

A²S: Challenges in the automated processing of massive satellite data streams on HPC. A quick look under the hood

David Michéa - michea[@]**unistra.fr** Ing. Scientific Calculation

Bernard Allenbach, Aline Deprez, Jean-Philippe Malet, Sina Nakhostin, Anne Puissant, André Stumpf

University of Strasbourg

A²S: Presentation

Applications for Satellite Survey We are A2S. A high-computing platform of Strasbourg University and CNRS dedicated to Satellite Survey Applications.

Our Expertise

Image processing

Massive computation

Time Serie Analysis

Satellite

Our Services

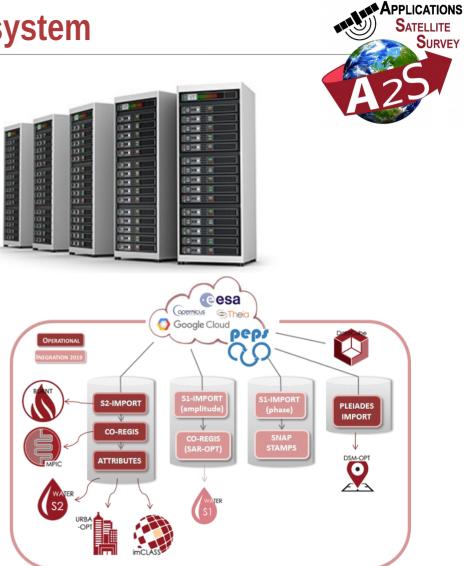
Design

Compute

Disseminate

Collaborate

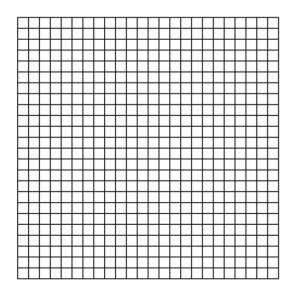
A²S: Automating processing on HPC system

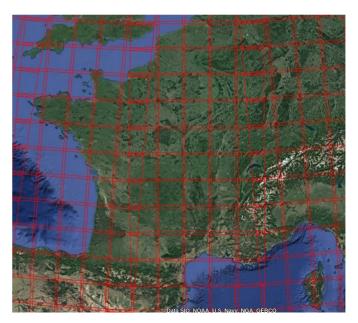

HPC : High Performance Computing

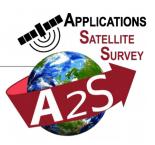
Non extensible ressources Big nodes (RAM, cores) Close to metal Fast buses / low latency networks Efficient use of computational ressources

