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SUMMARY
A major challenge in seismic tomography consists in quantifying and representing model
resolution and uncertainty, particularly at global scales. This information is crucial for
interpretations of tomographic images and their technical application in geodynamics.
However, due to large computational costs, there have been only few attempts so far
to coherently analyse the spatially varying resolving power for a complete set of model
parameters. Here, we present a concept for an effective evaluation and global represen-
tation of the 3-D resolution information contained in a full set of averaging kernels.
In our case, these kernels are constructed using the ‘Subtractive Optimally Localized
Averages’ (SOLA) method, a variant of classic Backus-Gilbert inversion suitable for
global tomography. Our assessment strategy incorporates the following steps: 1) a 3-D
Gaussian function is fitted to each averaging kernel to measure resolution lengths in
different directions; 2) we define a classification scheme for the quality of the averaging
kernels based on their focus with respect to the estimated 3-D Gaussian, allowing us
to reliably identify whether the inferred resolution lengths are robust. This strategy is
not restricted to SOLA inversions, but can, for example, be applied in all cases where
point-spread functions are computed in other tomographic frameworks.
Together with model uncertainty estimates that are derived from error propagation
in the SOLA method, our concept reveals at which locations, resolution lengths and
interpretations of model values are actually meaningful. We finally illustrate how the
complete information from our analysis can be used to calibrate the SOLA inversion
parameters —locally tunable target resolution kernels and trade-off parameters— with-
out the need for visual inspection of the individual resulting averaging kernels. Instead,
our global representations provide a tool for designing tomographic models with specific
resolution-uncertainty properties that are useful in geodynamic applications, especially
for linking seismic inversions to models of mantle flow.
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1 INTRODUCTION1

Global seismic tomography is the primary technique for re-2

vealing the physical structure of the deep Earth. The first3

tomographic models of the Earth’s mantle, developed more4

than four decades ago, have mainly been concerned with5

mapping seismic heterogeneity at spherical harmonic de-6

grees of 6-8; that is, at wavelengths of thousands of kilome-7

tres (Sengupta & Toksöz 1976; Aki et al. 1977; Dziewonski8

et al. 1977). Over the years, the resolution of global tomo-9

graphic images has steadily been improving by the general10

increase in data coverage, by exploitation of datasets with11

complementary sensitivity, as well as through advanced for-12

ward and inverse modelling techniques (e.g. Ritsema et al.13

2011; Schaeffer & Lebedev 2013; Zaroli et al. 2015; French14

& Romanowicz 2015; Koelemeijer et al. 2016; Fichtner et al.15

2018; Lu et al. 2019; Hosseini et al. 2020; Lei et al. 2020).16

Still, in many regions there is only little consensus on17

the seismic heterogeneity at shorter length scales of ∼300-18

500 km and less. Not only the exact geographic distribution,19

but in particular the magnitudes of heterogeneity, are diffi-20



2 Freissler, Schuberth, Zaroli

cult to constrain with tomographic methods. For example,21

regularization with damping and smoothing constraints is22

typically needed to counteract the ill-posed nature of the23

problem, but this inevitably biases the recovered model am-24

plitudes (e.g. Ritsema et al. 2007; Nolet 2008; Schuberth25

et al. 2009a). Further intricacies arise from complex non-26

linear wavefield effects and trade-offs between physical pa-27

rameters (e.g Hung et al. 2001; Favier et al. 2004; Zhang &28

Shen 2008; Mercerat & Nolet 2012; Schuberth et al. 2015;29

Koroni et al. 2022). The continuing desire in tomographic30

studies to increase resolution beyond the current limits is31

not an end in itself, but for global applications motivated32

by the estimated thickness of the thermal boundary layers33

of the mantle and the associated expected size of slabs and34

plumes. In light of such geodynamic considerations, an ac-35

curate retrieval of heterogeneity at spatial scales of ∼10036

km and less is crucial for subsequent quantitative infer-37

ences in studies of the lower mantle (e.g. Schuberth et al.38

2009b; Koelemeijer et al. 2018; Choblet et al. 2023; Richards39

et al. 2023), reconstructed time evolution of mantle flow (e.g.40

Bunge et al. 2003; Spasojevic et al. 2009; Shephard et al.41

2010; Horbach et al. 2014; Colli et al. 2018; Ghelichkhan42

et al. 2021) and surface dynamic topography (e.g. Davies43

et al. 2019, 2023). In addition to the dynamically inherent44

size of thermal anomalies, variations in mineral phase assem-45

blage and chemical composition likely occur on even shorter46

scales (e.g. Stixrude & Lithgow-Bertelloni 2007; Papanag-47

nou et al. 2022).48

Despite the great progress in global seismic tomogra-49

phy, relatively few studies addressed explicitly the problem50

of quantifying the spatially variable resolving power of a51

given inversion (e.g. Boschi 2003; Ritsema et al. 2004; Sol-52

dati et al. 2006; Ritsema et al. 2011; Koelemeijer et al. 2016;53

Simmons et al. 2019). Those studies have in common that54

their tomographic systems are based on a linearization of55

the (weakly) non-linear problem, such that the quantifica-56

tion of resolution is straightforward from a theoretical point57

of view. This requires the computation of the resolution ma-58

trix, which allows for a complete characterization of the un-59

derlying effects of imperfect data coverage and regulariza-60

tion. Moreover, the linear nature of the solution lends itself61

to practical applications where limited resolution is a critical62

aspect of quantitative model interpretation. An example for63

this is tomographic filtering of geodynamic Earth models,64

which is a necessary step to obtain fair and consistent com-65

parisons between these independent theoretical predictions66

of present-day seismic heterogeneity and the tomographi-67

cally imaged structures (e.g. Mégnin et al. 1997; Ritsema68

et al. 2007; Schuberth et al. 2009a; Nerlich et al. 2016; Sim-69

mons et al. 2019; Freissler et al. 2020). Together with the70

posterior covariance matrix, which includes the variances71

and correlations of model parameters, the non-uniqueness72

and quality of the tomographic solution can be fully ap-73

praised (e.g. Nolet 2008; Simmons et al. 2019).74

For non-linear systems, in contrast, a complete formal75

quantification of resolution and uncertainty is often not vi-76

able in practice. In full waveform inversions based on nu-77

merical wavefield simulations and adjoint techniques (e.g.78

Igel et al. 1996; Pratt 1999; Fichtner et al. 2009; Tape et al.79

2009; Colli et al. 2013; Krischer et al. 2018; Ma et al. 2022;80

Rodgers et al. 2022), there is still a gap between the relative81

wealth of information in the data and the available tools to82

assess the general non-uniqueness, especially in global mod-83

els. One possibility to approach this problem is Bayesian in-84

ference (Tarantola 2005) in order to elegantly deal with the85

non-linearity. However, probabilistic approaches that rely on86

sheer random sampling of the posterior probability density87

function are out of reach for global scale applications due88

to the high computational costs of repeatedly solving the89

forward problem in such analyses. Several other strategies90

have thus been proposed to address this issue, which mostly91

involve an approximation of the Hessian matrix for the mis-92

fit function in the vicinity of the ‘optimal’ model. This is93

motivated by the insight that the Hessian matrix may be ex-94

ploited in a local sense as the inverse of the posterior model95

covariance (e.g. Tarantola 2005; Bui-Thanh et al. 2013; Liu96

et al. 2021). It allows for some practical inferences, such as97

in extremal bounds analysis (Fichtner 2010), or for an effi-98

cient exploration of the model nullspace (e.g. Deal & Nolet99

1996; Liu & Peter 2020; Fichtner et al. 2021). Hessian-vector100

products may also be used to compute local point-spread101

functions (e.g. Fichtner & Trampert 2011; Fichtner et al.102

2013) that are equivalent to the columns of the resolution103

matrix in a linear framework. However, except for point-104

spread function tests for a few individual locations in the105

full-waveform models GLAD-M15 (Bozdağ et al. 2016) and106

GLAD-M25 (Lei et al. 2020), these sophisticated methods107

have found only limited usage in global scale applications so108

far.109

It must be noted that even in the linear case, comput-110

ing formal resolution and uncertainty is a formidable chal-111

lenge (e.g. Rawlinson et al. 2014). Stochastic techniques may112

yield specific characteristics of the resolution matrix, such113

as depth-dependent average resolution lengths (Trampert114

et al. 2013) or the main diagonal elements (MacCarthy et al.115

2011). The diagonal entries give an indication of the resolv-116

ability at the parameter location of interest, while resolution117

lengths characterize the impact range of off-diagonal entries118

representing inter-parameter trade-offs. More detailed infor-119

mation can be extracted, for example by a statistical resolu-120

tion matrix (An 2012), or a stochastic estimation of point-121

spread function parameters, which can in turn be applied to122

both linear and non-linear problems (Fichtner & Leeuwen123

2015). It is also possible in large-scale problems to use di-124

rect approaches for computing the resolution matrix that125

involve efficient numerical strategies (Boschi 2003; Soldati126

et al. 2006; Bogiatzis et al. 2016). Alternatively, practical127

approximations can be made to estimate both the resolu-128

tion matrix and the posterior covariance (e.g. Nolet et al.129

1999; Simmons et al. 2019).130

A straightforward method to compute directly the res-131

olution as well as uncertainty can be found in the sem-132

inal work by Backus & Gilbert (1967, 1968, 1970). In133

Backus–Gilbert theory, the estimates of individual model134

parameters can be interpreted as localized spatial averages135

around a given target location. In contrast to the more com-136

monly used linear methods in tomography, which often em-137

ploy Tikhonov regularization for norm damping, no a priori138

constraints on model values need to be prescribed that may139

bias model amplitudes. Instead, a certain control can be140

exerted on the trade-off between a favourable spatial struc-141

ture of averaging kernels (that determine resolution) and142

the amount of data errors propagating into the averages as143

model uncertainties (Backus & Gilbert 1970).144
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A variant of the Backus–Gilbert method, called Sub-145

