CNIS

Towards an Automated Work-flow for SAR Offset-tracking and motion Information retrieval

IPGS Institut de Physique du Globe de Strasbourg Université de Strasbourg Université de Strasbourg Initiative d'excellence

Sina Nakhostin, Jean-Philippe Malet, David Michéa sina.nakhostin@unistra.fr , jeanphilippe.malet@unistra.fr, davidmichea.unistra@gmail.com×

IPGS/EOST Universite de Strasbourg

Motivation

The availability of Sentinel-1 mission images, covering all global landmasses and coastal zones, makes this mission of the Copernicus initiative a relevant choice for earth surface observation and analysis including the study of Geomorphology and land Deformations.

- Necessity of automatic processing of time-series of S1 amplitude for motion pattern estimation.
- Ability to track several motion types(rigid, non-rigid) over different space and time scales thus using different matching strategies.

Workflow

- Pre-processing
 - Orbit Correction
 - ▶ DEM assisted Co-registration
 - ▶ Terrain Correction
 - Speckle Filtering

► HPC calculation adaptation.

Objectives

The aim of this work is to have a workflow including:

- Co-registration
 - This step develops upon an earlier algorithm [1] and its adaptation for \triangleright exploiting Sentinel-1 SAR imagery.
- Offset Tracking
 - ▷ For this step, depending on the characteristics of motion, different Image matching techniques based on calculation of normalized cross correlation (NCC) measure or variations of Optical Flow offset-tracking is being utilized.
- Motion Information Retrieval
 - A combination of dimensionality reduction (DR) and clustering over a time-series of velocity maps are being utilized.

Level-1 Ground Range Detected (GRD)

- Offset Tracking
 - MicMac (Image Matching)
 - GeFolki (Optical Flow)
- ► Machine Learning
 - Dimensionality Reduction
 - Spatio-temporal Clustering for segmentation

Results: Implementation and Accuracy Evaluation

products consist of *focused* SAR data which are *detected*, *multi-looked* and *projected* to ground range using an Earth ellipsoid model. The resulting product has approximately square spatial resolution pixels and square pixel spacing $(10 \times 10)m$, with reduced speckle at the cost of worse spatial resolution.

Dataset for Developement

a

0.10

Figure: Rink Glacier (lat: 71 long: -52)

Master 2019-01-06 (HH)

Figure: Velocity Maps produced by SNAP and coreg-track. (2019-01-06 vs 2019-01-18)

Figure: Norm of Velocity difference between SNAP and coreg-track.

Figure: Cross-section comparison of the velocity profiles.

Figure: SAR amplitude image of the interesting area

Conclusions

The comparisons of coreg-track with SNAP shows similarity between the performance of the two procedure. The interpretability of the results highly depends on the selection of the physically justified parameters.

References

André Stumpf, David Michéa, and Jean-Philippe Malet. |1| Improved co-registration of sentinel-2 and landsat-8 imagery for earth surface motion measurements. *Remote Sensing*, 10(2):160, 2018.

This research is funded by the Initiative of excellence of the University of Strasbourg.

sina.nakhostin@unistra.fr

