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Global InSAR Databases

.

2) InSAR detections often pre-eruptive (~50%):

1) A significant statistical link to volcanic eruptions :

Biggs et al, 2014, Furtney et al, 2018, Ebmeier et al, 2018

3) Architecture of active magmatic systems:



Global Volcano Monitoring: The LïCSAR-volcano database

http://comet.nerc.ac.uk/ COMET-LiCS-portal/). 

§ Sentinel-1 generates >10-TB data 
per day

§ The explosion in data has brought 
major challenges associated with 
timely dissemination of 
information.

• Test dataset of ~30,000 interferograms at >900 active volcanoes produced by LiCSAR
• Now up to >200,000 (October 2019).
• Anticipate 1 million images per year when fully operational.

http://comet.nerc.ac.uk/COMET-LiCS-portal/


Ground deformation, background, noise or atmosphere?

Erta Ale Etna

Automated Processing: The LïCSAR-volcano database



Image Classification with Machine Learning
Feature extraction

Deep learning à Feature extraction and modelling steps are automatic.

Classification



Proposed framework

Prediction 
Process

Training 
Process



Training Dataset 1: Envisat Data 

Envisat Dataset

Data augmentation: rotations, flips, distortions, and pixel shifts.

300 positive samples à 10,000 positive samples 

Edge detection to reduce negative samples, 
then randomly select 10,000 of them. 

Anantrasirichai et al, 2018, JGR



Deformation (D)
§ Use a Monte Carlo approach to select 

source parameters and project the 3-D 
surface displacement into the satellite 
line-of-sight.

§ Okada, Mogi, Fialko.

Training Dataset 2: Synthetic components 

Stratified atmosphere (S)
§ Generic Atmospheric Correction Online 

Service (GACOS) 
§ 100 GACOS tropospheric delay maps from 

each of 100 representative volcanoes with 
12-day intervals.

Turbulent atmosphere (T)
§ Turbulent atmospheric delays are 

spatially correlated and their 
covariance can be described using 
an exponentially decaying function

Anantrasirichai et al, 2019, RSE



‘Easy’ Example:  
(S from Aluto, Ethiopia)

Stratified Atmosphere (S) only

Final Interferogram

Stratified Atmosphere (S) only

Final Interferogram

‘Challenging’ Example:
(S from Etna)

Training Dataset 2: Synthetic Interferograms 

Anantrasirichai et al, 2019, RSE



30,249 interferograms in LicSAR test dataset 

Training Data #P #TP #FP #FN
Envisat 1369 42 1327 0

Synthetic aD+bS+cT 334 41 293 1

True Positives (TP)

Application to Real Data

False Positives (FP)



30,249 interferograms in LicSAR test dataset 

Training Data #P #TP #FP #FN
Envisat 1369 42 1327 0

Synthetic aD+bS+cT 334 41 293 1
Envisat  + FP 104 42 62 0

Synthetic + FP 50 41 9 1

True Positives (TP)

Application to Real Data

False Positives (FP)



30,249 interferograms in LicSAR test dataset 

Training Data #P #TP #FP #FN
Envisat 1369 42 1327 0

Synthetic aD+bS+cT 334 41 293 1
Envisat  + FP 104 42 62 0

Synthetic + FP 50 41 9 1
--------------------------------- ---------- ------ -------- ------
Synthetic + FP + GACOS 41 41 0 1True Positives (TP)

Application to Real Data

False Positives (FP)



False negative result Sierra Negra
(20170425-20170531)                                       (20170519-20170531)                                 (20170519-20170718) 

§ Need a new training strategy/ dataset to detect Slow Deformation:
§ Stacked Interferograms
§ Wrapping Interval
§ Outlier Detection

False Negatives
§ Current CNN trained to detect rapid deformation signals that produce multiple fringes in a 

single interferogram



Detecting Slow Deformation
• Slow, steady deformation is 

common. 
• Can we improve detection 

thresholds?
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Detection Thresholds: Synthetic Data