tractive Optimally Localized Averages (SOLA), was intro-146

duced to global seismic tomography by Zaroli (2016). Orig-147

inally formulated and termed SOLA by Pijpers & Thomp-148

son (1992, 1994) for 1-D inversions in helioseismology, the149

method may have been discovered independently by several150

authors in different contexts (e.g. Oldenburg 1981; Louis151

& Maass 1990). In geophysics, it was further adapted for152

solving discrete and continuous 2-D and 3-D large-scale to-153

mographic problems (Zaroli et al. 2017; Zaroli 2019) and154

has since been applied to surface wave tomography (Latal-155

lerie et al. 2022; Amiri et al. 2023), normal modes (Restelli156

et al. 2024), and modelling the radial magnetic field at the157

core-mantle boundary (Hammer & Finlay 2019). The great158

advantage of the SOLA method compared to the classic159

Backus–Gilbert formulation arises from the implementation160

of target kernels with prescribed finite size, which specify161

the volume around the specific parameter location in which162

the inversion shall provide the spatial average of the model163

values. The target kernels make it possible to provide a pri-164

ori information on the expected local resolution length scales165

(i.e. they allow for potentially exerting a rather direct con-166

trol on the final resolution), while the so-called trade-off pa-167

rameter moderates error propagation. Moreover, the SOLA168

method enables perfectly parallel computations of the model169

values as well as of the averaging kernels and propagated170

uncertainty. So far, however, there is no definite method or171

recipe for the automatic selection of the SOLA inversion172

parameters, namely the size of the individual target ker-173

nels and the particular choice for the trade-off parameters,174

throughout a complete model. In global seismic tomogra-175

phy, such a strategy would be particularly helpful due to176

the highly inhomogeneous data coverage, leading to locally177

different quality of the tomographic solution. The remaining178

issue in that regard is the lack of tools for assessing the entire179

set of averaging kernels in a 3-D setting. Furthermore, even180

if one can compute with SOLA, or any other tomographic181

method, a complete set of averaging kernels (or point-spread182

functions), one will never be able to visually calibrate and183

analyse each one individually. In other words, it is still a184

challenge in itself to effectively represent and communicate185

the resolution information (Trampert 1998).186

The objective of this paper is therefore twofold: First,187

we want to explore for a previously employed tomographic188

dataset, how different inversion parameter choices in the189

SOLA method applied to global S-wave tomography lead190

to different local resolving power and model uncertainties.191

To this end, we systematically test several combinations of192

target kernels and trade-off parameters spanning the range193

from low-resolution to high-resolution inversions, each with194

varying degrees of resulting model uncertainty. Second, in195

order to effectively analyse the results from different inver-196

sion parameter combinations, we develop a combined anal-197

ysis of the resolution length scales in 3-D together with a198

specific test of the adequateness of the method for estimat-199

ing these lengths. This allows us to represent the practically200

relevant information on resolution in the SOLA averaging201

kernels on a global scale, which can then be inspected along-202

side the uncertainty propagating into the model.203

We start with a brief review of the SOLA method and204

describe the general tomographic system that we employ in205

Section 2 and Appendix A. Computational aspects regard-206

ing the efficient solution of the linear SOLA system are de-207

scribed in Appendix B. Section 3 provides examples of typ-208

ical SOLA averaging kernels for different inversion choices209

and motivates the development of a strategy for estimating210

resolution lengths with a Gaussian approximation in Section211

4. Important for this analysis will be to test this Gaussian212

approximation, for which we introduce the concept of ‘focus’213

that allows us to define different quality categories for the214

averaging kernels. In Section 5, we provide global maps of215

tomographic resolution lengths in specific but globally co-216

herent directions, estimated in a robust manner using the217

combined concepts of resolution and focus, together with218

the propagated uncertainty. Finally, we discuss the impact219

of the different possible choices of inversion parameters in220

the SOLAmethod in light of possible optimal design towards221

practical applications.222

2 TOMOGRAPHIC METHODOLOGY223

2.1 Review of the SOLA Backus–Gilbert method224

The main insight of Backus–Gilbert theory is relatively
straightforward: given a finite amount of data, one can gen-
erally not retrieve exact point estimates of the Earth model
parameters m(r) of interest. Nevertheless, it is often possible
to infer at a model target location r(k) a unique weighted
average m̂(k), such that

m̂(k) =

∫
V

A(k)(r)m(r) d3r , (1)

where A(k)(r) is the averaging or resolving kernel
(Backus & Gilbert 1968, 1970). Classically, the objective is
to obtain an optimally localized averaging kernel that ap-
proximates a delta peak at r(k), constructed from a linear
combination of N data(-sensitivity) kernels Ki(r). In the
linear case, the data kernels Ki(r) relate model parameters
m(r) to the measured data di in the form of

di =

∫
V

Ki(r)m(r) d3r+ ni , i = 1, ..., N , (2)

where the data di include an error (or noise) component225

ni that is assumed here to be independent and normally226

distributed with zero mean and variance σ2
di
. To compute227

global sets of averaging kernelsA(k)(r), we employ the SOLA228

method (Zaroli 2016) that solves the following optimization229

problem:230

min
x(k)

∫
V

(
A(k)(r)− T (k)(r)

)2
d3r + η2 σ2

m̂(k) (3)231

subject to

∫
V

A(k)(r) d3r = 1 , (4)232

233

where T (k)(r) is a target (resolution) kernel, η the trade-off234

parameter and σ2
m̂(k) the model variance from error propa-235

gation. The solution of eq. (3)+(4) yields a set of coefficients236

x(k) that can be interpreted as (the k-th row of) a general-237

ized inverse operator and determines the estimated average238

m̂(k), the averaging kernelA(k)(r) and the model uncertainty239

from error propagation σm̂(k) (plus covariance if desired):240

x(k) =⇒


∑N

i=1 x
(k)
i di −→ m̂(k)∑N

i=1 x
(k)
i Ki(r) −→ A(k)(r)

(
∑N

i=1(x
(k)
i )2(σdi)

2)1/2 −→ σm̂k .

(5)241

242
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Target kernel Averaging kernel + Target ellipsoid

Figure 1. Left: Cross-section of a target kernel with horizontal
and vertical half widths wH/V = 600/300 km. The cyan ellipse

marks the contour line at half maximum. Right: Cross-section for

an averaging kernel at the same target location. To get an idea of
the fit to the target kernel, we also plot the target ellipse at half

maximum.

The unimodular constraint in eq. (4), which is also implied243

by the classical Backus–Gilbert theory, ensures that m̂(k)
244

represents a physical volumetric average. In the hypothetical245

presence of a constant model value around the target loca-246

tion r(k), the estimated model amplitude would thus not be247

artificially scaled. Most important, the introduction of a tar-248

get kernel T (k)(r) in the SOLA method means that, instead249

of an ideal delta peak, as in the original Backus–Gilbert for-250

mulation, a practically more relevant spatial function is un-251

derlying the construction of the averaging kernels. Different252

choices of T (k)(r) then allow us to use information on the ex-253

pected local resolution by varying the shape and weighting254

present in the target kernels. At the same time, the trade-255

off parameter η ensures that the fit to the target kernel and256

the variance of the propagated errors in the inferred aver-257

ages can be controlled. Both T (k)(r) and η may be selected258

with a subjective preference, however with the benefit that259

the inversion results include complete information on reso-260

lution and uncertainty. Note also that each choice of η and261

T (k)(r) has a specific impact on all local model properties262

(for details on the SOLA inversions employed here, includ-263

ing computational aspects to solve the system efficiently for264

all model parameters, see Appendix A and B).265

2.2 Resolution length and choice of target kernels266

To obtain robust resolution information from the SOLA267

averaging kernels, Pijpers & Thompson (1994) calibrated268

a practical threshold value based on visual inspection of269

their target fit. This way, they were able to distinguish well-270

localized from non-localized 1-D averaging kernels and could271

use the prescribed target kernel peak width to infer resolu-272

tion lengths. This is however not directly applicable in our273

case. In 3-D tomography, the fit of A(k) to the target reso-274

lution might be good in a specific direction and poor in any275

other one. Therefore, no simple choice of target kernel T (k)
276

and trade-off parameter η is reducing equally well the kernel277

difference in all regions. Instead, additional information on278

possible shifts and varying length scales in different direc-279

tions is required to assess the averaging kernels (see Section280

4). However, with the choice of a specific target T (k), one281

can still promote a desired shape and size of the A(k) prior282

to the inversion.283

For this purpose, an intuitive parametrization for the284

target kernel T (k) is given by 3-D Gaussian functions that285

have been used previously in seismology for analysing tomo-286

graphic resolution (see e.g. Fichtner & Trampert 2011; An287

2012). The kernels are centred at the target locations r(k),288

which correspond to the points in a tomographic grid (see289

Section 2.3) By using a local Cartesian frame with origin at290

r′
(k)