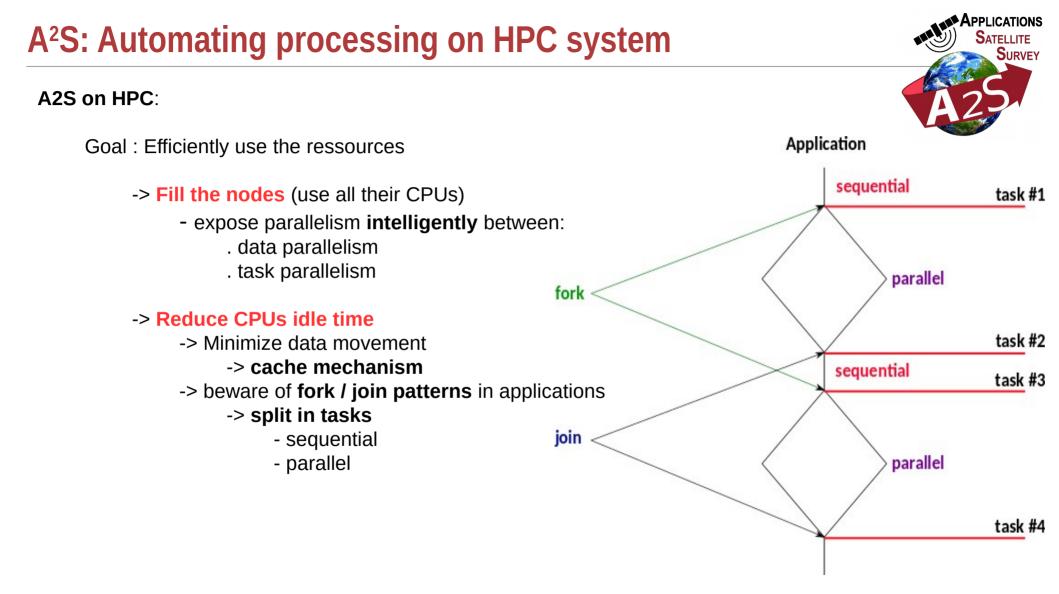
A2S : Applications for Satelitte Survey

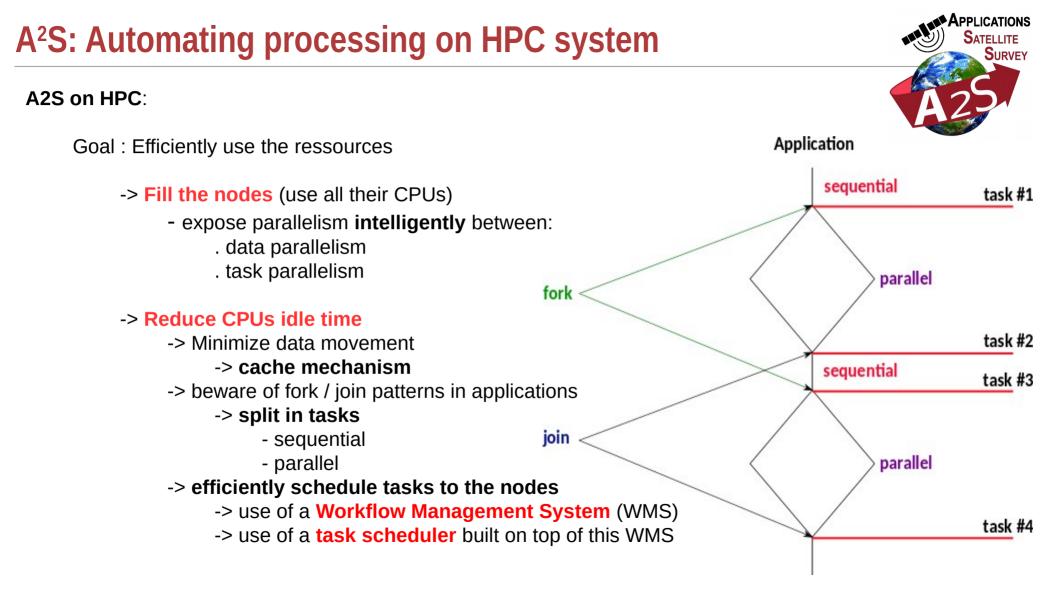
Run automatically and efficiently a lot of different Services on an HPC architecture.

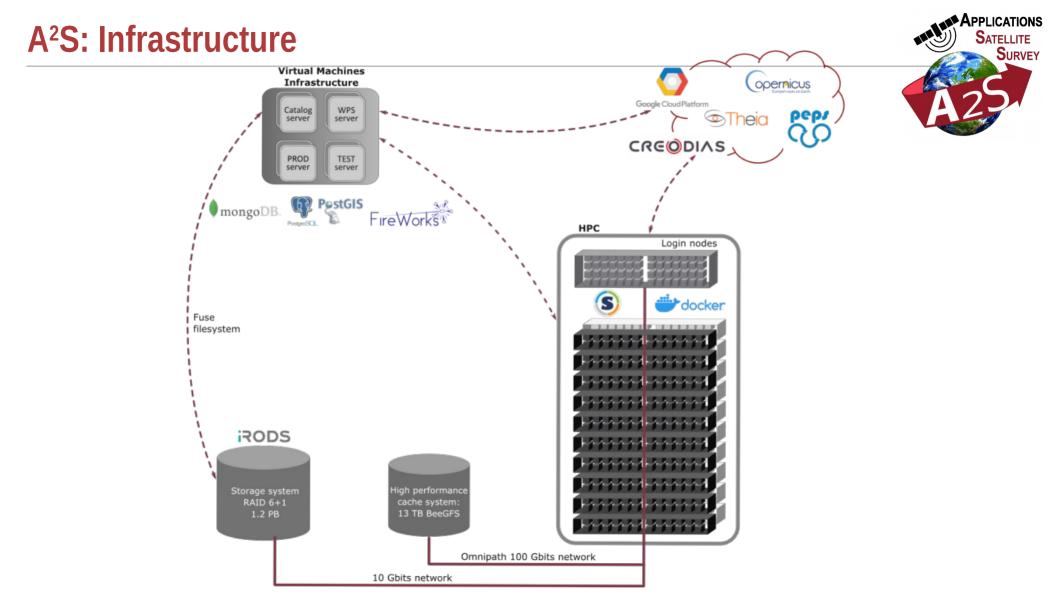

- -> scheduling problem
- -> manage complexity (several thousands of tasks)

