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Context	
Earthquakes	and	extreme	rainfall	(typhoons)	can	cause	>1000s	to	100,000s	landslides.	
	
Optical	imagery		gives	the	opportunity		to	rapiddly	and	efficiently	detect	and	map	landslides	
in	very	short	time	
	

Pre-event	image	
	

Post-event	image	
	

Landslide	inventory	
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Classification	–
Machine	Learning		

Optical	images	
HR	&	VHR	

Mapping	Landsat-8	

Sentinel-1	

Sentinel-2	

SPOT	

Context:	input	data	
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Workflow	Image	selection		
(optical:	S2,	L8,	SPOT,	Pleiades,		
radar:	S1,	in	progress	…)	

Cloud	detection	
(for	S2	&	L8)	

Cloud	mask	
(for	S2	&	L8)	Re-sampling	 Mean-filtering		

(for	VHR	images)	

Features	
computation	

						Spectral,							Textural	
										Topography	(multi-scale)	
							Radar	(in	progress)	

Feature	
importance	

graph	
Per	pixel	

classification	
Probability	

map	

Random	forest	
classifier	

Mandatory	input	
files:	
-  Training	areas	
-  Training	samples	

Option	:	
-  Area	of	interest	

segmentation	

Post-
processing	
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Workflow	

•  Variables	selection	with	
respect	to	their	relative	
importance	

•  Selection	of	the	most	
reliable	pixels	to	add	in	
the	training	sample		

	
	
•  Active	learning	cycle	
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Location:		

Mapping	of	landslides	after	heavy	rains	and	cyclone	Komen.	
Myanmar,	2015	

First	Results	
Input	data:	
-	Landsat	8	image	pre-event	(resolution	:	15m	for	panchromatic	band,	30m	for	the	RGB	+	
NIR	bands)	
-	Sentinel	2	image	post-event	(resolution	:	10m	for	RGB	+	NIR	bands)	
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Manual	digitalisation	 Per	pixel	classification		

10%	 6%	 3%	

Mapping	of	landslides	after	heavy	rains	and	cyclone	Komen.	
Myanmar,	2015	

Pixels	to	
classify	

50	048	209		 52	257	598	 53	831	443	

Training	
pixels	

5	361	685	(10%)	
(-:5	180	228,		
	+:181	457)	

3	152	296	(6%)		
(-:	3	030	935,		
+:	121	361)	

1	578	451	(3%)	
(-:	1	540	660,	
	+:37	791)	

(	x%)	:	ratio																														
(nb	pixels	in	training	set)	/				
(nb	total	of	pixels)		
+	:	landslide	pixel	
-		:	no-landslide	pixel	
	

First	Results:	
	
Training	set	size	influence		
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First	Results:	 Mapping	of	landslides	after	Hurricane	Matthew.	Haïti,	2016	
	
	
	

Location:		

Input	data:	
-	SPOT6	images	(resolution	:	1.5m	for	panchromatic	images,	6m	for	the	RGB	+	NIR	images)	
-	SPOT7	images	(resolution	:	1.5m	for	panchromatic	images,	6m	for	the	RGB	+	NIR	images)	
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First	Results:	 Mapping	of	landslides	after	Hurricane	Matthew.	Haïti,	2016	
	
	
	A	lot	of	small	

landslides	well	
identified		

	
	

But	some	zones	
are	more	
difficult	to	
classified	…		

	
	 Rivers	&	
agricultural	

plots	
erroneously	
mapped	

Pixels	mapped	as	
landslide	
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Panchromatic	image	+		
manual	digitalization		
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First	Results:	Mapping	of	landslides	after	cyclone	Idai.	Mozambique,	03/2019	
	
	
	

Input	data:	
-  Sentinel2	images	(resolution	:	10m-	60m)	
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First	Results:	
Sentinel	2	pre-event:	23	Feb.	2019		
Zone	1	

Mapping	of	landslides	after	cyclone	Idai.	Mozambique,	03/2019	
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First	Results:	Mapping	of	landslides	after	cyclone	Idai.	Mozambique,	03/2019	
	
	
	

Sentinel	2	post-event:	25	March	2019		
Training	area:	100	landslides	interpreted	for	the	training	sample,	eg.	ca.	30	min	of	labour	work	
Zone	1	
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First	Results:	Mapping	of	landslides	after	cyclone	Idai.	Mozambique,	03/2019	
	
	
	

Sentinel	2	post-event:	25	March	2019		
Training	area:	100	landslides	interpreted	for	the	training	sample,	eg.	ca.	30	min	of	labour	work	
Zone	1	
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First	Results:	Mapping	of	landslides	after	cyclone	Idai.	Mozambique,	03/2019	
	
	
	

Sentinel	2	pre-event:	23	Feb.	2019		
Zone	2,	with	no	reference	inventory	
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First	Results:	Mapping	of	landslides	after	cyclone	Idai.	Mozambique,	03/2019	
	
	
	

Sentinel	2	post-event:	25	March	2019		
Zone	2,	with	no	reference	inventory	
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First	Results:	Mapping	of	landslides	after	cyclone	Idai.	Mozambique,	03/2019	
	
	
	

Sentinel	2	post-event:	25	March	2019		
Zone	2,	with	no	reference	inventory	
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Optimizations	&	Perspectives:	

	•  Training	set	optimization:	
-  Active	learning	implementation		
	
•  Best	selection	of	the	attributes	
-  Adding	radar	attributes	(use	of	S1tiling	(Koleck	et	al.,	CNES/Cesbio))	
-  Adding	height	information	(from	de	DSM	Pléiades,	(S2P	CNES))	
	
•  Classifier	generalisation	
-  Algorithm	able	to	classify	any	kind	of	objects,	based	on	a	reliable	training	sample			
	
•  Upscaling	
-  Porting	the	code	on	an	high	performance	computer	
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