Post-doctorat **cnes** application

User-tailored machine learning IMage CLASSification for land surface mapping

Déprez A.^(1, 2), Odin M.⁽³⁾, Nakhostin S.⁽³⁾, Malet J.P.⁽³⁾, Lazrak B.⁽³⁾, Stell E.⁽³⁾, Michea D.⁽¹⁾, Collet A.⁽²⁾, De Boissezon H.⁽²⁾, Sand A.⁽²⁾, Stumpf A.⁽³⁾

⁽¹⁾ A2S platform « Application Satellite Survey », University of Strasbourg, France (plateforme-a2s@unistra.fr) ⁽²⁾ CNES, French Space Agency, Toulouse, France

⁽³⁾ Institut de Physique du Globe de Strasbourg, Ecole et Observatoire de Sciences des la Terre, CNRS/Univesity of Strasbourg, France

Earthquakes and extreme rainfall (typhoons) can cause >1000s to 100,000s landslides.

Optical imagery gives the opportunity to rapiddly and efficiently detect and map landslides in very short time

Pre-event image

Post-event image

Landslide inventory

ब Sentinel-1

First Results Mapping of landslides after heavy rains and cyclone Komen. Myanmar, 2015

Input data:

- Landsat 8 image pre-event (resolution : 15m for panchromatic band, 30m for the RGB + NIR bands)

- Sentinel 2 image post-event (resolution : 10m for RGB + NIR bands)

Location:

1. Context	2. Workflow	3. First Results	4. Perspectives

First Results:

Mapping of landslides after heavy rains and cyclone Komen. Myanmar, 2015

Training set size influence

Pixels to	50 048 209	52 257 598	53 831 443
classify			
Training	5 361 685 (10%)	3 152 296 (6%)	1 578 451 (3%)
pixels	(- :5 180 228,	(- : 3 030 935,	(- : 1 540 660,
	+ :181 457)	+ : 121 361)	+ :37 791)

(x%) : ratio
(nb pixels in training set) /
(nb total of pixels)
+ : landslide pixel

- : no-landslide pixel

Manual digitalisation

6%

Per pixel classification

10%

3%

First Results: Mapping of landslides after Hurricane Matthew. Haïti, 2016

Input data:

- SPOT6 images (resolution : 1.5m for panchromatic images, 6m for the RGB + NIR images)
- SPOT7 images (resolution : 1.5m for panchromatic images, 6m for the RGB + NIR images)

Location:

First Results: Mapping of landslides after Hurricane Matthew. Haïti, 2016

A lot of small landslides well identified

But some zones are more difficult to classified ...

Rivers & agricultural plots erroneously mapped

Panchromatic image + manual digitalization

Pixels mapped as landslide

0 0.25 0.5 0.75 1

Input data:

- Sentinel2 images (resolution : 10m- 60m)

Sentinel 2 **pre-event**: 23 Feb. 2019 Zone 1

Sentinel 2 post-event: 25 March 2019

Training area: 100 landslides interpreted for the training sample, eg. ca. 30 min of labour work Zone 1

Sentinel 2 post-event: 25 March 2019

Training area: 100 landslides interpreted for the training sample, eg. ca. 30 min of labour work Zone 1

Sentinel 2 pre-event: 23 Feb. 2019

Zone 2, with no reference inventory

Sentinel 2 **post-event**: 25 March 2019 Zone 2, with no reference inventory

Sentinel 2 **post-event**: 25 March 2019 Zone 2, with no reference inventory

1. Context2. Workflow3. First
Results4.
Perspectives

Optimizations & Perspectives:

- Training set optimization:
- Active learning implementation
- Best selection of the attributes
- Adding radar attributes (use of S1tiling (Koleck et al., CNES/Cesbio))
- Adding height information (from de DSM Pléiades, (S2P CNES))
- Classifier generalisation
- Algorithm able to classify any kind of objects, based on a reliable training sample
- Upscaling
- Porting the code on an high performance computer

20

Optimizations & Perspectives:

- Training set optimization:
- Active learning implementation
- Best selection of the attributes
- Adding radar attributes (use of S1tiling (Koleck et al. Cesbio))
- Adding height information (from de DSM Pléiades (S2P CNES))
- Classifier generalisation
- Algorithm able to classify any cincological bies, based on a reliable training sample
- Upscaling
- Porting the code on this performance computer

