Université
de Strasbourg

P AZS: Challenges in the automated processing of
2r vy massive satellite data streams on HPC.
A quick look under the hood

SENTINEL-1 igﬁ “‘

m SENTINEL 2

David Michéa - michea[@ Junistra.fr
Ing. Scientific Calculation

Bernard Allenbach, Aline Deprez, Jean-Philippe Malet, Sina Nakhostin, Anne Puissant, André Stumpf

University of Strasbourg

[3 o
'(lJB-. @ T Ecole et Observatoire {/n.';lage
des Sciences de la Terre e

AZS Presentatlon

We are AZS sk

A hlgh computing platﬁorm of Strasbourg I,anefsity i
: and CNRS dedlcatecl to Satellne Sun.fey Appncatlons

Our Expertise

Bl [,

Massive computation Time Serie Analysis

Our Services

o=l A
8 (o)

Compute Disseminate

Satellite

*

Collaborate

\‘t‘APPLICATIONS
“‘\\j) SATELLITE
= SURVEY

9 APPLICATIONS

A%S: Automating processing on HPC system o) e

_ SURVEY

HPC : High Performance Computing

Non extensible ressources

Big nodes (RAM, cores)

Close to metal

Fast buses / low latency networks

Efficient use of computational ressources

Cesa

G’Qﬁf"ﬂs =Theia

A2S : Applications for Satelitte Survey

p . ' ")GoogleC|oud ep’ ——
Run automatically and efficiently a lot of different [=y @
Services on an HPC architecture. |
-> scheduling problem W merenl| | ()
-> manage complexity (several thousands of tasks) T — v =

@f f ,\. 6

\‘$‘APPLICATIONS

A%S: Automating processing on HPC system oY) Swruune

_ SURVEY

A2S on HPC.:
Goal : Efficiently use the ressources

-> Fill the nodes (use all their CPUSs)
- expose parallelism intelligently between:

. data parallelism (on different levels : pixels, S2 tiles, subtiles etc)

. task parallelism

A2S: Automating processing on HPC system

D\ A

A2S on HPC.:
Goal : Efficiently use the ressources

-> Fill the nodes (use all their CPUSs)

- expose parallelism intelligently between:

. data parallelism

. task parallelism

fork <

-> Reduce CPUs idle time
-> Minimize data movement
-> cache mechanism

-> beware of fork I join patterns in applications

-> split in tasks _

- sequential join =

- parallel

9 APPLICATIONS
3]

SATELLITE

. SURVEY

Application
| sequential task #1
parallel
task #2
""--..____-__-_:__-—'"--#]
=~<_| sequential task #3

parallel

task #4

A2S: Automating processing on HPC system

9 APPLICATIONS

é@

A2S on HPC.:
Goal : Efficiently use the ressources

-> Fill the nodes (use all their CPUSs)

Application

sequential

SATELLITE
. SURVEY

task #1

- expose parallelism intelligently between:
. data parallelism
. task parallelism

fork <

-> Reduce CPUs idle time
-> Minimize data movement

parallel

task #2

-> cache mechanism TR
-> peware of fork / join patterns in applications

sequential

task #3

-> split in tasks -
- sequential join =
- parallel e~
-> efficiently schedule tasks to the nodes
-> use of a Workflow Management System (WMS)

parallel

task #4

-> use of a task scheduler built on top of this WMS

9 APPLICATIONS

2Q» “‘\ SATELLITE
AZS: Infrastructure PP, >,

SURVEY
Virtual Machines 7 Y
Infrastructure ' > Copem'rcus
I . Google Cloud Platform

--="7 - ©@Thea PEM!
CREODIAS

. W ”
' N)/
:.mongo @ PestGIS AN ’
' T Zio s p

: Pty FireWorks . Hpe ,

f *. f Login nodes N
!

I \‘ ety
1 A}
| R

» 1 ey | ==

I \
| Fuse 4
| filesystem
U I
]
Vo R | R
|

I

|

Vo RS | SRS

\

Storage system High performance
RAID 6+1 cache system:
1.2PB 13 TB BeeGFS

\.

Omnipath 100 Gbits network

10 Gbits network

\‘t‘APPLICATIONS

A?S: FireWorks - Workflow Management System Q) Swaure

e SURVEY

FireWork: free software for defining, managing, and executing workflows
* Complex dynamic workflows are defined using Python, stored in a MongoDB instance,
can be monitored through a WEB GUI and queried through a python API.
* |t allows to expose task parallelism inside a single application WF and task parallelism
among different Wfs.