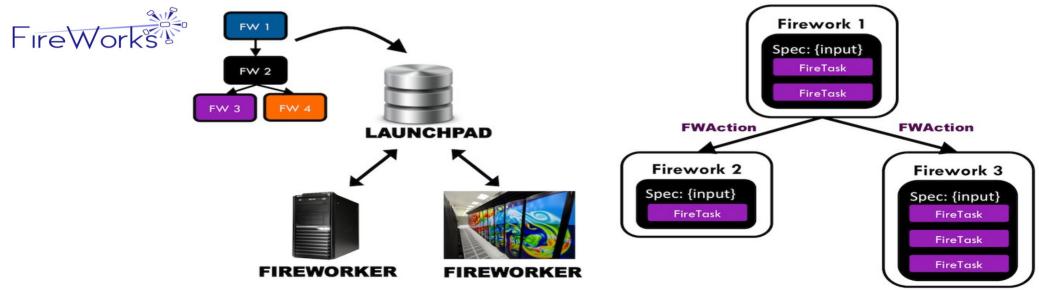


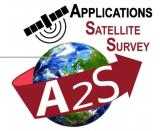

A²S: Automating processing on HPC system


A2S on HPC:


- Goal : Efficiently use the ressources
 - -> Fill the nodes (use all their CPUs)
 - expose parallelism intelligently between:
 - . data parallelism (on different levels : pixels, S2 tiles, subtiles etc)
 - . task parallelism






A²S: FireWorks – Workflow Management System

FireWork: free software for defining, managing, and executing workflows

- Complex dynamic workflows are defined using Python, stored in a MongoDB instance, can be monitored through a WEB GUI and queried through a python API.
- It allows to expose task parallelism inside a single application WF and task parallelism among different Wfs.
- It allows to manage great complexity and overcome runtime problems.

Jain, A., Ong, S. P., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese, G.-M., Hautier, G., Gunter, D., and Persson, K. A. (2015). FireWorks: a dynamic workflow system designed for high-throughput applications. Concurrency Computat.: Pract. Exper., 27: 5037–5059. doi: 10.1002/cpe.3505

A²S: FireWorks – web monitoring interface

RUNNING FIZZLED COMPLETED 5 12 COMPLETED

	number of firew	wanno	Workflow
	21		COMPLETED WAITING FIZZLED
6 6 rs ago	10 0 1	2 3 4 5 6 days ago	Cet.,Mg1-440.00
shot			Cet_Mgt+GGA.oper
	Fireworks	Workflows	Cet. Mgt-WASP
	24	12	
	344	335	Call_Mg1Controller_and
	0	0	
	339	329	Cet_Mgt=VASP
	297	0	Cett.Mg1=GGA
	143	5	Cat.Mgt-WKB
	1	0	Cet_Mg1-GGA,ba
	43	182	Cet.Mgt-WKB
	5,443	2,198	Collapse Expand Toggle Toggle level1 Toggle level2
OTAL	6,634	3,061	Collapse Expand Toggle Toggle level1 Toggle level2
shboard.	Report:	5	<pre> t created_on: "2017-05-29T15:00:25.781000", + launch_dirs: { }, + links: { }, - metadata: { anonymized_formula: "AB", chemsystem: "Ce-Mg", } </pre>
ting options, use the "lpad reporthelp" tool.			<pre>+ elements: [], formula: "Ce4 Mg4", is_ordered: true, is_valid: true, nelements: 2, nsites: 8, reduced_cell_formula: "CeMg", reduced_cell_formula_abc: "Cel Mg1", run_version: "May 2013 (1)", submission_id: 125605 },</pre>
DB Query: somevar": "someval"}			<pre>name: "Cel Mgl", + parent_links: { }, state: "FIZZLED", + states: { },</pre>
			updated_on: "2017-05-31T22:01:19.851000"

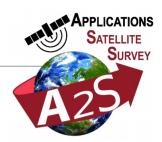
SATELLITE SURVEY

```
WF Query: {"metadata.somevar": "someval"}
```


A²S: Launching a Fireworks' rocket

The Workflows DB holds the tasks to be computed. They cycle through different states :

- WAITING : waiting for all the parent tasks to be (successfully) achieved
- READY
- ready to run
- RUNNING : actually running
- COMPLETED task succeeded
- FIZZLED :
- task failed.
- DEFUSED : dynamically defused by a parent task.


Launch a task : run the « rocket launch » command :

rlaunch (singleshot | rapidfire) [-q query] [-i task_id]

-> This drag from the WMS a **ready task** and executes it locally.

-> How to manage parallel and sequential tasks ?

Database snapshot						
	Fireworks	Workflows				
ARCHIVED	0	0				
FIZZLED	0	0				
	0	0				
DEFUSED	0	0				
WAITING	228	0				
READY	0	0				
RESERVED	0	0				
RUNNING	27	2				
COMPLETED	9	1				
TOTAL	264	3				

A²S: Manage parallelism heterogenity

Each task can be tagged with a category.