(the prime indicates the change of basis), we can align291

the principal axes of the Gaussian function along the hor-292

izontal and vertical directions; i.e. they are oriented along293

tangents in the latitudinal and longitudinal direction and294

along the radius in the vertical direction, with respect to295

r′
(k)

. Our 3-D Gaussian target kernels are then given by296

297

T (k)(x′, y′, z′) =
a3√

(2π)3 · wx′ · wy′ · wz′
×exp

[
−a2

2

(
x′2

w2
x′

+
y′2

w2
y′

+
z′2

w2
z′

)]
,

(6)

298

299

where wx′,y′,z′ are the half widths at half maximum and x′,300

y′ and z′ refer to the axes in the local basis. Examples for301

a target kernel T (k) and a resulting averaging kernel A(k)
302

are visualized in Fig. 1. We specify the wx′,y′ in horizontal303

(wH) and wz′ in vertical direction (wV) of T (k) as target304

resolution lengths. As a remark, their relation to the stan-305

dard deviation is w = a · σ, where a =
√

2 ln (2) ≈ 1.17.306

Using w is particularly useful because it allows one to re-307

late the kernel width to its maximum at the peak, which308

facilitates comparisons of the volumetric change of various309

kernels with different peak amplitudes. We directly evaluate310

eq. (8) on the discrete tomographic grid (see Section 2.3).311

In contrast to Zaroli (2016), the T (k) are here not strictly312

normalized, i.e. we do not enforce
∫
V
T (k)(r) d3r = 1. This313

is done deliberately in order to preserve the Gaussian shape314

of T (k) within the finite volume V of the grid.315

For the SOLA inversions in this study, we take 3 varia-316

tions of T (k) using Gaussian functions of progressively larger317

horizontal and vertical target resolution lengths (wH/V =318

300/200, 600/300, 900/400 km). Along with this, we test319

3 different values for the trade-off parameter η (η1 = 5,320

η2 = 10, η3 = 30; see also Table 1). Increasing values for321

η generally promote smaller model uncertainty σm̂(k) while322

deteriorating the fit of the averaging kernel A(k) to T (k) .323

The range of values of η was chosen empirically from a few324

SOLA inversions for all T (k) in order to cover a range of325

tomographically relevant levels for σm̂(k) , resolution length326

scales and target fits.327

2.3 Tomographic grid and dataset328

Since we are interested in quantifying the impact of differ-329

ent inversion parameter choices, we choose a global grid that330

can well represent the shape of averaging kernels down to all331

target length scales; that is, it covers at least the smallest332

target half widths wH/V = 300/200 km used here. In gen-333

eral, we follow the parametrization strategy of Zaroli (2016),334

where grid nodes are the upper vertices of triangular prisms335

based on a spherical Delaunay triangulation for several dis-336

tinct depth layers across the entire mantle. For details, the337

reader is referred to Zaroli (2010, 2016). In radial direction,338

we take the 18 depth layers from SOLA-Z16 (Zaroli 2016)339

that are between 100-200 km thick, whereas in lateral direc-340

tion, we use approximately equidistant spherical Fibonacci341
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Figure 2. Left: Fibonacci grid on a sphere for the 530-660 km

depth layer using the algorithm by Swinbank & Purser (2006).
The nodes are the upper vertices of spherical triangular prisms

that are constructed by Delaunay triangulation. Right: His-

togram of internode distances for all 18 depth layers. The total
amount of unique lateral node connections (i.e. the number of

triangle edges) covered in the histogram is 447,567. The average

distance is ∼224 km.

grids following Swinbank & Purser (2006). In Fig. 2 the grid342

nodes of the layer at 530-660 km depth are shown as an343

example. To create a suitable realization of the Fibonacci344

grid, we empirically determine a specific amount of points345

for each layer such that the maximum distance of neigh-346

bours from the spherical Delaunay triangulation is less than347

300 km. The distribution of the node distances across all348

layers is shown in a histogram in Fig. 2. Minimum and av-349

erage neighbour distances are about 176 km and 224 km,350

respectively. In total, the grid includes 153,323 grid nodes.351

As tomographic dataset, we use the source-receiver con-352

figurations from the SOLA-Z16 model (Zaroli 2016) that in-353

clude 79,765 cross-correlation traveltime measurements for S354

and SS seismic phases at 22.5 s central period (Zaroli 2010).355

Sensitivities to shear-wave velocity perturbations are calcu-356

lated using paraxial finite-frequency kernels (Dahlen et al.357

2000). The coverage of the dataset is particularly suitable358

for investigating the velocity structure at depths between359

400 and 1710 km (Zaroli 2016). However, there are mainly360

two relevant regions that have different characteristic be-361

haviour for resolution. At depths of ≈400–810 km the finite-362

frequency kernels for teleseismic S-waves have not bottomed363

out yet, thus finding suitable linear combinations of the data364

to enhance resolution locally can be more difficult there. In365

contrast, at depths below ≈810 km, larger horizontal vol-366

umes are covered by the finite-frequency kernels, leading to367

a higher chance for crossing volumes of sensitivity. To effec-368

tively investigate the resulting averaging kernels, we there-369

fore focus on two particular depth layers in this study (at370

530–660 km, midpoint at 595 km and 1110– 1310 km, mid-371

point at 1210 km depth) representing each situation.372

3 SOLA AVERAGING KERNELS373

To first get a rough appreciation of the behaviour of the374

SOLA averaging kernels, we visually inspect some examples375

before we proceed with the global analysis of all kernels in376

Section 4. To this end, we show kernel cross-sections for the377

Table 1. SOLA inversion parameters used in this study. To fa-

cilitate discussion, a high resolution(HR) and a low resolution

(LR) setup are introduced. Horizontal and vertical target resolu-
tions wH/V correspond to the half widths at half maximum of the

Gaussian target kernels (see eq. 6).

Target resolution wH/V

(horizontal/vertical)
Trade-off parameter η

300/200 km η1 = 5
600/300 km η2 = 10

900/400 km η3 = 30

High resolution (HR) setup : 300/200 km, η1
Low resolution (LR) setup: 900/400 km, η3

different combinations (see Table 1) of trade-off parameters378

η and target kernels T (k) that we introduced in Section 2.2.379

380

381

3.1 Influence of data coverage382

A compilation of different averaging kernels is shown in Fig.383

3 for two end-member combinations of T (k) and η. They rep-384

resent a high-resolution (HR) inversion with η1 (= 5) and385

a target kernel size of wH/V = 300/200 km (Figs 3a and386

d), and the contrary case of a low-resolution (LR) inversion387

using η3 (= 30) and a target size of wH/V = 900/400 km388

(Figs 3b and c). Dashed ellipses defined by horizontal and389

vertical semi-axes wH and wV indicate the size of T (k) for390

the particular inversion (as shown in Fig. 1). Data coverage391

is particularly good in the Northern Hemisphere (top row in392

Fig. 3), where one can see that both HR and LR inversion393

setups lead to averaging kernels that are overall well local-394

ized and fit the shape of the target kernels. In Fig. 3(b) using395

the LR setup for an averaging kernel centred below North396

America, one can still observe stronger positive amplitudes397

south of Hawaii outside the broader target region. Poor data398

coverage in the Southern Hemisphere (bottom row in Fig.399

3) typically leads to increased power in side lobes, reflecting400

the difficulty of fitting the target kernel with a locally in-401

complete dataset. For example, the averaging kernel in Fig.402

3(c) for the LR setup is hardly centred and apparently dom-403

inated by a subset of unidirectional data kernels reaching to404

the surface between Kerguelen Islands and Australia. On the405

other hand, the A(k) in Fig. 3(d) combines poor data cover-406

age with the HR setup, leading again to more pronounced407

side lobes, but also to a good fit to the target for the bulk408

of the averaging sensitivity. Fig. 3 already suggests that the409

target kernel has a strong control on the resolution prop-410

erties of A(k) (as expected), and that poor data coverage,411

although making the averaging kernels more prone to os-412

cillatory behaviour, is not necessarily preventing one from413

fitting the target resolution. Although being barely visible414

here, negative values in the averaging kernels do exist, but415

their amplitudes are mainly located outside the target region416

and are generally small. A more quantitative analysis tak-417

ing this into account is presented in the classification scheme418

that we develop in Section 4.2.419

3.2 Variable target kernel and trade-off parameter420
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Figure 3. Lateral and vertical cross-sections for four different averaging kernels in regions of good and poor data coverage in the Northern

and Southern Hemisphere, respectively. Left and right panels show target locations at 595 km and 1210 km depth, respectively. a) and

d): ‘High-resolution’ setup (HR), A(k) for a trade-off parameter of η1 = 5 and target kernel T (k) with horizontal/vertical extent of wH/V

= 300/200 km. b) and c): ‘Low-resolution setup (LR)’, A(k) for η3 = 30 and T (k) with wH/V = 900/400 km. The low-resolution setup

leads to a preference of lower uncertainty σm̂(k) by using a larger trade-off parameter η3 at the cost of a worse fit to the target resolution.

