

MDIS 2019

CO3D PROGRAMME & DOWNSTREAM

LAURENT BOISNARD – DNO/OT

CO3D main challenges

Worldwide Optical DEM Goal 2025 Local and regional revisited worksites

Cost-effective and massive 3D production (DSM)

Full automatic

Up to 50 Mkm²/year

Investment in cloud technology easing further deployment of digital platforms for downstream services

Low-cost satellite constellation

50 cm-class imagery R, G, B (NIR) bands Bayer array sensor

Synchronous stereo by pair of satellites

Altimetric accuracy Goal 1m (relative) GSD 1m full resolution

Asynchronous Stereo

Synchronous Stereo

CO3D Space Segment

CO3D System Products

Level 4 : half-degree tile world coverage

Interest of DEM4Ortho for orthorectification of VHR images (50 cm or below)

SRTM (30m)

26.402 km x 26.413 km - WGIUTM215/WGUTM215/m/D

Animation illustrating unwanted displacements between 9 Pleiades orthorectified images (9 angles)

Interest of DEM4Ortho for orthorectification of VHR images (50 cm or below)

DSM MicMac (50cm)

26.402 km x 26.413 km - WGIUTM215/WGUTM215/m/D

Animation illustrating absence of unwanted shift between 9 Pleiades orthorectified images (9 angles)

Interest of DEM4Ortho for orthorectification of VHR images (50 cm or below)

DSM/DTM HR (5m) Illustration

26.402 km x 26.413 km - WGIUTM215/WGUTM215/m/D

Animation illustrating absence of unwanted shift between 9 Pleiades orthorectified images (9 angles)

CO3D Downstream

cnes Data access – first year on orbit (probatory phase)

DSM mission large-scale demonstration

Land surfaces : 150 Mkm² World DSM 60°S – 70°N : 120 Mkm²

- Results of large-scale demonstration will belong to CNES (full ownership)
- Data also available to French Ministry of Defense to feed military geo-information systems
- CNES et Frend MoD can share data with institutional partners (French, European, International)
- Data accessible to downstream ecosystem players including science community

(12) _{© cnes}

Data access – exploitation phase (commercial)

General license philosophy

- CO3D system commercially operated by Airbus DS GEO
- Airbus DS GEO owns products and added-value products (patrimonial)
- But, in co-investment context, CNES and French MoD benefit from :
 - > a granted access to the satellite resource
 - > a large concession of rights of data usage and sharing, and creation of added-value products
 - > a cession of rights for derivative works
 - > preferential conditions for data acquisition
- As part of its missions, CNES will be able to use CO3D products (2D or 3D)
 - > for its own purposes (e.g. R&D, derivative works, improvement of existing products)
 - > in the frame of projects with French institutional users (with same preferential conditions)
 - > in the frame of international partnerships
 - supporting private players for application demonstrations or downstream services with no immediate commercial purpose (e.g. priming)

A JOINT PROJECT shall be set up beforehand

(13) _{© cnes}

Nota : French institutional user = legal entity governed by public law, or legal entity governed by private law but performing a general interest mission by delegation of a public legal entity

Data access – exploitation phase (commercial)

Local and regional worksites

- Free access up to 600 000 km² every year (DSM full resolution)
 - Preliminary sizing for R&D (e.g. coverage of ice caps), but possible to include other thematics (e.g. geophysical risks) → scientific arbitration to be envisaged
- Above 600 000 km² : price conditions decreasing with surface = 1/10th Pleiades institutional price
- Maximum annual surface for regional worksites : 15 000 000 km²
- Coverage rate 100% (requiring multi-pass)

Worldwide DSM

- In parallel, production of Worldwide DSM within 2-5 years (completeness 90%)
 - > N-tuple required for DSM production collected by constellation within the 2 years following IOV
- Cost price conditions if commissioned by CNES
- Worldwide DSM free for CNES and partners if commissioned by a third party, public or private
- Airbus DS is exclusive operator for commercialization of full resolution
- Commercialization opened to CNES and partners at lower resolution (10 or 15 m)