-> Categories can be used to discriminate between tasks that need a specific worker

(ex. GPGPU tasks vs CPU only tasks)

-> We use categories to discriminate between parallel or sequential tasks (full node, half node, guarter node, sequential)

We could write a SLURM submission script for each category running : rlaunch rapidfire -q <query on category>

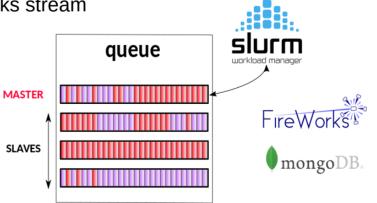
Fireworks provides queue adaptors allowing to directly submit to nodes :

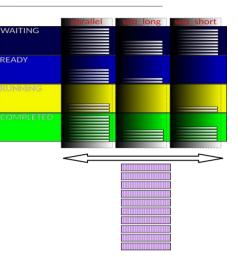
qlaunch -w full_node.yaml -q full_node_qadapt.yaml rapidfire -m 5
-> ensure 5 nodes are always submitted to work on full_node category tasks

Repartition between parallel and sequential tasks can vary a lot along time -> severe load imbalance (CPU waste)

WAITING

OMPLETED


READY


12

Sequential task Parallel task

A²S: The Rocket scheduler

- We wrote a rocket scheduler which is the only program actually submitted on nodes.
- It knows :
 - -> How many tasks in each category are available
 - -> How many ressources are available on its node
 - -> How many workers are active
- It launches the READY tasks (starting from higher parallelism to lower)
- it works in a Master / slaves model
- Each instance is responsible to fill its node's cores
- The master instance :
 - -> computes the needed ressources to absorb the current tasks stream
 - -> is able to :
 - submit more SLURM jobs if the load increases
 - stop running jobs if the load decreases

A²S: Automated execution and ressource provisionning

- Once a WF is submitted, its **execution is automatic** and start ASAP.
- The Master instance of rocket_scheduler **provisions new SLURM jobs when they are needed**.
- Each instance of rocket_scheduler is responsible to stop itself if the overall capacity of ressources overcomes the global needs.

don't waste ressources => get more ressources ! (SLURM fair share)

	File: a2s_scheduler.slurm		
1	/ #!/usr/bin/env bash		
2			
3	#SBATCHexclusive -N 1sockets-per-node=2		
4	#SBATCH -t 8-00:00:00		
5	#SBATCH -p pri2016		
6	#SBATCH -A grant2ipgs		
7	#SBATCH -J rockets		
8			
9	rocket_scheduler \$SLURM_JOB_ID \$SLURM_CPUS_ON_NODE		

A²S: Two operating modes : Stream & On demand

- Stream mode:
 - Fully automated.
 - Fixed set of parameters
 - Workflow creation is triggered by the availability of new sources
 - Intended to produce products based on one basic source as soon as it is available
- On demand mode:
 - **Configurable** : Parameter file + entry point
 - Workflow creation & registration.
 - Execution on nodes is managed by the system
 - Can work on :
 - Remote / provided data sources
 - A²S stored products and sources
 - Intended to be triggered through web-services
 - **Time series processing** of individual products from the stream platform

A²S: Storage + managed cache

Use of a SRB (Storage Ressource Broker) : iRODS

Our configuration:

- Available capacity : **1 PB**
- No data redundancy
- RAID 6+1 disk failure protection
- Actually 10 Gbits/s HPC <-> storage link
- Next 100Gbits/s inside Data Center

Data Movement is expensive !!!

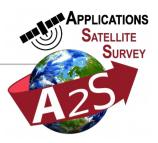
- We built a 11TB BeeGFS high bandwith managed cache system.
 - -> All products are written in cache, then compressed and pushed on storage
 - -> The cached files live for a fixed duration (with a prolongation each time it used)
 - -> cache miss ? File is silently recreated from storage in background
 - -> Stream mode should operate quite only on cached files

A²S: some figures to conclude

We ran extensive tests on Stream platform this summer on year 2017 data.

- over 98 tiles on France & Belgium : Water surface & Urbanized surface
- over 23 tiles distributed world wide : S2 Offset tracking

product	footprint	max % CC	#
water surfaces	98 S2 tiles (Fr+Be)	2	1565
urbanized surfaces	98 S2 tiles (Fr+Be)	10	918
S2 correlograms	23 S2 tiles (worldwide)	30	1776


sources	imported	coregistred
S2	2238	1550

-> ~ 1 month computation / year of data

=> ~ 1/10 global computing capacity

-> 4 TB storage used

A²S started operational product realisation phase for Théia, CNES and ESA-GEP