The latter is marked by dashed ellipses (drawn at the half widths at half maximum wH/V of each T (k)). Values of the averaging kernels

are normalized with their respective maximum. Because our tomographic grid is fine enough for the target length scales, it follows that

for an almost ideal fit, the darkest red values at the cut-off of the colour scale would all be within the target ellipses. Black contour lines
in the vertical cross-sections further indicate iso-surfaces at 1/2, 1/4, 1/8, 1/16 and 1/32 of the peak value.

While Fig. 3 visualizes the consequences of variable data421

coverage, we can also systematically exploit the capabilities422

of the SOLA method and investigate how different choices423

of target kernel and trade-off parameter affect A(k) and the424

propagated uncertainty σm̂(k) . Fig. 4 features such a set425

of alternatively possible averaging kernels, corresponding to426

the target location and the low-resolution example of Fig.427

3(c) in the Southern Hemisphere. Here, we focus on vertical428

cross-sections in west-east direction; complementary figures429

for all cross-sections and kernels can be found in the online430

supplementary material. The different averaging kernels are431

organized in a matrix layout, going from smaller to larger432

target kernel sizes from top to bottom and increasing values433

for the trade-off parameter η from left to right.434

An increase in η leads to an increase in model uncer-435

tainty σm̂(k) , which is indicated in each cross-section in436

Fig. 4, ranging from 0.47 % for the HR setup, down to437

0.03 % dln(vS) for the LR setup. Likewise, at constant η438

and growing target kernel sizes, model uncertainties also439

decrease. None of the averaging kernels exactly attains the440

maximum amplitude of their underlying T (k). At a target441

size of wH/V = 300/200 km, for example, the maxima of the442

corresponding A(k) are off by more than a factor of 2. For443

larger target lengths, this difference is less severe. Overall,444

an unsatisfactory visual fit of the averaging kernels to their445

respective target kernels is observed, which can be ascribed446

here to a single finite-frequency kernel that seems to domi-447

nate the averaging. A different situation is shown in Fig. 5.448

At this location, the data coverage is excellent, which leads449

to a suite of averaging kernels that are Gaussian-shaped450

for all parameter combinations tested. Peak amplitudes of451

the averaging kernels for the lowest value of the trade-off452

parameter are close to their respective target kernel value453

and only moderately drop as η is increased. Even at lower454
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Figure 4. Influence of increasing the trade-off parameter and target kernel size on the averaging kernels for a region of relatively poor

data coverage in the southern Indian Ocean, east of the Kerguelen Islands at 595 km depth. Left: lateral cross-sections of the target

kernel T (k) with horizontal and vertical extent wH and wV, respectively, used for the inversion. Right: vertical cross-sections (West-East)
of the resulting averaging kernels A(k) for all combinations of η (η1,2,3 = 5, 10, 30) and T (k). Dashed ellipses indicate the size of T (k)

with semi-axes of length wH and wV. The kernel values are normalized with their respective half maximum to facilitate comparisons.
Model uncertainties σm̂(k) are given in % dln(vS).
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Figure 5. Influence of increasing the trade-off parameter and target kernel size for a region of excellent data coverage in the central US

at 1210 km depth. Same layout as Fig. 4.
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Figure 6. Concept for our resolution analysis and definition of

the ‘focus’ for an averaging kernel A(k) parametrized with a 3-

D Gaussian. Yellow and blue indicate an uncorrelated and cor-
related version of the Gaussian, respectively. Filled ellipses at

the half widths at half maximum (wx′/y′/z′ ) define estimated

resolution lengths, while the larger, unfilled ellipses at the half
width at one-eighth maximum define the region used for com-

puting the focus ξ (see Section 4.2). In contrast to the simpler,
uncorrelated Gaussian ĝ(k), the Gaussian g̃(k) with correlation

includes rotation with respect to the axes of the local Cartesian

frame centred at the target location. This could be used for esti-
mating minimum/maximum resolution lengths wmin/max, which

however, would not lie along the same directions for all kernels.

model uncertainties σm̂(k) , the kernels also mostly retain lo-455

calization and recover the target shape.456

It is clear that a visual inspection of the averaging kernels457

might be insufficient to judge on their quality and cannot be458

performed individually for every model parameter. Also, it459

does not provide information on the length scales of resolu-460

tion that need to be quantified for a more thorough analysis.461

This raises the question of how one could assess the qual-462

ity and nature of the A(k) in a consistent manner, such that463

sensible estimates and comparisons of resolution lengths can464

at best be made for the entire set of averaging kernels all465

together.466

4 QUANTIFYING RESOLUTION467

A general problem for inferring meaningful information on468

resolution in seismic tomography is that one cannot guar-469

antee that every individual averaging kernel is localized and470

reasonably Gaussian-shaped for a given selection of inver-471

sion parameters. Therefore, we cannot reliably use the pre-472

scribed size of the target kernels T (k) to examine resolution473

on a global scale.Instead, resolution lengths should be quan-474

tified consistently for all averaging kernels and independent475

of the respective target form of T (k). In addition, it needs476

to be determined whether the resulting length estimates are477

meaningful in the given context, while bearing in mind the478

possible complexity of the averaging kernels. A robust quan-479

tification and interpretation of the resolution information480

contained in tomographic inversions thus requires two indi-481

vidual tools: the concept of resolution lengths together with482

a classification scheme for the quality of the averaging ker-483

nels.484

4.1 Gaussian estimates and resolution lengths485

Owing to our choice of target kernels in the form of 3-D486

Gaussian functions, it is useful to independently determine487

also a best-fitting 3-D Gaussian for each averaging kernel in488

order to quantify resolution lengths. A general 3-D Gaussian489

parametrization is given by (see also Fichtner & Trampert490

2011)491

492

g̃(k)(r′) =
N∗a3√

(2π)3 detC
×exp

[
−a2

2
(r′−µ′)TC−1(r′−µ′)

]
,

(7)

493

494

where the position r′ and mean vector µ′ are defined in495

the same local Cartesian coordinate system used for the496

target kernel T (k) in eq. (6). Any non-zero mean location497

µ′ implies that the centre of mass of the averaging kernel498

is displaced from the target location (this is called ‘dis-499

tortion’ by Fichtner & Trampert 2011). The scaling fac-500

tor N∗ represents the total mass of the Gaussian. We in-501

clude N∗ to facilitate finding suitable resolution length es-502

timates (given by the half widths wx′,y′,z′) that better re-503

flect the averaging volume around the main peak of A(k).504

The covariance matrix C describes the spatial extent and505

rotation/tilting of the Gaussian in the local framework506

and incorporates the half widths wx′,y′,z′ and parameters507

for correlation ρx′y′ , ρx′z′ and ρy′z′ . The complete set of508

parameters for estimation would thus be given by p̃ =509

(N∗, µx′ , µy′ , µz′ , wx′ , wy′ , wz′ , ρx′y′ , ρx′z′ , ρy′z′). By using510

the full set of correlation parameters, one could therefore511

also extract from the averaging kernels minimum/maximum512

resolution lengths in any necessary direction.513

For global comparisons of averaging length scales with514

respect to the uncorrelated target kernels that we have cho-515

sen, it might in fact be simpler for interpretation, but not516

less informative, to focus only on specific directions. To this517

end, we can neglect the correlations and simplify eq. (7) to518

get a Gaussian parametrization in the following form:519

520

ĝ(k)(x′, y′, z′) =
N∗a3√

(2π)3 · wx′ · wy′ · wz′
×521

exp
[
−a2

2

(
(x′ − µx′)2

w2
x′

+
(y′ − µy′)2

w2
y′

+
(z′ − µz′)

2

w2
z′

)]
.

