

Sentinel-1 Interferometry SAR for large scale: Mekong Delta

Preliminary results

Dinh HO TONG MINH

dinh.ho-tong-minh@irstea.fr La Petite-Pierre, October 2019

Collaboration with: Le Trung Chon (Itchon@hcmut.edu.vn) Ho Chi Minh City University Technology, Vietnam

From PS to PS+DS processing

Key idea: Instead of analyzing the entire images, the analysis is based only on the selection of a number of highly coherent (Permanent/Persistent Scatterers - PS), temporally stable, point-like targets within the imaged scene.

- <u>Systematic analysis</u> of InSAR data taking advantage of the available data set.
- <u>Estimation and removal</u> of the Atmospheric Phase Screen (APS).
- <u>Extraction</u> of the phase contribution due to target motion with high accuracy.

Beyond PS: We want to use both deterministic (point-wise - PS) and stochastic (distributed - DS) targets. To detect DS, we adopt a statistical test to identify Statistically Homogeneous Pixels (SHP) in the neighborhood of each pixel.

Possible interferometric sets

Ferretti et al. "A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR"

Sentinel-1

Daily coverage of high priority areas, e.g. Europe, Canada, shipping routes

Main modes of operations:

- IW over land and coastal waters (normally VV or VV-VH polarization)
- EW over extended sea (VV or VV-VH) and sea-ice (HH or HH-HV) areas
- WV over open oceans

Big Data Challenges

Data volume

Data continuity

Data sharing

th SMOS

2014

Data quality

Innovation

Timeliness

Mission synergies

Differences of about 20cm

Uniqueness

No really easy: TOPS Sentinel-1 phase is very sensitive to geometric errors. In case of a small misregistration (i.e., about 1.5 cm vs 15 m azimuth pixel size) error between a pair of images, this residual term leads to a phase jump in the interferometric phase. Due to this limitation, doing TOPS interferometry needs extremely high corregistration requirements (e.g., an accuracy of 0.001 pixel in azimuth direction) have to be met.

3 swaths 53 bursts each swath

71705×69714 ~ 49×10⁸

Processing: using 55 Sentinel-1 TOPS images from 2015-2019

yyyy-mm-dd

20150721	
20150907	
20151001	
20151130	
20151224	
20160117	
20160210	
20160305	
20160410	
20160504	20171008
20160609	20171101
20160703	20171201
20160808	20171207
20160901	20180106
20161007	20180205
20161106	20180301
20161206	20180406
20170105	20180506
20170111	20180605
20170204	20180705
20170312	20180804
20170405	20180903
20170505	20181003
20170604	20181102
20170704	20181202
20170710	20190107
20170716	20190206
20170722	20190302
20170803	20190401
20170809	20190501
20170902	20190519
20171002	20190525

300 km

SAR intensity image

250 km

Many well-known time series InSAR processor available

Name	Year	Main code	Creator	Note	Support	APS removal
Gamma	1995	С	C. Werner	Commercial (\$\$\$)	PS SBAS	Yes
TRE	1999	n/a	A. Ferretti	Service demand	PS PSDS	Yes
StaMPS	2005	Matlab	A. Hooper	Open source	PS SBAS	Limit – need TRAIN
SARSCAPE	200x	n/a	Sarmap	Commercial (\$\$)	PS SBAS	Yes
SARPROZ	2009	Matlab	D. Perissin	n/a	PS	Yes
NSBAS	2012	Fortran	MP. Doin et al.	Open source	SBAS	No need model
TomoSAR	2014	C	D. Ho Tong Minh and YN. Ngo	Free service collaboration	PS SBAS PSDS	Yes
MintPy	2018	Python	F. Amelung et al.	Open source	SBAS	No need PyAPS

RAM consideration

3 swaths, 10 bursts each swath and 55 images: 55x25237x67469 ~ 55x 17x10⁸

Original 55x 17x10⁸ = 750 GB

(SLC float complex)

Consider PSDS (i.e., TomoSAR) scenario:

We extract signals at PSDS points. We need three time memory to process signal.

Initial PSDS

3× 55× 14×10⁶ = 18 GB

We are able to do if RAM > 18 GB.

14×10⁶

4.2×10⁶

RAM consideration

3 swaths, 10 bursts each swath and 55 images: 55x25237x67469 ~ 55x 17x10⁸

Original 55x 17x10⁸ = 750 GB

(SLC float complex)

Consider SBAS (i.e., MintPy) scenario:

We multilook (i.e., 3×15) to reduce the data dimension.

We need three time memory to produce a simple network interferogram + one more time to store geometry information.

SBAS 4x 55x 17x10⁸/45 = 66 *G*B

We are able to do if RAM > 66 GB.

RAM consideration

3 swaths, 10 bursts each swath and 55 images: 55x25237x67469 ~ 55x 17x10⁸

PSDS (i.e., TomoSAR): Need 18 GB RAM (full resolution)

SBAS (i.e., MintPy): Need 66 GB RAM (45 multilooks)

Delta-wide subsidence

300 km

Delta-wide subsidence

Delta-wide subsidence

So, with the capacity of RAM of 128/256 GB (in 2019), we can handle such 55 images Big Data.

 However, the problem is that we have more than 200 images at the moment (2014-2019) and much more in near future.

Perspective

• Is there a possibility to solve this problem?

In the literature, there are many works relative to optimize for the pre-processing, **few publications** reports on adapted methods for the time series analysis.

- 1. With SBAS (i.e., **MintPy**), it always loads all the data and store at once. So, the best is select a subset to reduce the memory.
- 2. With PSDS (i.e., **TomoSAR**), it is possible to adapt the method to consider each layer (one image) only to process signal.
- How to ingest the new observations to the processed results? Do we need to
 process again?
- How fast is it ? Is is a couple of weeks or months ? Is this faster with cloud computing (i.e., HPC, AWS) ?
- Finally, all classical InSAR problem with Big Data: phase unwrapping, Deep Learning, phase calibration,
- Look for future researches on methods and demonstrations.

Look for paper research

an Open Access Journal by MDPI

Synthetic Aperture Radar Interferometry in Big Data Era

Dear Colleagues,

Guest Editor:

IRSTEA-UMR TETIS

Message from the Guest Editor

Dr. Habil. Dinh Ho Tong Minh

Dinh.Ho-Tong-Minh@irstea.fr

Deadline for manuscript submissions: **30 June 2020** Synthetic Aperture Radar (SAR) Interferometry (InSAR) is a unique technology that widely used to measure ground subsidence and has already shown its ability to map such phenomena on a large spatial scale with millimetric accuracy from space. Sentinel-1 and the near future NISAR missions offer an unprecedented multi-temporal dataset of InSAR. Consequently, the processing of the Big Data is challenging for InSAR analysis techniques. This Special Issue is intended to present high-quality scientific review papers of existing achievements in the development and applications of InSAR techniques, or research papers that describe improved methods of InSAR in Big Data era; improved methods of interpretation of InSAR data; as well as demonstration InSAR Big Data applications. The recent Deep Learning technique for InSAR applications will also be included in this Special Issue.

https://www.mdpi.com/journal/remotesensing/special_issues/sar_big_data