 32 225 2843

AUSTRALIE

Suite 207 – 122 Toorak Road | South Yarra Melbourne Tel: +61 455 154552