#### **Closure phases and biases in InSAR products**

Francesco De Zan

Contributions by Homa Ansari, Giorgio Gomba, Alessandro Parizzi

Remote Sensing Technology Institute German Aerospace Center (DLR)

MDIS Workshop La Petite-Pierre, France

October 16<sup>th</sup>, 2019

## Knowledge for Tomorrow

# **Performance comparison study**

#### Data set:

Sentinel-1 A/B time series : IW mode acquisition time span size of the time series extent of the chosen area  $\approx 30000$  km<sup>2</sup> number of processed bursts

**Benchmark:** 

Persistent

**Scatterer** 

Interferometry

(PSI)















12 mm / 365 days \* 6 days = 0.2 mm = 2.6 deg



#### Interferograms vs. closure phase



Mis-closures are possible only with spatial averaging!



F. De Zan, M. Zonno and P. López-Dekker, "Phase Inconsistencies and Multiple Scattering in SAR Interferometry," in IEEE Transactions on Geoscience and Remote Sensing, 2015.

## Rain event in Japan (Kumamoto)

**Closure** phase



~12:18 11Jul-25Jul-8Aug

Weather radar images





## Mts. Hakone & Fuji (Japan), ALOS-2, 2014-2015 Closure phase +/- 40 deg



#### Mexico, Sentinel-1, Descending, Closure Phase +/- 30 deg, 2014-2016



# One-year deviation between 12-day and 24-day S1 interferograms

- Colorscale: +/- 360 deg => 28 mm/yr
- Far away from 1 mm / year target : necessity of log-span interferometric measurements



# Interferometric phases and velocities are biased

The presence of closure phases means that there is a path dependency in the temporal integration



- Presence of systematic closure phases means that
  - the interferometric phases are biased, at least some of them
  - velocity estimates are biased

We now know that **short term** interferograms are the culprit!



# How to estimate the bias magnitude? (without doing all the processing)

- Average closure phases with short and long arms
- Assumption: the long arms have little bias
- The asymmetric mis-closure should represents mostly the short-term bias





# Moisture inversion (Kumamoto, ALOS-2)





F. De Zan and G. Gomba, Vegetation and soil moisture inversion from SAR closure phases: first experiments and results, Remote Sensing of Environment (2018)

We have some validations...



G. Gomba and F. De Zan, *Estimating soil moisture from SAR Interferometry with Closure Phases*, IGARSS 2019 (poster)

# Moisture signal in SAR interferograms (L-band)

- Magnitude: a few centimeters in L-band (10-20 % of wavelength, S. Zwieback)
- Corrections for InSAR: two examples over Kumamoto with our model







#### Modeling the velocity bias

- The moisture model seems not to describe the bias (wrong sign, more seasonal)
- Some scatterer electrically moving away from the satellite at 0.1 mm / day
- Biomass growth?



# **Current theoretical performance**

• Assuming four years of Sentinel-1 with 60 acquisition / year

|           | Residual<br>troposphere | Residual<br>ionosphere | Instrument/<br>geometry | Total  | Deformation<br>rate |
|-----------|-------------------------|------------------------|-------------------------|--------|---------------------|
| Germany   | 1.0 cm                  | 1.0 cm                 | 1.5 cm                  | 2.1 cm | 1.3 mm/yr           |
| Indonesia | 3.0 cm                  | 1.0 cm                 | 1.5 cm                  | 3.5 cm | 2.1 mm/yr           |

- To reach this performance at large scale (large distances) we need:
  - Good instrument / orbits
  - Tropospheric corrections (numerical weather models, e.g. ERA5)
  - Ionospheric corrections (e.g. from CODE model or split spectrum)
  - Accurate processing!



#### **Performance of corrections with ECMWF ERA5**



Pakistan



Distance [km]

Distance [km]

#### PSI vs. GPS std: 0.86 mm/yr



#### North and East Anatolian Faults – PSI



## A phase product based on the full covariance matrix

It would like to propose a phase product to be provided routinely (for instance by ESA)

- □ Multilooked (100 m 200 m) => much smaller than SLC's
- □ Based on full covariance => long-term stable
- Including correction layers (troposphere, ionosphere, SET...)
- Wrapped



Monti Guarnieri & Tebaldini, *On the exploitation of target statistics for SAR interferometry applications,* TGaRS (2008) Ferretti et al., *A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR*, TGaRS (2011) Ansari et al., *Efficient phase estimation for interferogram stacks*, TGaRS (2018) Ansari et al., *Sequential estimator: Toward efficient InSAR time series analysis,* TGaRS (2017)

#### **Conclusions and recommendations**

Velocity biases for short lags can reach 5-10 mm/yr (or more)

#### Moisture related phases

- Compensation for L-band interferograms (1-2 cm)
- Do not seem to explain the velocity biases

#### The velocity biases can easily be a performance bottleneck!

- Modeling & compensation
- Use of long-term interferograms, as in Phase Linking or EMI
- Single-look interferometry

A phase product based on the full covariance matrix