



# STUDY OF THE EARLY POSTSEISMIC PHASE OF TOHOKU-OKI EARTHQUAKE (2011) WITH KINEMATICS SOLUTIONS

Periollat Axel<sup>1\*</sup>, Radiguet Mathilde<sup>1</sup>, Cédric Twardzik<sup>2</sup>, Nathalie Cotte<sup>1</sup>, Marianne Métois<sup>3</sup>, Weiss Jérôme<sup>1</sup>, Anne Socquet<sup>1</sup>



UNIVERSITÉ

🐼 Grenoble

**Alpes** 

- Instructions as apriori information on positions (all the strategies)

## **II - Kalman Filter and Randomwalk:**

- The Kalman filter predicts displacement.
- Randomwalk parameter value controls • the smoothing of the solution.



There is a direct effect between the expected  $\bullet$ each displacement epoch and the at randomwalk value.

#### **II - Influence of co-seismic offset:**



- The co-seismic offset induces strong displacements in the observations.
- The chosen strategy is to remove the co-seismic observation.
- There is a gap of 5 minutes between the early pre- and post-seismic

#### observations.

• We used 3.0 e-4 m/  $\sqrt{s}$  as random walk value.



### **On-going work:**

- To process data on days before the earthquake without seismic signal to create a sidereal filter to correct the multipath effect on each station.
- Some displacement observations on the early post-seismic.
- And maybe early pre-seismic?
- Magnitude afterslip vs Omori distribution.
- Look at the early post-seismic displacement pattern of the Tohoku-Oki foreshock (09/03/11 M<sub>w</sub> 7.2).
- Interactions between aseismic and seismic slip.

<sup>1</sup>ISTerre, Université Grenoble Alpes, France <sup>2</sup>EOST Université de Strasbourg, France <sup>3</sup>UCB1 Université de Lyon, France <sup>\*</sup>axel.periollat@univ-grenoble-alpes.fr