(8)

522

523

The reduced set of parameters for estimation is given by524

p = (N∗, µx′ , µy′ , µz′ , wx′ , wy′ , wz′), from which we obtain525

information on the shift of the centre of mass µ′ of A(k) away526

from the target location and resolution lengths wx′,y′,z′ in527

the three directions defined by the local Cartesian frame.528

Fitting is performed by using the Levenberg—Marquardt529

algorithm for solving the weighted least-squares problem530

argmin
p

∑
j

Vj (A
(k)
j − ĝ(k)(r′j ;p))

2 , (9)531

using the volume Vj associated with each j-th grid node.532

For a practical initial guess, we use the specifications of the533

corresponding target kernel T (k) at the location of interest.534

As a remark, other parametrizations are possible that could535
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approximate even more accurately the shape of averaging536

kernels. Fichtner & Trampert (2011) pointed out that Gram-537

Charlier expansions can be used to that end. These make it538

possible to approximate functions, or more strictly distribu-539

tions, like the averaging kernels from a series of their cumu-540

lants (e.g. mean, variance, third central moment and more541

complicated quantities at higher orders). While this can lead542

to more accurate approximations of the complete function,543

Fichtner & Trampert (2011) suggested that from a practical544

point of view, these expansions might not always offer more545

physically interpretable information than the plain Gaus-546

sian approximation itself. However, these and other suitable547

parametrizations may be required for analysing functions548

that are vastly different across the model domain, such as549

kernels for the trade-off between different physical model pa-550

rameters (which is not the case for the A(k) with Gaussian551

targets T (k) in this study).552

The difference between the two Gaussian parametriza-553

tions ĝ(k) and g̃(k) is visualized schematically in Fig. 6. The554

semi-axes of the ellipse at half the maximum are the es-555

timated resolution lengths wx′,z′ (+wy′ in the actual 3-D556

ellipsoid), that can be compared to the target widths wH/V.557

These estimates, as well as the remaining parameters in p,558

may differ slightly between the two parametrizations. The559

largest mean absolute deviation between ĝ(k) and g̃(k) we560

found for any length estimate and given parameter combina-561

tion is ∼16 km. However, in case of kernels with reasonably562

good target fits these differences are small, and we noticed563

that on global scales, the choice between uncorrelated and564

correlated Gaussian has only a minor effect (see supporting565

material). A remaining problem is the identification of com-566

plex averaging kernels that cannot be well approximated567

by either of the Gaussian parametrizations. We therefore568

propose a practical strategy to deal with this issue in the569

following section.570

4.2 Kernel classification based on the ‘focus’571

For a robust interpretation of the resolution informa-572

tion, one needs to know for every target location whether573

the Gaussian-based estimates of resolution length actually574

relate well to the shape and mass of the averaging kernel575

(i.e. the integral over A(k) for a given volume). Since the576

centre of ĝ(k) is an estimate of the centre of mass in A(k),577

the (main) peak regions of both functions should by design578

overlap. If we can measure, by comparison of the masses579

of the two kernels, if this is actually true for a given tar-580

get location, it would allow us to quickly identify for which581

choices of the trade-off parameter η and target resolution582

the resulting averaging kernels deviate significantly from a583

Gaussian.584

To get a diagnostic tool for this specific problem, we585

develop in the following a global classification scheme for586

the averaging kernels, measuring their quality with respect587

to the best-fitting Gaussian ĝ(k). First, it is necessary to588

define the actual volume of the peak region of ĝ(k), for which589

we can draw inspiration from the simpler 1-D case. For a590

1-D Gaussian function, 76 per cent of the total area lies591

within ±w, the half width at half maximum (our measure for592

resolution length), around the mean. In higher dimensions,593

however, this well-known concept does not hold. In fact, the594

integrated mass of ĝ(k) within the 3-D ellipsoid given by the595

three half widths at half maximum wx′,y′,z′ (respectively the596

inner ellipse in Fig. 6) defined by597 {(
x′ − µx′

wx′

)2

+

(
y′ − µy′

wy′

)2

+

(
z′ − µz′

wz′

)2

≤ 1

}
(10)598

covers merely ≈29 per cent (if wx′ = wy′ = wz′) of the to-599

tal mass of the Gaussian. The exact value also depends on600

the specific half widths in each direction, and thus may vary601

for different ĝ(k). Since the SOLA kernels determine average602

values in volumetric regions, we consider 29 per cent of the603

total mass to be insufficient to properly describe the char-604

acteristics of A(k). Therefore, we aim to reproduce the 1-D605

convention, with roughly 76 per cent of the total mass, for606

the 3-D situation here as well. This can be achieved by scal-607

ing up the ellipsoid in eq. (10) and replacing the wx′,y′,z′608

with the corresponding half widths at one-eighth maximum609

from the best-fitting Gaussian ĝ(k) (the outer ellipses in Fig.610

6). In practice, we determine the ellipsoid by evaluating ĝ(k)611

directly on the tomographic grid and including all nodes that612

hold values larger than one-eighth of the maximum (taken613

from the continuous function). The absolute mass ĝ
(k)
in in-614

side this spatial domain E(k) then approximately represents615

76 per cent of the total mass (ĝ
(k)
in + ĝ

(k)
out). The exact nu-616

meric value, however, may still differ by a few per cent of617

the total mass depending on the size and location as well618

as on the error from evaluation on a discrete grid. Having619

formulated an expectation on the volume and mass ĝ
(k)
in of620

the peak region, we can then separate the mass contribution621

of the associated averaging kernel A(k) within and outside622

the ellipsoid E(k):623

624 ∫
r′∈E(k)

A(k)(r) d3r︸ ︷︷ ︸
A

(k)
in

+

∫
r′ /∈E(k)

A(k)(r) d3r︸ ︷︷ ︸
A

(k)
out

= 1 . (11)625

626

Note again that the total mass of A(k) is equal to 1 in the627

SOLA method owing to the unimodular condition in eq.628

(4). Generally, both A
(k)
in and A

(k)
out include positive as well629

as negative kernel values. However, the negative contribu-630

tions to A
(k)
in were found to not exceed 2–3 per cent for any631

averaging kernel that we computed. For more than ∼80 per632

cent of all averaging kernels, negative values in A
(k)
in are ≤1633

per cent and vanished completely for ∼8-25 per cent (de-634

pending on the specific T (k) and η). We then define the635

‘focus’ ξ of the averaging kernel based on the mass ratio of636

A
(k)
in and ĝ

(k)
in as637

ξ =

(
A

(k)
in

A
(k)
in +A

(k)
out

)
/

(
ĝ
(k)
in

ĝ
(k)
in + ĝ

(k)
out

)
=

A
(k)
in (ĝ

(k)
in + ĝ

(k)
out)

ĝ
(k)
in

.

(12)638

The normalization with the total mass (ĝ
(k)
in + ĝ

(k)
out) of ĝ(k)639

within the model domain allows one to take into account640

possible errors through discretization (for the absolute val-641

ues of ĝ
(k)
in ) and ellipsoids E(k) that are intersected by the642

surface. Using these relative mass contributions is helpful643

because it makes ξ a uniform metric for all A(k). In case644

that the unimodular condition for A(k) (eq. 4) is not ful-645

filled, e.g. when using other kernels that are not derived by646

a Backus–Gilbert type inversion, one should modify the fo-647

cus ξ and normalize A
(k)
in also with the total mass of the648

averaging kernel (i.e. one should use the more general ex-649
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pression of ξ in eq. 12). To finally classify the quality of the650