* |t allows to manage great complexity and overcome runtime problems.

o
ar -

FireWorkgs™

Firework 1

Spec: {input}
FireTask

FireTask

FWACcCtion FWACction

Firework 2 - Firework 3 \

Spec: {input}
FireTask

Spec: {input}
FireTask

y " FireTask

R

FIREWORKER FIREWORKER %, FireTask

e

Jain, A, Ong, S. P, Chen, W,, Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese, G-M., Hautier; G., Gunter, D., and Persson, K. A. (2015). FireWorks: a dynamic workfow system
designed for high-throughput applications. Concurrency Computat.: Pract. Exper;, 27: 5037-5059. doi: 10.1002/cpe.3505

\‘t‘APPLICATIONS

A’S: FireWorks - web monitoring interface o) Swure

SuRVEY

ak
FireWorkst™

Mewest Workflows

phicaiiies orees Workflow 1943909

COMPLETED

number of ireworks

LiSc{PSe3)2-structure optimization
LiSe(PSed)2-static ol 1 E]
LiSc(PSe3)2-nscf uniform

Database snapshot Eﬁ

number of fireworks
awessBER

0 B

hours ags

Co1_wig] ~GOA opamise._s

2P

24 12
GdAg(PSe3)2 ID: 6825

SN DEFUSED 339 329

Gd,

T
i
m
+]

WAITING 297 o

GdAg(PSed)2-hse gap

==a 143 s
1 o
YAg(PSe3)2 ID: 6824
43 182
Yag 5.443 2198

) | Collapse | [Expand | [Toggle | Toggle levell || Toggle level2 |
TOTAL 6,634 3,061

-

summary Reports created_on: "2017-05-29T15:00:25.781000",

LuAg(PSea)2 1D: 6816 See a visual dashboard. i e

- tadat
Get a report of all jobs for the past: ne ‘anﬂnn!;ﬂ.{s-d_famla: “AB",

el chemsystem: "Ce-tg",

e * + elements: [..],
« 24 hours Formule: -ces Ma™,
LuAglPSe3)2-nscf uniform = 7days is_ordered: true,
- Sodays is_valid: true,

= 3 = 6 months nelements: 2,
LuAg(PSe3)2-hse gap Oy Ehparrtios nsites: 8,

e 10 years reduced_cell_ formula: "CeMg”,
reduced_cell_ formula_abc: "Cel Mgl"®,
ScAg(PSe3)2 ID: 6810 For more reporting options, use the "lpad report --help" run_wersion: “"May 2013 (1)",
. submission_id: 125605
command line tool. T -

name: "Cel Mgl",

SeEEE i R - + parent_links: { .. }.
MongoDB Query: e
FW Query: {'spec.somevar": "someval"} + states: { = ¥

ted
, vedated_on

ScAg(PSed)2-hse gap

"2017-05-31T22:01:19.851000"
WF Query: ({'metadata.somevar": "someval]

(S - N © Copyright 2015

A%S: Launching a Fireworks’ rocket

\‘t‘APPLICATIONS
“@) SATELLITE
v SURVEY

The Workflows DB holds the tasks to be computed. They cycle through different states :

d WAITING [waiting for all the parent tasks to be (successfully) achieved
. READY : ready to Fun Database snapshot
i actually running
g COMPLETED
task succeeded

g FIZZLED §

task failed.

dynamically defused by a parent task.

Launch a task : run the « rocket launch » command :

rlaunch (singleshot | rapidfire) [-q query] [-i task_id]
| RESERVED |
-> This drag from the WMS a ready task and executes it locally.

TOTAL

-> How to manage parallel and sequential tasks ?

