
A2S: Challenges in the automated processing of
massive satellite data streams on HPC.

A quick look under the hood

David Michéa - michea[@]unistra.fr
Ing. Scientific Calculation

Bernard Allenbach, Aline Deprez, Jean-Philippe Malet, Sina Nakhostin, Anne Puissant, André Stumpf

University of Strasbourg

A2S: Presentation

A2S: Automating processing on HPC system
HPC : High Performance Computing

Non extensible ressources
Big nodes (RAM, cores)
Close to metal
Fast buses / low latency networks
Efficient use of computational ressources

A2S : Applications for Satelitte Survey

Run automatically and efficiently a lot of different
 Services on an HPC architecture.

-> scheduling problem
-> manage complexity (several thousands of tasks)

A2S: Automating processing on HPC system
A2S on HPC:

Goal : Efficiently use the ressources

-> Fill the nodes (use all their CPUs)
- expose parallelism intelligently between:

. data parallelism (on different levels : pixels, S2 tiles, subtiles etc)

. task parallelism

A2S: Automating processing on HPC system
A2S on HPC:

Goal : Efficiently use the ressources

-> Fill the nodes (use all their CPUs)

- expose parallelism intelligently between:
. data parallelism
. task parallelism

-> Reduce CPUs idle time
-> Minimize data movement

-> cache mechanism
-> beware of fork / join patterns in applications

-> split in tasks
- sequential
- parallel

A2S: Automating processing on HPC system
A2S on HPC:

Goal : Efficiently use the ressources

-> Fill the nodes (use all their CPUs)

- expose parallelism intelligently between:
. data parallelism
. task parallelism

-> Reduce CPUs idle time
-> Minimize data movement

-> cache mechanism
-> beware of fork / join patterns in applications

-> split in tasks
- sequential
- parallel

-> efficiently schedule tasks to the nodes
-> use of a Workflow Management System (WMS)
-> use of a task scheduler built on top of this WMS

1PB

20 nodes

A2S: Infrastructure

 A2S: FireWorks – Workflow Management System
FireWork: free software for defining, managing, and executing workflows

• Complex dynamic workflows are defined using Python, stored in a MongoDB instance,
can be monitored through a WEB GUI and queried through a python API.

• It allows to expose task parallelism inside a single application WF and task parallelism
among different Wfs.

• It allows to manage great complexity and overcome runtime problems.

Jain, A., Ong, S. P., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese, G.-M., Hautier, G., Gunter, D., and Persson, K. A. (2015). FireWorks: a dynamic workflow system
designed for high-throughput applications. Concurrency Computat.: Pract. Exper., 27: 5037–5059. doi: 10.1002/cpe.3505

 A2S: FireWorks – web monitoring interface

 A2S: Launching a Fireworks’ rocket
The Workflows DB holds the tasks to be computed. They cycle through different states :

Launch a task : run the « rocket launch » command :

rlaunch (singleshot | rapidfire) [-q query] [-i task_id]

-> This drag from the WMS a ready task and executes it locally.

-> How to manage parallel and sequential tasks ?

Each task can be tagged with a category.

Categories can be used to discriminate between tasks that need a specific worker (like GPGPU tasks vs

CPU onlyl tasks)
-

seq_short
seq_long

waiting for all the parent tasks to be (successfully) achieved

ready to run

actually running

task succeeded

task failed.

dynamically defused by a parent task.

 A2S: Manage parallelism heterogenity
Each task can be tagged with a category.

-> Categories can be used to discriminate between tasks that need a specific worker
(ex. GPGPU tasks vs CPU only tasks)

-> We use categories to discriminate between parallel or sequential tasks
(full_node, half_node, quarter_node, sequential)

We could write a SLURM submission script for each category running :

 rlaunch rapidfire -q <query on category>

Fireworks provides queue adaptors allowing to directly submit to nodes :

qlaunch -w full_node.yaml -q full_node_qadapt.yaml rapidfire -m 5
-> ensure 5 nodes are always submitted to work on full_node category tasks

Repartition between parallel and sequential tasks can vary a lot along time
-> severe load imbalance (CPU waste)

 A2S: The Rocket scheduler

- We wrote a rocket scheduler which is the only program actually submitted on nodes.
- It knows :

-> How many tasks in each category are available
-> How many ressources are available on its node
-> How many workers are active

- It launches the READY tasks (starting from higher parallelism to lower)
- it works in a Master / slaves model
- Each instance is responsible to fill its node’s cores

- The master instance :
-> computes the needed ressources to absorb the current tasks stream
-> is able to :

- submit more SLURM jobs if the load increases
- stop running jobs if the load decreases

 A2S: Automated execution and ressource provisionning

- Once a WF is submitted, its execution is automatic and start ASAP.

- The Master instance of rocket_scheduler provisions new SLURM jobs when they are needed.

- Each instance of rocket_scheduler is responsible to stop itself if the overall capacity of ressources
overcomes the global needs.

don’t waste ressources => get more ressources !
(SLURM fair share)

───┬──
 1 │ File: a2s_scheduler.slurm
───┼──
 1 │ #!/usr/bin/env bash
 2 │
 3 │ #SBATCH --exclusive -N 1 --sockets-per-node=2
 4 │ #SBATCH -t 8-00:00:00
 5 │ #SBATCH -p pri2016
 6 │ #SBATCH -A grant2ipgs
 7 │ #SBATCH -J rockets
 8 │
 9 │ rocket_scheduler $SLURM_JOB_ID $SLURM_CPUS_ON_NODE
───┴──

A2S: Two operating modes : Stream & On demand
 Stream mode:

 Fully automated.
 Fixed set of parameters
 Workflow creation is triggered by the availability of new sources
 Intended to produce products based on one basic source as soon as it is available

 On demand mode:
 Configurable : Parameter file + entry point

 Workflow creation & registration.
 Execution on nodes is managed by the system

 Can work on :
 Remote / provided data sources
 A²S stored products and sources

 Intended to be triggered through web-services
 Time series processing of individual products from the stream platform

190 To
(500 To)

A2S: Storage + managed cache

Use of a SRB (Storage Ressource Broker) : iRODS

Our configuration:
- Available capacity : 1 PB
- No data redundancy
- RAID 6+1 disk failure protection
- Actually 1O Gbits/s HPC <-> storage link
- Next 100Gbits/s inside Data Center

Data Movement is expensive !!!
- We built a 11TB BeeGFS high bandwith managed cache system.

-> All products are written in cache, then compressed and pushed on storage
-> The cached files live for a fixed duration (with a prolongation each time it used)
-> cache miss ? File is silently recreated from storage in background
-> Stream mode should operate quite only on cached files

190 To
(500 To)

A2S: some figures to conclude
We ran extensive tests on Stream platform this summer on year 2017 data.

- over 98 tiles on France & Belgium : Water surface & Urbanized surface
- over 23 tiles distributed world wide : S2 Offset tracking

-> ~ 1 month computation / year of data
=> ~ 1/10 global computing capacity

-> 4 TB storage used

A²S started operational product realisation phase
for Théia, CNES and ESA-GEP