Anantrasirichai et al, in press
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Synthetic Data
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Anantrasirichai et al, in press



Detection Thresholds: Synthetic Data

Anantrasirichai et al, in press
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Detection Thresholds: Synthetic Data

Anantrasirichai et al, in press
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Detection Thresholds: Synthetic Data

Anantrasirichai et al, in prep

Increasing Noise

Detection thresholds for wrapped 
interferograms 
Ø ~ 4cm with no noise.
Ø >6cm with significant atmospheric 

noise

Effect of altering wrapping
Ø Shifting boundaries affects individual 

cases, but no net effect overall
Ø Threshold reduced to < 4 cm even in 

noisy cases by increasing wrap gain.
Ø But, very high wrap gains cause false 

positives.



Detecting Slow Deformation
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4 cm in 4 years of Sentinel-1 data
= 1 cm/yr



Example 1: Campi Flegrei, Italy

μ=1: detect 
deformation 7 months 
after onset (~ 5 cm)

μ=8: 15 false positives 
before onset of 
deformation

New pulse of uplift started in 
July 2017, rate of 8.5 cm/yr.

manuscript submitted to Geophysical Research Letters

tively. However, the higher wrap gains (µ > 4) incorrectly exceed the detection thresh-188

old of P = 0.5 before the deformation began, with a total of 15 false positives for µ =189

8.190

At Dallol, the deformation time series is noisier and the rate of deformation (3.5 cm/yr)191

is lower than the previous example. At µ = 1, the probability first exceeds P = 0.5192

after 21 months, but continues to drop below the threshold throughout the entire 4 year193

time series (Figure 3 right). The cumulative deformation after 4 years is 10 cm, signif-194

icantly greater the synthetic detection threshold. Visual inspection shows that the low195

probabilities occur when the surrounding area is incoherent, a situation that was not in-196

cluded in the synthetic tests. In these cases, doubling the wrap gain to µ = 2 increases197

the probability above the threshold (P = 0.5). The highest wrap gain µ=8 identifies198

deformation at point B in only the second time step when the displacement is < 1 cm,199

but it falsely identifies deformation at point A for the first 9 months. Examples of wrapped200

interferograms at Campi Flegrei and Dallol when µ=1 and 2 are shown in Figure S3, and201

the interferograms causing false positives at Dallol are shown in Figure S4.202

Increasing the wrap gain (µ) of the interferograms reduces the detection thresh-203

old for the CNN, thus allowing us to detect slow, sustained deformation earlier in time204

series. However, increasing the wrap gain too much causes the CNN to misidentify fea-205

tures caused by atmospheric artefacts. Consequently, decisions based on only large val-206

ues of µ would have many false positives, while those using only small values of µ might207

not be able to detect slow deformation. We therefore compute the final probability P208

by combining the probability at a range of wrap gains (Equation 1), using N=4.209

P =
1

N

N�1X

i=0

Pµ=2i . (1)210

The value of P shows a similar trend to the magnitude of displacement – low P211

at small displacement and large P at large displacement (Figure 3 last row). The prob-212

ability first exceeds the threshold P = 0.5 on 27 August 2017 for Campi Flegrei and213

2 December 2015 for Dallol (Figure 3), corresponding to 2 months after the onset of de-214

formation and 11 months after the start of the timeseries respectively.215

3.3 Discussion216

We evaluated the results from the examples at Campi Flegrei and Dallol using a217

receiver operating characteristic (ROC) curve (Figure 4), where true positive (TPR) and218

false positive rates (FPR) were calculated by varying the probability thresholds to iden-219

tify deformation and non-deformation. The TPR is the fraction of predicted deforma-220

tion that are retrieved over the total number of actual deformation, whilst the FPR is221

the number of non-deformation wrongly identified as deformation divided by the total222

number of actual non-deformation. We computed the area under the ROC curve (AUC):223

good classifiers will give high AUC values as they detect the positive signals correctly224

and few true negatives are falsely identified. For Campi Flegrei, the highest AUC (0.989)225

is produced by µ=6, which indicates good separation between classes. The AUC decreases226

for higher wrap gains as the number of false positives increases. For Dallol, the ROC curves227

are computed assuming the deformation starts on the first date of the time series (15th228

