
A2S: Challenges in the automated processing of
massive satellite data streams on HPC.

A quick look under the hood

David Michéa - michea[@]unistra.fr
Ing. Scientific Calculation

Bernard Allenbach, Aline Deprez, Jean-Philippe Malet, Sina Nakhostin, Anne Puissant, André Stumpf

University of Strasbourg

A2S: Presentation

A2S: Automating processing on HPC system
HPC : High Performance Computing

Non extensible ressources
Big nodes (RAM, cores)
Close to metal
Fast buses / low latency networks
Efficient use of computational ressources

A2S : Applications for Satelitte Survey

Run automatically and efficiently a lot of different
 Services on an HPC architecture.

-> scheduling problem
-> manage complexity (several thousands of tasks)

A2S: Automating processing on HPC system
A2S on HPC:

Goal : Efficiently use the ressources

-> Fill the nodes (use all their CPUs)
- expose parallelism intelligently between:

. data parallelism (on different levels : pixels, S2 tiles, subtiles etc)

. task parallelism

A2S: Automating processing on HPC system
A2S on HPC:

Goal : Efficiently use the ressources

-> Fill the nodes (use all their CPUs)

- expose parallelism intelligently between:
. data parallelism
. task parallelism

-> Reduce CPUs idle time
-> Minimize data movement

-> cache mechanism
-> beware of fork / join patterns in applications

-> split in tasks
- sequential
- parallel

A2S: Automating processing on HPC system
A2S on HPC:

Goal : Efficiently use the ressources

-> Fill the nodes (use all their CPUs)

- expose parallelism intelligently between:
. data parallelism
. task parallelism

-> Reduce CPUs idle time
-> Minimize data movement

-> cache mechanism
-> beware of fork / join patterns in applications

-> split in tasks
- sequential
- parallel

-> efficiently schedule tasks to the nodes
-> use of a Workflow Management System (WMS)
-> use of a task scheduler built on top of this WMS

1PB

20 nodes

A2S: Infrastructure

 A2S: FireWorks – Workflow Management System
FireWork: free software for defining, managing, and executing workflows

• Complex dynamic workflows are defined using Python, stored in a MongoDB instance,
can be monitored through a WEB GUI and queried through a python API.

• It allows to expose task parallelism inside a single application WF and task parallelism
among different Wfs.

• It allows to manage great complexity and overcome runtime problems.

Jain, A., Ong, S. P., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese, G.-M., Hautier, G., Gunter, D., and Persson, K. A. (2015). FireWorks: a dynamic workflow system
designed for high-throughput applications. Concurrency Computat.: Pract. Exper., 27: 5037–5059. doi: 10.1002/cpe.3505

 A2S: FireWorks – web monitoring interface

 A2S: Launching a Fireworks’ rocket
The Workflows DB holds the tasks to be computed. They cycle through different states :

Launch a task : run the « rocket launch » command :

rlaunch (singleshot | rapidfire) [-q query] [-i task_id]

-> This drag from the WMS a ready task and executes it locally.

-> How to manage parallel and sequential tasks ?

Each task can be tagged with a category.

Categories can be used to discriminate between tasks that need a specific worker (like GPGPU tasks vs

CPU onlyl tasks)
-

seq_short
seq_long

waiting for all the parent tasks to be (successfully) achieved

ready to run

actually running

task succeeded

task failed.

dynamically defused by a parent task.

 A2S: Manage parallelism heterogenity
Each task can be tagged with a category.

-> Categories can be used to discriminate between tasks that need a specific worker
(ex. GPGPU tasks vs CPU only tasks)

-> We use categories to discriminate between parallel or sequential tasks
(full_node, half_node, quarter_node, sequential)

We could write a SLURM submission script for each category running :

 rlaunch rapidfire -q <query on category>

Fireworks provides queue adaptors allowing to directly submit to nodes :

qlaunch -w full_node.yaml -q full_node_qadapt.yaml rapidfire -m 5
-> ensure 5 nodes are always submitted to work on full_node category tasks

Repartition between parallel and sequential tasks can vary a lot along time
-> severe load imbalance (CPU waste)

 A2S: The Rocket scheduler

- We wrote a rocket scheduler which is the only program actually submitted on nodes.
- It knows :

-> How many tasks in each category are available
-> How many ressources are available on its node
-> How many workers are active

- It launches the READY tasks (starting from higher parallelism to lower)
- it works in a Master / slaves model
- Each instance is responsible to fill its node’s cores

- The master instance :
-> computes the needed ressources to absorb the current tasks stream
-> is able to :

- submit more SLURM jobs if the load increases
- stop running jobs if the load decreases

 A2S: Automated execution and ressource provisionning

- Once a WF is submitted, its execution is automatic and start ASAP.

- The Master instance of rocket_scheduler provisions new SLURM jobs when they are needed.

- Each instance of rocket_scheduler is responsible to stop itself if the overall capacity of ressources
overcomes the global needs.

don’t waste ressources => get more ressources !
(SLURM fair share)

───┬──
 1 │ File: a2s_scheduler.slurm
───┼──
 1 │ #!/usr/bin/env bash
 2 │
 3 │ #SBATCH --exclusive -N 1 --sockets-per-node=2
 4 │ #SBATCH -t 8-00:00:00
 5 │ #SBATCH -p pri2016
 6 │ #SBATCH -A grant2ipgs
 7 │ #SBATCH -J rockets
 8 │
 9 │ rocket_scheduler $SLURM_JOB_ID $SLURM_CPUS_ON_NODE
───┴──

A2S: Two operating modes : Stream & On demand
 Stream mode:

 Fully automated.
 Fixed set of parameters
 Workflow creation is triggered by the availability of new sources
 Intended to produce products based on one basic source as soon as it is available

 On demand mode:
 Configurable : Parameter file + entry point

 Workflow creation & registration.
 Execution on nodes is managed by the system

 Can work on :
 Remote / provided data sources
 A²S stored products and sources

 Intended to be triggered through web-services
 Time series processing of individual products from the stream platform

190 To
(500 To)

A2S: Storage + managed cache

Use of a SRB (Storage Ressource Broker) : iRODS

Our configuration:
- Available capacity : 1 PB
- No data redundancy
- RAID 6+1 disk failure protection
- Actually 1O Gbits/s HPC <-> storage link
- Next 100Gbits/s inside Data Center

Data Movement is expensive !!!
- We built a 11TB BeeGFS high bandwith managed cache system.

-> All products are written in cache, then compressed and pushed on storage
-> The cached files live for a fixed duration (with a prolongation each time it used)
-> cache miss ? File is silently recreated from storage in background
-> Stream mode should operate quite only on cached files

190 To
(500 To)

A2S: some figures to conclude
We ran extensive tests on Stream platform this summer on year 2017 data.

- over 98 tiles on France & Belgium : Water surface & Urbanized surface
- over 23 tiles distributed world wide : S2 Offset tracking

-> ~ 1 month computation / year of data
=> ~ 1/10 global computing capacity

-> 4 TB storage used

A²S started operational product realisation phase
for Théia, CNES and ESA-GEP