averaging kernels, we define 5 categories for ξ:651

• ξ < 0.5, ‘Not Focused’ :652

A(k) is hardly focused and likely degraded by multiple peaks653

or strong side lobes, often due to either individual finite-654

frequency kernels dominating the averages or strong sensi-655

tivity in the upper mantle;656

• ξ ≥ 0.75, ‘Sufficient (Suff.)’ :657

Threshold between acceptable and unacceptable kernel fit658

with respect to ĝ(k); ensuring that all sufficient A
(k)
in are at659

least more concentrated inside the Gaussian ellipsoid E(k)
660

rather than outside of it;661

• 0.9 ≤ ξ < 1.1, ‘Good’ :662

Deviation of A
(k)
in from the ideal case is less than 10 per cent;663

• ξ = 1, ‘Ideal’ :664

Relative mass contributions of A(k) and ĝ(k) within ellipsoid665

E(k) are equal;666

• ξ ≥ 1.1, ‘Highly Focused’ :667

A(k) is more peaked, i.e. has significantly more mass within668

the ellipsoid E(k) than ĝ(k).669

This classification with the focus can be seen as a heuristic670

tool for deciding on the quality of the kernels, since a rela-671

tive redistribution of the mass of A(k) to outside the peak672

region is clearly associated with a decrease in ξ. Therefore,673

although these focus categories do not fully characterize the674

detailed shape of a specific averaging kernel, they yet pro-675

vide a basic way to test whether the Gaussian approximation676

is locally plausible. The classification scheme also gives an677

indication for the fit to T (k), if ĝ(k) is not shifted or broadly678

stretched beyond the target resolution length. This is be-679

cause averaging kernels that agree well with ĝ(k) tend to be680

also centred.681

4.3 Examples for resolution quantification and682

classification683

Before we apply the previously introduced methods on a684

global scale (see Section 4.4), we demonstrate more explic-685

itly how they act together to describe resolution. Therefore,686

instead of averaging kernels that are obviously Gaussian-687

shaped (see Fig. 5), we consider two less-intuitive examples688

in Fig. 7. Again, we employ a high-resolution and a low-689

resolution setup (Figs 7a and 7b, respectively). Unlike the690

averaging kernels, the functions ĝ(k) are defined beyond the691

mantle domain V , and the associated Gaussian ellipsoids692

for the focus ξ (at max/8) may thus come close to or ex-693

tend through the surface. As a consequence, the best-fitting694

Gaussian ĝ(k) in Fig. 7(a) can yield a vertical half width wz′695

of 322 km that is considerably larger than the target length696

of wV = 200 km. The estimated resolution lengths in hor-697

izontal direction of 370 km and 340 km (North-South and698

West-East, respectively) are as well somewhat larger than699

the actual target length of wH = 300 km.700

The averaging kernel for the low-resolution case in Fig.701

7(b) is even more complex. It exhibits localized smearing702

of uppermost mantle structure from individual data ker-703

nels, and several distinct local maxima in and outside the704

target region. Resolution lengths estimated by ĝ(k) are in705

horizontal direction 890 km and 864 km (North-South and706

West-East) and in vertical direction 459 km. They are thus707

horizontally narrower but vertically larger than the target708

lengths of wH/V = 900/400 km. There is also a consider-709

able shift of the centre of ĝ(k) from the target location of710

µ′ = (−66,−97,−106) km, which might not be expected by711

merely inspecting the cross-sections at these azimuths. Over-712

all, it is at least debatable whether the best-fitting Gaussian713

ĝ(k) is an adequate approximation in this case. For the A(k)
714

in Fig. 7(a) we obtain a focus value ξ = 0.89 (i.e., certainly715

‘sufficient’ and almost in the range of ‘good’ kernels), mean-716

ing that although the target shape is not fully matched, the717

best-fitting Gaussian ĝ(k) can be used with confidence for718

describing local resolution lengths. The averaging kernel in719

Fig. 7(b), however, is classified as insufficient, with a fo-720

cus value ξ = 0.62 suggesting that maxima present outside721

the ellipsoid E(k) may have a significant impact on the cor-722

responding model estimate for the average value. Further723

resolution estimates and focus values ξ for the averaging ker-724

nels in Fig. 3 can be found in the supplementary material.725

4.4 Global classification of resolution726

The results of our kernel classification on a global scale,727

for all previously used combinations of the trade-off param-728

eter η and the target kernels T (k), are visualized in Figs729

8 and 9. As expected, we find overall a larger number of730

Gaussian-shaped averaging kernels at smaller values for η.731

The percentage of acceptable A(k) (ξ ≥ 0.75) is shown above732

each map, varying between 8-79 per cent at 595 km and733

34-91 per cent at 1210 km depth. While there is a strict734

trend of fewer acceptable averaging kernels towards higher735

η, this is not necessarily the case when increasing the size736

of T (k). The largest number of acceptable kernels is actually737

obtained for the intermediate target kernel size with wH/V738

= 600/300 km using η1 (left column in Fig. 8). Consistently739

fewer acceptable kernels are found for the target resolution740

of wH/V = 900/400 km. Note that this difference between the741

target sizes does not imply that model averages are better742

constrained at the smaller scales rather than at large ones743

as we are not investigating the resolving power itself here,744

but the appropriateness of the Gaussian approximation. In-745

stead, the classification maps suggest that one could lower746

the trade-off parameter η even further and obtain a larger747

number of Gaussian-shaped averaging kernels also for the748

larger target sizes. ‘Highly focused’ kernels (i.e. ξ ≥ 1.1), are749

only observed for the HR inversion (Fig. 8, top left panel)750

at a few target locations east of Hawaii. This category sug-751

gests that narrower Gaussian estimates ĝ(k) may be possible752

in those cases and the associated resolution lengths could753

then be regarded as upper bounds of the size of the corre-754

sponding A(k). Alternatively, increased focus values could in755

some cases be explained by an overshooting local maximum756

at the peak combined with pronounced negative kernel val-757

ues outside the peak region . The trend in Fig. 8 then also758

suggests that a larger value for η, with consequently lower759

model uncertainty, can be chosen locally if such a highly760

focused A(k) is not desirable (note again that the trade-off761

parameter can in principle be chosen for each target location762

individually). Given all the combinations of T (k) and η that763

we tested, a consistent classification of ‘sufficient’ and better764

is only possible in a few regions of excellent data coverage765

in the Northern Hemisphere.766
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Figure 7. Averaging kernels A(k) and their best-fitting Gaussians ĝ(k) using (a) the high-resolution setup (η1, T (k) with horizontal and

vertical extent wH/V = 300/200 km), below Western Australia and (b) the low-resolution setup (η3, T (k) with wH/V = 900/400 km),
below Venezuela. Both target locations and the corresponding lateral cross-sections are at 595 km depth. Vertical cross-sections are

marked by blue and yellow dots. Larger dots specify the negative direction for the local coordinate system in which resolution lengths

and shifts of the centre are quantified. Additionally, the value for the focus ξ is shown, which serves as a metric for quantifying the
appropriateness of ĝ(k) (see Section 4.2).

5 GLOBAL RESOLUTION & UNCERTAINTY767

MAPS768

The tools presented in the previous section allow us to in-769

spect the resolution lengths for the varying tomographic pa-770

rameter setups, in connection with a basic test of the validity771

of the Gaussian approximation. On a global scale, this has772

the power to reveal concisely the impact of the different in-773

version parameters on resolution. In combination with the774

propagated model uncertainties σm̂(k) , which are straightfor-775

wardly calculated with the SOLA method (see eq. 5), this776

also makes it possible to uncover the locally varying trade-777

offs between resolution and uncertainty. To illustrate this, we778

show global maps of the estimated resolution lengths for all779

inversion parameter combinations in Figs 10–13. We apply780

our classification scheme to mask all ‘insufficiently’ focused781

averaging kernels in these maps. In addition, the mean and782

standard deviation of all resolution lengths, given by averag-783

ing kernels classified as ‘sufficient’ and better, are specified784

above each map.785

For vertical resolution estimates at 595 km depth, one786

can observe a strong variability for the case with target787

lengths of wH/V = 300/200 km (Fig. 10, top row). At this788

target size, the mean vertical resolution length ranges be-789

tween 316–329 km across all trade-off values and with in-790

creasing values of η, one can see a clear progression towards791

larger vertical extent of the averaging kernels. Minimum-792

maximum values of vertical resolution for each target size793

wV = 200, 300, 400 km are 211–501 km, 321–521 km and794

416–534 km, respectively. The maps therefore show that the795

vertical target length only is approached in regions of high796

data coverage, but overall cannot be reached by any ‘suf-797

ficient’ averaging kernel. Numerous A(k) deviate strongly798

(>100 km) from the vertical target resolution in Fig. 10,799

but they do not all necessarily fall in the category of ‘insuf-800

ficient’ averaging kernels (e.g. beneath the North Pacific).801

This means that a useful Gaussian ĝ(k) was obtained, al-802

though a more accurate fit to the target kernel T (k) could not803

be achieved at these locations. We chose to additionally indi-804

cate the non-Gaussian A(k) as shaded areas to roughly anal-805

yse the range of estimated lengths there, even if they are less806

reliable. The vertical resolution lengths in those regions are807

in fact often in line with surrounding acceptable A(k), but808

may as well be anomalously low or high, quite strikingly for809

instance around the East Pacific Rise (we analyse an exam-810

ple for this region in more detail in Section 6.1). An opposite811

trend can be observed in the mid-mantle at 1210 km depth812

in Fig. 11, where the prescribed target lengths are overall813
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Figure 8. Classification of averaging kernels based on the focus ξ at a depth of 595 km depth for different target resolution lengths and
trade-off parameters η. Blue colours mark averaging kernels that are sufficiently (‘Suff.’) well approximated by the best-fitting Gaussian

ĝ(k), meaning that resolution length can be robustly extracted from ĝ(k). ‘Good’ averaging kernels are subdivided in at levels of ξ =

0.9, 0.95, 1.0, 1.05 to reveal their deviation from the ideal case in more detail. Red colours accordingly indicate more complex averaging
kernels A(k) that are often affected by strong kernel side lobes. Percentages above the maps display the relative amount of acceptable

A(k).

Figure 9. Classification of averaging kernels based on the focus ξ at a depth of 1210 km.
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Figure 10. Vertical resolution lengths of the averaging kernels at 595 km depth, as estimated from the best-fitting Gaussian ĝ(k). Shaded
areas mark the regions where the classification from Fig. 8 indicates that the A(k) are insufficiently Gaussian-shaped and that resolution

length must be interpreted with caution there. Mean values and standard deviations of the resolution lengths of all ‘sufficient’ averaging

kernels are given above each map. Contour lines are drawn at 200, 300, 400 and 500 km.

Figure 11. Vertical resolution lengths of the averaging kernels at 1210 km depth. Same as Fig. 10 with shaded areas given by Fig. 9.
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Figure 12. Longitudinal resolution lengths of the averaging kernels at 595 km depth, as estimated from the best-fitting Gaussian ĝ(k).

Same layout as Fig. 10.