Production capability : estimated between 30 and 50 Mkm² a year

Consumption annual monitoring

Data access – exploitation phase (commercial)

Drawing rights

- Priority mechanism based upon notions of update rate, completion time, notice
 - Update rate : DSM product update period
 - > Completion time : worksite completion duration starting from 1st acquisition
 - > Notice : delay between commissioning and starting
 - New worksites counted by fraction of 625 km² (25 x 25 km)
- Examples below

Type of DSM worksite	Characteristics	Maximum surface yearly
	Notice : few months to 1 year	
Country belonging to Arc of Crisis	Completion time : 1 year	5 Mkm²/year
	Update : [TBD]	
	Notice : 6 months	
50x50 km² worksite Miscellaneous, regional	Completion time : 6 months	40 worksites - TBC (twice a year)
	Update : 6 months	, , , , , , , , , , , , , , , , , , ,
50x50 km² worksite	Notice : 3 months	
Glaciology in Artic Area	Completion time : 1 month	40 worksites - TBC (6 times a year)
Access to high latitudes up to 80°N	Update : 2 months	

Access to commercial archive through Airbus DS GEO digital platform (One Atlas or other)

CO3D Downstream

Objectives

Main goals of the downstream programme are the following :

- Prepare users to the arrival of future CO3D data
- Make demonstration of relevance/suitability of application cases elaborated with players of the downstream ecosystem and science community (preparation programme usages)
- Carry out associated studies, engineering and developments (preparation programme technical)
- Organize access to satellite resource (acquisition policy) and governance within users communities, in particular after the DSM demonstration phase
- Prepare data dissemination and identify distribution channels

Meet the users need as early as possible

CO3D Downstream

(17) _{© cnes}

Objectives

Some highlights of the downstream programme :

The highly innovative aspect of CO3D mission and the wide spectrum of applications encourage to open the downstream programme right now together with phase B

- Programme to be built on devoted budget line (in addition to CO3D project budget line)
- CNES positioned as co-prime at system level, responsible for image quality activities, 3D products performances and supply of operational image processing chain

Master card : institutional capacity of expertise, support and advice for the benefit of downstream services and users

1 m-class altimetric accuracy

Low-cost full-automatic 3D products

A new generation of low-cost EO satellite

A public-private partnership to help industry addressing a large domain of business around terrain mapping and 3D But giant opportunities for Earth Science !

Thank you for your attention

Time for calls and thinking

Contact CNES (Toulouse) Laurent Boisnard (CO3D Downstream) <u>laurent.boisnard@cnes.fr</u> Catherine Proy (ForM@Ter) <u>catherine.proy@cnes.fr</u> Thanks to Laurent Lebegue (CO3D project team) <u>laurent.lebegue@cnes.fr</u> **CO3D Downstream**

Spare slides

CO3D Image Quality

- AIRBUS
- R,G,B • 0.50 m GSD

 - MTF_{static} ~7 % @ Fe/2
 SNR_{R,G,B} ~ 30 @ 15 W/m²/sr/µm
- NIR
 - 2 m GSD

 - MTF_{static} ~ 20% @ Fe/2
 SNR_{NIR} ~ 20 @ 15 W/m²/sr/µm
- 14 km swath •
- System Geoloc
 - < 10 m CE90

CO3D image simulation 2 m NIR Amiens (France)

Testing of CO3D algorithmic chain with Pleiades

Full automatic 1 m DSM derived from stereo images over Nice downtown (France)

Output Formats

Point Cloud raw or with triangular mesh Coordinates text file (X, Y, Z)

Structure optimized for display https://www.kalideos.fr/drupal/Potree_Lautaret

Digital Surface Model (DSM) Projected altitudes

« **True ortho** » matching with DSM Projected radiometry

Other examples : Tri-Stéréo Pléiades (Calanques, Marseille) © CNES (2013), distribution Airbus DS/ Spot Image

CO3D system product masks