Fireworks

0

Workflows

0

0

0

\‘t‘APPLICATIONS

A’S: Manage parallelism heterogenity o) " Swzure

_ SURVEY

Each task can be tagged with a category.
-> Categories can be used to discriminate between tasks that need a specific worker
(ex. GPGPU tasks vs CPU only tasks)
-> We use categories to discriminate between parallel or sequential tasks
(full_node, half_node, quarter_node, sequential)

WAITING

We could write a SLURM submission script for each category running :
rlaunch rapidfire -g <query on category>

Fireworks provides queue adaptors allowing to directly submit to nodes :

glaunch -w full_node.yaml -q full_node_gadapt.yaml rapidfire -m 5 :
-> ensure 5 nodes are always submitted to work on full_node category tasks [T EETITTTTT [T

Repartition between parallel and sequential tasks can vary a lot along time
-> severe load imbalance (CPU waste)

O Sequential task
O Parallel task

A2S: The Rocket scheduler

- We wrote a rocket scheduler which is the only program actually submitted on nodes.
- It knows :
-> How many tasks in each category are available
-> How many ressources are available on its node :
-> How many workers are active ' <

VLR

- It launches the READY tasks (starting from higher parallelism to lower)
- it works in a Master | slaves model
- Each instance is responsible to fill its node’s cores I
U]
- The master instance :
-> computes the needed ressources to absorb the current tasks stream
-> s able to :
. . . slurm
- submit more SLURM jobs if the load increases queue woraad manager
- stop running jobs if the load decreases vaster | [TTTITENTTENENRIIINE

af
M~ FreWorks®

suves | IO
‘ mongo

% APPLICATIONS
Y

A?S: Automated execution and ressource provisionning =~) Swaure

. SURVEY

- Once a WF is submitted, its execution is automatic and start ASAP.

- The Master instance of rocket_scheduler provisions new SLURM jobs when they are needed.

- Each instance of rocket_scheduler is responsible to stop itself if the overall capacity of ressources
overcomes the global needs.

don’t waste ressources => get more ressources !
(SLURM fair share)

File: a2s_scheduler.slurm

I
|
| #llusribin/env bash

| #SBATCH --exclusive -N 1 --sockets-per-node=2
| #SBATCH -t 8-00:00:00

| #SBATCH -p pri2016

| #SBATCH -A grant2ipgs

| #SBATCH -J rockets

| rocket_scheduler $SLURM_JOB_ID $SLURM_CPUS_ON_NODE
|

© 00O NO UL WNDNLPR

\‘t‘APPLICATIONS

A%S: Two operating modes : Stream & On demand o) Swgure

. SURVEY

* Stream mode:
* Fully automated.
* Fixed set of parameters
* Workflow creation is triggered by the availability of new sources
* Intended to produce products based on one basic source as soon as it is available
® On demand mode:
* Configurable : Parameter file + entry point
* Workflow creation & registration.
* Execution on nodes is managed by the system
* Canworkon:
Remote / provided data sources
A2S stored products and sources
* Intended to be triggered through web-services
* Time series processing of individual products from the stream platform

9 APPLICATIONS

. N
A%S: Storage + managed cache) _Swrure
Use of a SRB (Storage Ressource Broker) : IRODS
h A
Au¥;:n:ted S;;:;;e
Our configuration: ,O\ Ingest Hieing »
- Available capacity : 1 PB “ W
-No data I’edundancy Indexing iqo Ds Compliance
- RAID 6+1 disk failure protection - CAPABILITIES X
- Actually 10 Gbits/s HPC <-> storage link 5o f
- Next 100Gbits/s inside Data Center Auditing Publishing
-
Y u
Int:;ty Prov\e:ance

Data Movement is expensive !!!
- We built a 11TB BeeGFS high bandwith managed cache system.
-> All products are written in cache, then compressed and pushed on storage
-> The cached files live for a fixed duration (with a prolongation each time it used)
-> cache miss ? File is silently recreated from storage in background
-> Stream mode should operate quite only on cached files

9 APPLICATIONS

A%S: some figures to conclude <) Swgure

~ SURVEY

We ran extensive tests on Stream platform this summer on year 2017 data.
- over 98 tiles on France & Belgium : Water surface & Urbanized surface
- over 23 tiles distributed world wide : S2 Offset tracking

product footprint max % CC #
water surfaces 98 S2 tiles (Fr+Be) 2 1565
urbanized surfaces 98 S2 tiles (Fr+Be) 10 918
S2 correlograms 23 S2 tiles (worldwide) 30 1776
sources imported coregistred
S2 2238 1550

-> ~ 1 month computation / year of data
=> ~ 1/10 global computing capacity
-> 4 TB storage used

AZS started operational product realisation phase
for Théia, CNES and ESA-GEP