Figure 13. Longitudinal resolution lengths of the averaging kernels at 1210 km depth. Same layout as Fig. 11.
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fitted well on a global scale. At this depth, the mean values814

of the estimated vertical resolution lengths are however of-815

ten smaller compared to their target, and the full range of816

estimates is 176–239 km, 261–336 km and 351–423 km for817

wV = 200, 300, 400 km, respectively.818

Maps of longitudinal resolution lengths for the same819

depths are shown in Figs 12 and 13. The global mean values820

for each selection of wH/V and η as well as the associated821

distributions of longitudinal resolution lengths are quite sim-822

ilar at both depths. The respective target lengths are well823

approached in many regions. At 595 km depth, minimum-824

maximum values of longitudinal resolution for the different825

target resolutions wH = 300, 600, 900 km (again across all826

values of η and for all ‘sufficient’ and better averaging ker-827

nels) are 253–673 km, 495–826 km and 778–1082 km, respec-828

tively. At 1210 km depth, a larger number of ‘sufficient’ aver-829

aging kernels relative to the total number per layer is found.830

Still, the corresponding ranges are slightly narrower with831

minimum-maximum values of 293–581 km, 560–778 km and832

828–1104 km. Fairly similar maps and trends can be found833

for the estimated latitudinal resolution lengths (shown in834

Appendix C, Figs C1 and C2 ).835

To complete the results for our tests of SOLA inversion836

parameters, we show the associated global maps of prop-837

agated model uncertainty σm̂(k) in Figs 14 and 15. As in-838

tuitively expected, the uncertainty increases systematically839

with lower values of η, but also with smaller target sizes. A840

possible reason for this could be that fewer finite-frequency841

kernels interact within the smaller target kernel volume in842

this case. The highest global mean and largest variability843

thus correspond to the HR inversion setup (η1, wH/V =844

300/200 km) with σm̂(k) = 0.668 ± 0.138 % at 595 km depth,845

and 0.478± 0.112 % at 1210 km depth. For the largest target846

kernels with wH/V = 900/400 km, the model uncertainties847

are vanishingly small. This indicates that lower values for848

η should be chosen at larger target scales compared to the849

best choice of η at smaller target resolution. Overall, there850

is no strict pattern emerging for the variability of the model851

uncertainty with respect to the associated resolution length852

estimates. Instead, one can observe regions of reduced σm̂(k)853

both where the potential for overall high resolution is ob-854

served (e.g. around Japan, with ‘ideal’ focus), but also where855

our classification tool suggested a poor Gaussian approxima-856

tion of the averaging kernels.857

6 DISCUSSION858

6.1 Role of the Gaussian approximation859

As shown in Section 4, an approximation of the averaging860

kernels A(k) by some parametric function is crucial for deter-861

mining their resolving power shown in our global resolution862

maps. In this respect, Gaussian functions are a convenient863

choice and serve as a tool for both estimating resolution864

lengths and for identifying kernels of more complex shape865

and consequently low focus. Earlier studies have also relied866

on the Gaussian approximation in order to parametrize the867

resolution matrix (An 2012) or the point-spread functions868

based on the Hessian matrix (Fichtner & Trampert 2011)869

prior to the actual inversion step. In contrast to this earlier870

work, we computed entire sets of averaging kernels without871

additional assumptions on their structure, and tested sub-872

sequently if a reduction of their complexity in the form of873

a Gaussian parametrization is warranted. Although using874

the SOLA method and targeting Gaussian-shaped averag-875

ing kernels here, it was not possible to obtain robust res-876

olution proxies from the kernels at every location and at877

reasonable levels of uncertainty (highlighted by the classifi-878

cation in Figs 8, 9 and uncertainty maps in Figs 14, 15). We879

therefore suggest that our concept should be applied to new880

datasets, including hypothetical ones, also to investigate po-881

tential improvements in resolution resulting from additional882

seismic stations at new locations.883

The reliability of our resolution length analysis, includ-884

ing the computation of the kernel focus ξ, clearly depends on885

the quality of the individual Gaussian approximations. For886

example, an irregular feature was discovered by the classi-887

fication scheme at a depth of 595 km (Fig. 8), suggesting888

strongly non-Gaussian averaging kernels around the East-889

Pacific Rise. Across this region, the kernels are insufficiently890

focused and show notably low estimates of vertical resolu-891

tion lengths for all inversion parameter combinations (Fig.892

10). In Fig. 16, we provide an example of such a kernel using893

η1 and target lengths wH/V = 300/200 km (i.e. the ‘high-894

resolution’ scenario). It is strongly shifted to greater depths895

with respect to the target location by about 190 km, as es-896

timated from the centre of the best-fitting Gaussian. While897

the Gaussian appears to fit this kernel well at the level of898

the half width at half maximum, the low value for the fo-899

cus of ξ = 0.25, however, suggests a poor approximation.900

This is mainly due to elevated averaging values and oscil-901

lations of the kernel outside the plane of the cross-section902

(indicated for example by the local maximum visible in the903

lateral cross-section in Fig. 16). The estimated resolution904

lengths may thus still be reasonable even for these complex905

kernels, while the focus successfully points out their inade-906

quacy for describing comprehensively the resolution charac-907

teristics. Again, this demonstrates why the computation of908

resolution lengths from 2-D cross-sections can be potentially909

misleading. A more robust assessment of resolution lengths910

for these complex scenarios instead requires some combina-911

tion of accurate estimates, based for example on the 3-D912

Gaussian parametrization, and a classification that we real-913

ize using the concept of ‘focus’ here. Our analysis illustrates914

that both together are a useful way to extract the relevant915

information on resolution reliably from a large set of aver-916

aging kernels.917

6.2 Implications for SOLA tomography918

A key result of Zaroli (2016) was that choosing a constant919

value for the trade-off parameter η per layer can produce920

coherent SOLA tomographic images (i.e. showing geody-921

namically interpretable large-scale features) with bounded922

uncertainty on a global scale. In contrast to Zaroli (2016),923

in which spheroidal, constant target functions of variable924

size adapted to an irregular data-driven grid were used, we925

chose a laterally (almost) equidistant model parametriza-926

tion and tested a homogeneous Gaussian target kernel size927

consistently at all model locations. Our results show that,928

for a given selection of inversion parameters η and T (k), the929

model uncertainties σm̂(k) from propagated data errors may930

have a low variability across all target locations. This sup-931
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Figure 14. Propagated model uncertainty σm̂(k) at 595 km depth for different target kernel sizes and trade-off parameters. Dashed

contour lines are only drawn at the values shown in the colour bar. Values above each map show the global mean ± standard deviation.

Figure 15. Same as Fig. 14 (model uncertainty σm̂(k) ) at a depth of 1210 km.
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Figure 16. Example of a poorly centred averaging kernel A(k)

in the vicinity of the East-Pacific Rise for the high-resolution

inversion setup (η1, target resolution wH/wV = 300/200 km).
The lateral cross-section at 595 km (top plot) does not reveal

the main peak due to its vertical shift of about -190 km and the

limited vertical half width of 105 km. The kernel is insufficiently
focused (ξ < 0.75), which implies that its best-fitting Gaussian

is not representative for the complete averaging volume. Ellipses
and contour lines are explained in Fig. 7.