January 2015) and the highest AUC results (0.985) are for wrap gains of µ=7. The AUC229

under the curve for the combined probability P is 0.989 and 0.984 for Campi Flegrei and230

Dallol datasets, respectively. This demonstrates that CNNs can possibly be applied to231

wrapped InSAR data to detect deformation at rates as low as 3.5 cm/yr.232

Here, we have tested the ability of CNNs to detect slow, steady deformation in vol-233

canic environments, but further testing is still required to assess whether this technique234

–7–

Combined Probability

Detection 2 months 
after onset



Example 2: Dallol, Ethiopia.

Combined 
probability detects 
deformation 11 
months after the 
start of the 
timeseries. 

Ongoing subsidence.
Rate of 3.5 cm/yr.



Performance Metrics
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Real-Time 
Detection 
(see Fabien’s 
poster)

a) uncorrected time series
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b) corrected time series
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c) CUSUM time series (n=1)
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d) CUSUM performance
a) uncorrected time series
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b) corrected time series
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c) CUSUM time series (n=1)
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Albino et al, in review, JGR

a) uncorrected incremental time series

b) corrected incremental time series
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d) CUSUM performance

Period I: Apr - Aug 2017

Period II: Aug - Nov 2017
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Figure 3: a-d Surface deformation maps around Agung and Batur derived from stacked and

atmosphere-free Sentinel-1 interferograms (see Methods). a-b) period I from April to August

2017, showing no significant ground displacements and c-d) period II from August to November

2017, showing a wide ground uplift on the northern flank of Agung. e,f) Model displacement for

the period II: best-fit model is a deep dyke intrusion located between Agung and Batur (black rect-

angle with bold line being the top edge) accounting for local topography in a) ascending and b)

descending viewing geometries.

32

Albino et al, 2019, NComms



Conclusions
§ Global datasets have value for monitoring and understanding magmatic processes.
§ LiCSAR routine processing producing large data volumes (>200,000 volcano images).
§ Deep learning framework automatically searches through large volumes of wrapped 

InSAR images to detect rapid ground deformation that may be related to volcanic 
activity.

§ Problem of imbalanced training data was solved using synthetic examples, where three 
major components, i.e. deformation, stratified and turbulent atmosphere.

§ Slow deformation can be detected using time–series of over-wrapped data.
§ May be adaptable to anthropogenic sources of deformation 

Anantrasirichai, N., Biggs, J., Albino, F., Hill, P. and Bull, D., 2018. Application of Machine Learning to Classification of Volcanic 
Deformation in Routinely Generated InSAR Data. Journal of Geophysical Research: Solid Earth, 123(8), 6592-6606.
Anantrasirichai, N., Biggs, J., Albino, F., and Bull, D., 2019.  A deep learning approach to detecting volcano deformation in 
satellite imagery using synthetic training data. Remote Sensing of the Environment. 230, 111179
Anantrasirichai, N., Biggs, J., Albino, F., and Bull, D., in press. The ability of Convolutional Neural Networks to Detect Slow 
Ground Deformation in InSAR Timeseries, Geophysical Research Letters.



Sentinel-1 D Harmony-A

> 250 km

Harmony-B

• Stereo formation
• Maximum line-of-sight diversity
• Best for surface current vectors and 3-D surface deformation

Earth Explorer 10: Harmony



Earth Explorer 10: Harmony
Sentinel-1 D Harmony-A

> 250 km

Harmony-B

• XTI formation
• Close-formation (TanDEM-X style)
• Intended for DEM time-series
• 400 m to 1 km baselines

• ATI formation
• 100 m to 200 m along-track separation

20
20

20
22

20
28

Phase-0 Phase-A Phase-BCDE Exploitation 

Topographic Change at 
Volcanoes, Landslides, 
Glaciers etc.

3-D Deformation
3-D Strain Rate


