

A. Carrara

Insight into the magma shallow plumbing system of Volcán de Colima, Mexico and its physical properties, from remote sensing.

V. Pinel, A. Carrara, P. Bascou, S. de la Cruz-Reyna

Volcan de Colima activity 2014-2015

*In July 2015: a large explosive eruption with PDCs reaching 10 km (7 to 14 Mm³)

*Lava flow emplacement before (Nov. 2014 – Feb. 2015) and after the July 2015 main event *(Reyes-Dávila et al., 2016)*

Classic InSAR processing with a small baseline approach

NSBAS software (Doin et al., 2012), modified for TOPSAR data (Grandin, 2015)

- → Images coregistration
- → Interferograms computation
- → Topographic corrections
- → Atmospheric corrections (Doin et al., 2012)
- → Unwrapping
- → Geocoding
- →Time series inversion

(*Lesage et al., 2018*)

No precursors detected in terms of seismic velocities variations

-103.7°

-103.6°

(*Lesage et al., 2018*)

The volume of emitted magma cannot have been "elastically" stored at a depth shallower than 5 km

(Lesage et al., 2018)

Classic InSAR processing with a small baseline approach

NSBAS software (Doin et al., 2012), modified for TOPSAR data (Grandin, 2015)

Starting in August 2015 to ensure coherence on lava flows

Sentinel 1 data

Average LOS displacement rate (Aug. 2015-Feb. 2016)

Ascending track

Descending track

Positive away from the satellite

(Carrara et al., 2019)

Surface displacement measured by InSAR on lava flows

Thickness and volume estimation by DEM difference

after eruption

before eruption

PLEIADES (Jan. 10th 2016) — TanDEM-X (2011-2014) ⁴

(©CNES_2016, distribution AIRBUS DS, France, all rights reserved)

(©DLR 2015)

Optical stereo images processed by <u>Ames Stereo Pipeline</u> (NASA open source software)

Radar images

Use of coherence evolution to constrain the timing

Period 2– Period1

Period 3– Period2

Sentinel 1 data

Western flow:

- Average thickness: 17.3 ± 1.5 m
- Maximum thickness: 51.5 ± 1.5 m
- Volume: $5.04 \pm 0.30 \times 10^6 \text{ m}^3$

South-Western flow:

- Average thickness: 19.3 ± 1.5 m
- Maximum thickness: 65.4 ± 1.5 m
- Volume: $13.13 \pm 0.78 \times 10^6 \text{ m}^3$

Extrusion rate:

- 1-2 m³ s⁻¹ between Nov. 14 and Feb. 15
- $\sim 10 \times$ the long term extrusion rate estimated by Luhr, *JVGR*, 2002.

Average LOS displacement rate (Aug. 2015-Feb. 2016)

Ascending track

Descending track

Positive away from the satellite

Temporal evolution on SW lava flow

(Carrara et al., 2019)

3D displacement field retrieve

We add a physical constrain:

the horizontal displacement is directed along the maximum slope direction

analogy with glaciers

Rabus and Fatland, (2000)

Average vertical and horizontal displacement rate

(Carrara et al., 2019)

Temporal evolution of horizontal and vertical displacement

Potential sources of deformation

*On lava flows + around :

Loading effects v_{load}:
 Poroelastic and viscoelastic relaxation

*On lava flows :

- Thermal contractions v_{therm}
- Flowing/shearing motions v_{shear}

Numerical modeling of the thermal contraction

We performed numerical simulations using a 1D Finite Element Method solving the heat diffusivity equation and contraction of the lava flow.

August 2015:

- ~50% of viscoelastic compaction
- $\sim 25\%$ of thermal contraction
- $\sim 25\%$ of flowing/shearing motion

March 2016:

- \sim 75% of viscoelastic compaction
- $\sim 25\%$ of thermal contraction
- flowing/shearing motion negligible

Estimation of the lava flow dynamic viscosity:

$$\rho = 2600 \ kg \ m^{-3}$$

$$\alpha = 20.9^{\circ}$$

$$H = 40.6 \ m$$

$$v_h = 100 \ -1 \ mm \ yr^{-1}$$

$$\eta = 10^{15} - 10^{17} \ \text{Pa s}$$

Originality of the methodological approach

Use of radar coherence to constrain the temporal timing of lava emplacement

3D displacement field retrieved in a local referential

To add a **physical a priori** =horizontal displacement along the direction of the maximum slope

Conclusions on Volcan de Colima (2014-2016)

An extrusion rate around 1-2 m³ s⁻¹

 $\sim 10 \times$ the long term extrusion rate estimated by Luhr et al. (2002)

No inflation

before the large 2015 eruption \rightarrow no storage of magma at shallow level (less than 5 km)

Horizontal motion

significant several months after the emplacement of an andesitic lava flow

Displacement sources:

- viscoelastic compaction,
- thermal contraction

flowing/shearing motion

Thermal expansion coefficient: 10^{-5} K⁻¹ Lava viscosity : $10^{15} - 10^{17}$ Pa s