ports the notion that, from the perspective of error propa-932

gation, it is indeed viable to use one single trade-off parame-933

ter (e.g., here η2 with the current dataset) per tomographic934

layer. In previous applications of the SOLA method it has so935

far not been clear, however, whether the averaging kernels936

also reasonably fit the target kernels T (k) at a given level937

of uncertainty. The classification scheme developed here of-938

fers additional guidance in this regard by making it possible939

to assess the quality of the averaging kernels with respect940

to a best-fitting 3-D Gaussian instead of the target kernel.941

For certain research questions it might be further on de-942

sirable to obtain global tomographic models with different943

characteristics, favouring either high-resolution, uniformly944

good ‘focusing’ of averaging or resolving kernels, low uncer-945

tainty σm̂(k) , or a regionally variable mix thereof. It is, for946

example, not clear whether geodynamic inversions that aim947

at retrodicting past mantle evolution would benefit from ei-948

ther homogeneous tomographic resolution or from homoge-949

neous model uncertainty (see e.g. Colli et al. 2020). This in950

turn requires the joint adaptation of target kernels T (k) and951

trade-off values η(k) for every individual parameter location.952

Such an analysis is beyond the scope of the current study,953

but can readily be tackled with the tools developed here.954

For the given shape of the target kernels in terms of a Gaus-955

sian, we have demonstrated that it becomes clear from just956

a few inversions, which range of values for η(k) is practically957

relevant and whether another size or shape for the target958

function T (k) should be employed. This empirical procedure959

is necessary because no automatic criterion or rule exists to960

determine the ‘ideal’ SOLA inversion parameters at every961

target location without excessive testing. For global appli-962

cations, this would be computationally prohibitive. The joint963

analysis of model uncertainties σm̂(k) and the focus ξ, which964

we used to set up the classification scheme for the averaging965

kernels, in comparison, is practically viable and provides es-966

sential information for selecting useful local combinations of967

T (k) and η(k), globally.968

7 CONCLUSIONS969

We have presented a practical concept and its application970

for the assessment of resolution and uncertainty of tomo-971

graphic images on a global scale. It is based on: 1) explicitly972

available averaging kernels and uncertainties, here enabled973

by the SOLA method, 2) a 3-D Gaussian parametrization974

of the averaging kernels for estimating resolution lengths975

consistently, and 3) a classification scheme for identifying976

regions where the Gaussian approximation may not accu-977

rately represent the spatial averaging. Through this combi-978

nation, it is possible not only to investigate and visualize979

the resolution information for all the averaging kernels to-980

gether, but also to indicate in a straightforward fashion in981

which regions the results can be reliably interpreted. At the982

same time, it shows in which locations specific care must983

be taken, for example where individual analysis of the local984

resolving power of the given dataset may be advisable.985

Instead of interpreting model values, we employed the986

approach presented here for testing various combinations of987

SOLA inversion parameters in terms of their effects on fi-988

nal resolution and uncertainty, as there is no formal way to989

determine any ‘ideal’ setup. Our analysis shows that only990

a few inversions are required for a given realization of the991

target kernels to pinpoint whether their size or shape needs992

to be adapted and which range of values for the trade-off993

parameter is useful. This in turn is important for effectively994

selecting the proper combinations of these parameters at995

each target location in case of specific requirements (e.g.996

tuning towards more homogeneous resolution or more ho-997

mogeneous model uncertainty). Finally, we emphasize once998

more that the general analysis performed here as well as the999

classification scheme are not restricted to the setup based1000

on SOLA. They can also be applied to the closely-related1001

resolution concept for point-spread functions, in case they1002

are explicitly available.1003

In summary, the analysis with our tomographic frame-1004

work revealed conclusively that resolution lengths from the1005

SOLA method can be primarily tuned by the choice of tar-1006

get kernel size, and only to a lesser extent by the trade-off1007

parameter. Despite this design control, a good focusing of1008

the averaging kernels (i.e. adequacy of the approximation1009

with a Gaussian) cannot be guaranteed on a global scale1010

with the data and possible inversion setups employed here1011

(especially for a target resolution going down to ∼300 km1012

horizontally and ∼200 km vertically). Most notably, as ex-1013

pected with body waves, one has less control on vertical1014

than on horizontal resolution length, especially at shallower1015

depths in the mantle. However, a laterally homogeneous1016

distribution of uncertainty is generally possible by choos-1017

ing locally varying trade-off parameters. Additionally, the1018

SOLA uncertainties remind us that even if averaging ker-1019

nels or point-spread functions with high resolution could1020

be obtained everywhere with specific regularization choices,1021

the estimated model may be highly speculative in regions of1022

poor data coverage. It is for these reasons that a proper and1023
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coherent quantification of resolution and model uncertainty1024

is of critical importance, since this is a prerequisite to better1025

inform independent geophysical studies that rely on global1026

tomographic images.1027
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APPENDIX A: USING BACKUS-GILBERT1365

THEORY FOR TOMOGRAPHY1366

In the original theory, Backus and Gilbert propose to con-1367

struct optimal kernels A(k)(r) by approximation of a delta1368

peak δ(r − r(k)) in terms of a specific deltaness criterion1369

(Backus & Gilbert 1968), for example by minimizing the so-1370

called spread (Backus & Gilbert 1970). For a perfect delta1371

peak, the linear averaging in eq. (1) would simply show that1372

m̂(k) ≈ m(r(k)), which is however only possible if the data1373

were complete and free of errors. Instead, one will typically1374

need to accept A(k)(r) that deviate from δ(r − r(k)), due1375

to the available set of data kernels Ki(r), and in order to1376

moderate the propagation of data errors into the inferred1377

averages. A tomographic model would then consist in a col-1378

lection of M local averages, m̂(k), for k = 1, ...,M . Rewriting1379

eq. (1) in a discrete notation with volumetric weights Vj ap-1380

propriate for each j-th grid node as1381

m̂(k) =
∑
j

A
(k)
j Vjmj =

∑
j

Rkjmj , (A.1)1382

one can see that the averaging kernels projected onto a dis-1383

crete model parametrization represent a single row of the1384

resolution operator Rk· . The operator R can then be used1385

to retrieve information on the resolution for a specific model1386

parametrization, while A(k)(r) essentially refers to the lo-1387

cal resolution for the continuous model m(r(k)) (Trampert1388

1998). Theoretically, however there is no need to discre-1389

tise the model, as the Backus–Gilbert approach essentially1390

solves a continuous inverse problem. This can be exploited1391

fully for example by the ‘parameter-free’ SOLA approach1392

(Zaroli 2019), while in the present paper we still make use1393

of the discrete formulation as described in Zaroli (2016). A1394

noteworthy limitation is that the theory does not guarantee1395

that the collection of averages together actually explains the1396

data. We tested this for our class of models that use only1397

body waves at the moment, and we observed that the global1398

misfit reduction can actually be comparable to and some-1399

times even be better than in classic damped-least squares1400

inversion with model norm damping. However, the question1401

of data misfits in SOLA tomographies, especially for differ-1402

ent inversion parameter choices, might be a relevant subject1403

for future investigations.1404
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APPENDIX B: EFFICIENTLY SOLVING THE1405

SOLA B-G SYSTEM1406

Zaroli (2016) explained how (the discrete version of) the1407

SOLA optimization problem in eq. (3) can be solved together1408

with the unimodular constraint eq. (4) using a least-squares1409

approach. Therefore, the SOLA system can be rewritten in1410

the following fashion (see Appendix A1, Zaroli 2016):1411

x̂(k,η) = argmin
x̂(k)

∥∥∥∥[ Q(η)

η IN−1

]
x̂(k) −

[
y(k,η)

0N−1

]∥∥∥∥2
2

. (B.1)1412

Both the matrix Q(η), of size (M+1) × (N -1), and the right-1413

hand side y(k,η), which incorporates the target kernel, de-1414

pend on the choice of a particular trade-off parameter η.1415

The complete solution x(k) can finally be recovered from1416

x̂(k) (the intermediate solution in eq. B.1). Considering our1417

tomographic grid and dataset, in each inversion we need to1418

solve for the Backus–Gilbert coefficients x(k) with a SOLA1419

system matrix Q(η) of size 153,324 × 79,764 (∼2 per cent1420

non-zero elements, ∼2 GB). As one needs to perform a single1421

inversion for every grid node, computational costs for empir-1422

ically testing inversion parameters can thus quickly become1423

prohibitive. The SOLA method has the computational ad-1424

vantage that the left-hand side of the corresponding linear1425

system in eq. (B.1) is independent of the target location r(k),1426

i.e. for a given η the SOLA system matrix Q(η) does not1427

change. This enables perfectly parallel computation over all1428

M model parameters. To this end, one could simply increase1429

the number of processors P at the cost of having to store 2 ·P1430

times the SOLA system matrix Q. This obviously becomes1431

problematic if the available computing system is limited in1432

RAM, especially if the tomographic systems become even1433

larger than the ones considered in this study. Alternatively,1434

using improved parallel solvers based on LSQR (Huang et al.1435

2013; Lee et al. 2013) or using instead efficient direct meth-1436

ods (Bogiatzis et al. 2016) are other possible options that1437

we considered and list here for documentation. We decided1438

to solve eq. (B.1) by using a GPU version of the algorithm1439

LSMR (Fong & Saunders 2011). We use LSMR as imple-1440

mented by Krylov.jl (a package of selected Krylov meth-1441

ods written in the programming language Julia, see Mon-1442

toison & Orban 2023), where, conveniently, no significant1443

code changes are required compared to the CPU version.1444

Once the GPU compute kernel is compiled, different left-1445

hand sides y(k,η) can be asynchronously copied from a CPU1446

to the GPU and solution vectors can be efficiently recovered1447

for each run without additional time spent for data trans-1448

fer or solver setup. This way, performing the inversion for a1449

single model parameter in our computations was about 50–1450

100 times faster on the GPU (using double precision) com-1451

pared to a single CPU. Also, this only requires that Q(η),1452

a large but highly sparse matrix, fits twice into GPU mem-1453

ory. As a remark, LSMR is recommended to be used over1454

LSQR by Fong & Saunders (2011) if iterations have to be1455

stopped early. This could theoretically be exploited to keep1456

the solver time limited in case a reasonable maximum num-1457

ber of iterations for all inversions globally is found. However,1458

we have not drawn on this here and relied on the stopping1459

criteria suggested by Fong & Saunders (2011). For a given1460

trade-off parameter η, we found that the time to solution1461

was practically constant for all model parameters and over-1462

all increased roughly by a factor of 2 for an equal decrease1463

in η (i.e. solutions for η1 = 5 took about twice as long as for1464

η2 = 10). The use of GPUs therefore proves to be very use-1465

ful for SOLA inversions with a least-squares approach and1466

can greatly reduce the time required for computing a com-1467

plete model with M parameters. As a final note, we used 21468

NVidia RTX A5000 in this study, but modern GPU clusters1469

and supercomputers often feature many more units. From a1470

computational point of view, it should thus be straightfor-1471

ward to use larger grids and datasets with the SOLA method1472

than presented here.1473

APPENDIX C: ADDITIONAL GLOBAL1474

RESOLUTION MAPS1475

To complete the global analysis, we show additionally the1476

estimated latitudinal resolution lengths in Figs C1 and C2.1477

Plots for the horizontal and vertical shifts of the centres of1478

mass of the averaging kernels can be found in the supple-1479

mentary (online) material, as well as comparisons between1480

the uncorrelated and correlated (i.e. including rotation) 3-D1481

Gaussian estimates.1482
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Figure C1. Latitudinal resolution lengths of the averaging kernels at 595 km depth, as estimated from the best-fitting Gaussian ĝ(k).

Same layout as Fig. 10. As shown in the main text, shaded areas highlight regions of low ‘focus’ (i.e. the Gaussian is inadequate to

reliably estimate resolution length for the averaging kernel).

Figure C2. Latitudinal resolution lengths of the averaging kernels at 1210 km depth. Same layout as Fig. 11.


